- 1. Phase change terminology
- 2. Basic properties of first-order phase transition
- 3. Clausius-Clapeyron equation
- 4. Van der Waals treatment and Maxwell construction (off syllabus)

Compressing an ordinary substance

pVT surface of an ordinary substance

Phase diagram

Phase diagram

Phase diagram

pVT surface of an ordinary substance

A vapour which would begin to condense if the temperature were lowered is called "saturated".

(similarly a pure liquid which would begin to boil if the temperature were raised may be called a "saturated liquid" but this second terminology is less widely used.)

Specific volume

A system can pass between liquid and gas without any phase transition!

 $T(\mathbf{K})$

Different types of phase transition

- 1. First order phase transition
 - there is a discontinuity in various properties
 - there are metastable phases (superheating and supercooling)
 - in almost all cases there is a discontinuity in S(T) and therefore a latent heat
 - Examples: liquid-vapour; solid-liquid; solid-vapour; superconductivity in presence of applied B field; ferromagnetism; some solid-solid (allotrope) transitions
- 2. Continuous phase transition
 - S(T) is continuous but some derivative is not (e.g. continuous S but discontinuity in Cp)
 - no metastable phases and no latent heat
 - Examples: liquid-vapour via the critical point; superconductivity at B=0; many order-disorder transitions in solids; Bose-Einstein condensation

Specific volume

- 1. Phase change terminology
- 2. Basic properties of first-order phase transition
- 3. Clausius-Clapeyron equation
- 4. Van der Waals treatment and Maxwell construction (off syllabus)
- 5. (If time: some observations on chemical potential)

Entropy and volume changes for water (H_20)

Note large volume change (x 1000)

- 1. Phase change terminology
- 2. Basic properties of first-order phase transition
- 3. Clausius-Clapeyron equation
- 4. Van der Waals treatment and Maxwell construction (off syllabus)
- 5. (If time: some observations on chemical potential)

Deriving the **Clausius-Clapeyron equation** (which describes the coexistence curve for a first-order phase transition)

Consider neighbouring points on a co-existence line

pressure vs. inverse-temperature for water

full curve = measured; dashed = prediction from simple treatment

- 1. Phase change terminology
- 2. Basic properties of first-order phase transition
- 3. Clausius-Clapeyron equation
- 4. Van der Waals treatment and Maxwell construction (off syllabus)
- 5. (If time: some observations on chemical potential)

Isotherms predicted by van der Waals equation

Deriving the Maxwell construction

