

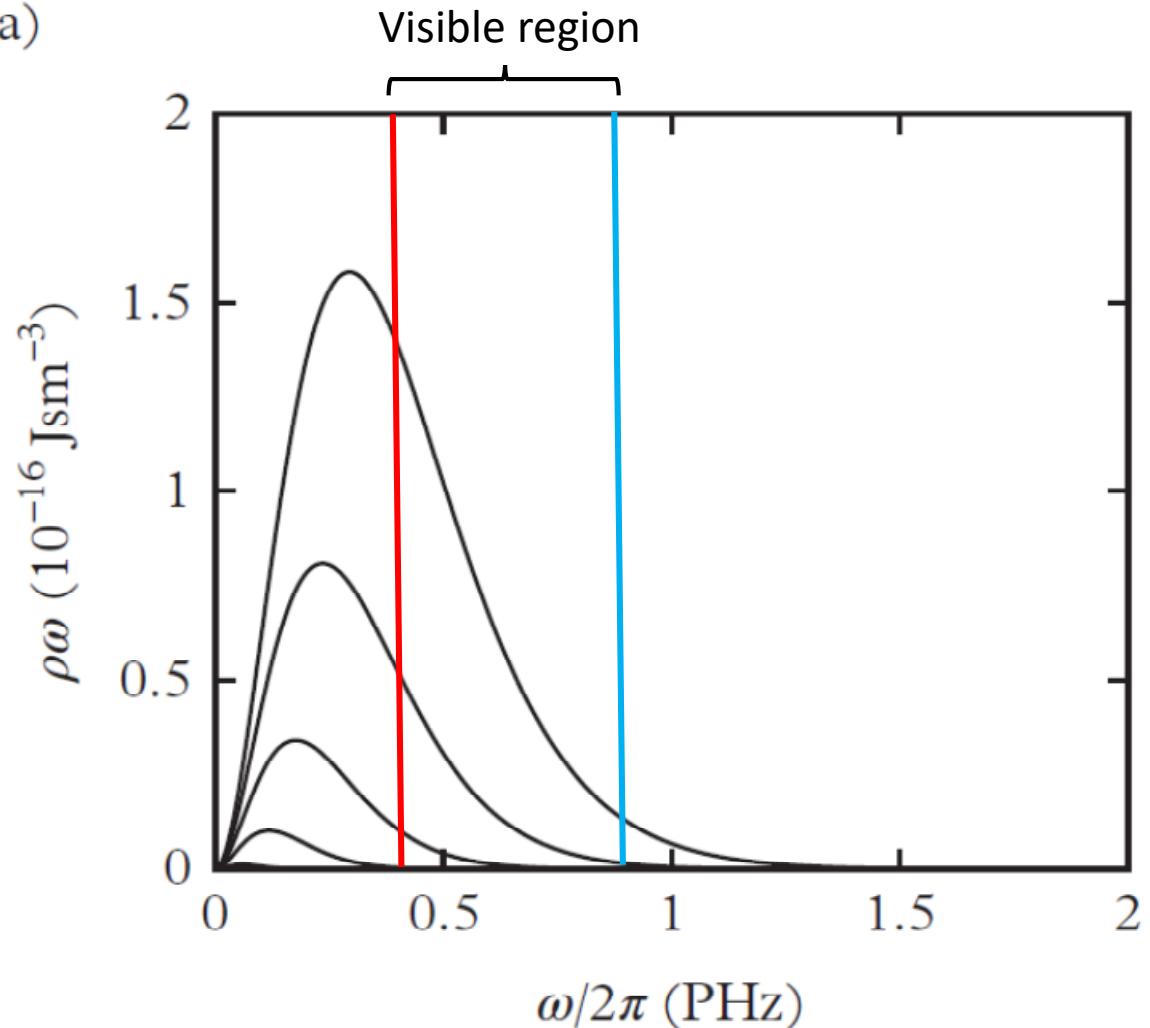
Thermodynamics lecture 9. Thermal radiation in more detail

1. Wien's argument to show adiabatic expansion of cavity radiation preserves its thermal character
2. Wien's laws:
 1. Wien's displacement law
 2. Wien's distribution law
3. Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)
4. Energy, partition function, etc.
5. Model 2: indistinguishable photons
(conceptually harder but equally important)

Thermodynamics lecture 9. Thermal radiation in more detail

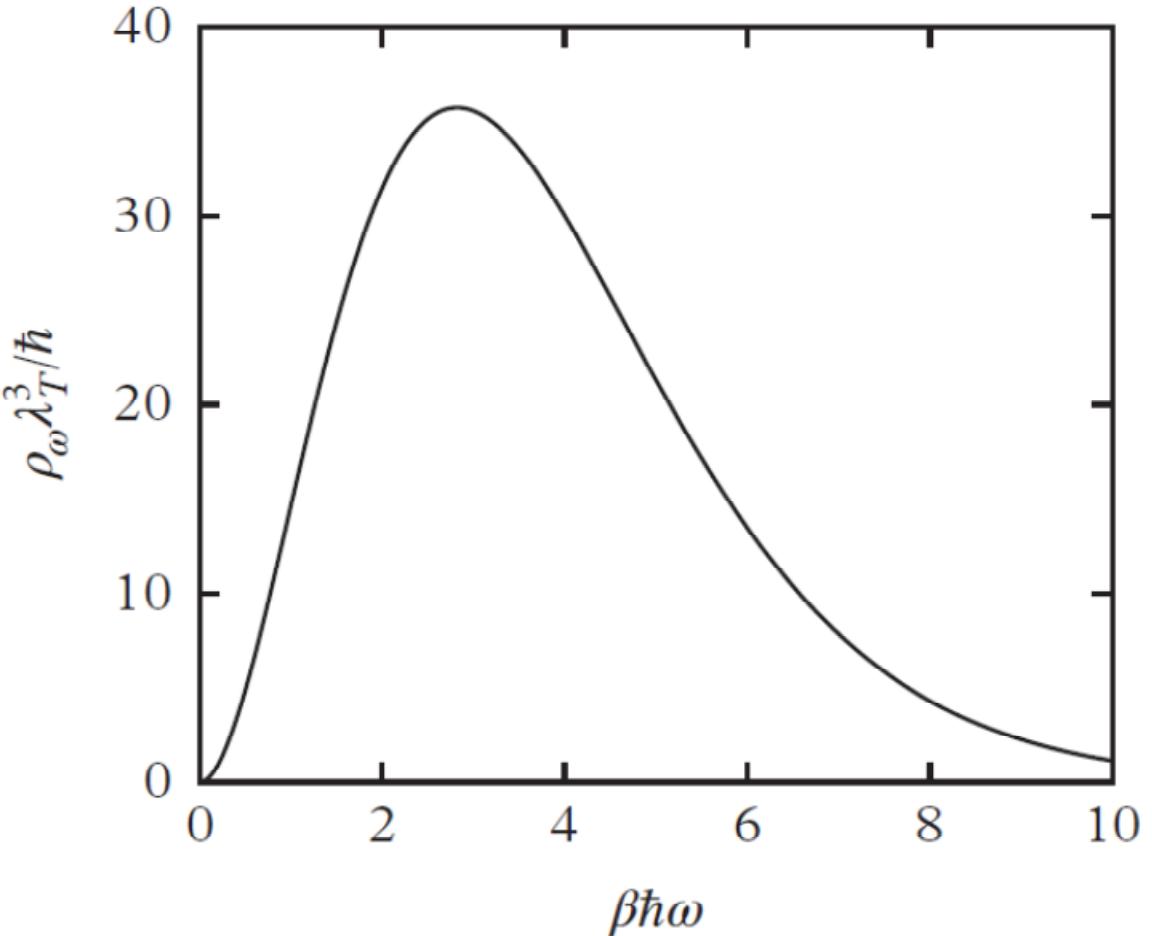
1. Wien's argument to show adiabatic expansion of cavity radiation preserves the thermal character
2. **Wien's laws:**
 1. **Wien's displacement law**
 2. **Wien's distribution law**
3. Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)
4. Energy, partition function, etc.
5. Model 2: indistinguishable photons
(conceptually harder but equally important)

(a)



Spectral energy density at
1000, 2000, 3000, 4000, 5000 K

(b)



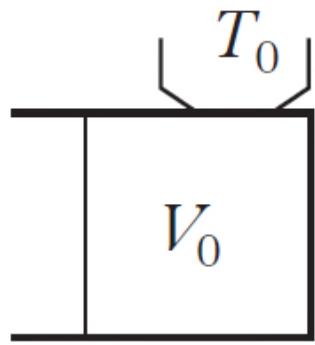
It's the same function each time,
scaled by λ_T^3

$$\lambda_T = 2\pi \hbar c / k_B T.$$

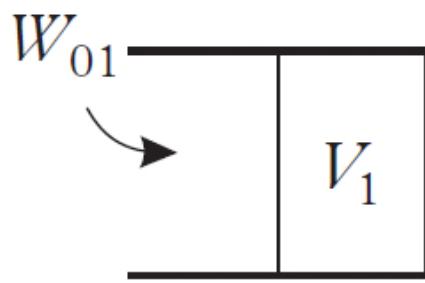
- 1. Wien's argument to show adiabatic expansion of cavity radiation preserves its thermal character**
2. Wien's laws:
 1. Wien's displacement law
 2. Wien's distribution law
3. Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)
4. Energy, partition function, etc.
5. Model 2: indistinguishable photons
(conceptually harder but equally important)

Slow expansion of cavity radiation in a reflecting cavity:
does it remain in thermal equilibrium state?

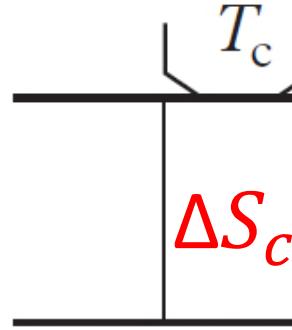
Wien's argument to show the answer is yes:



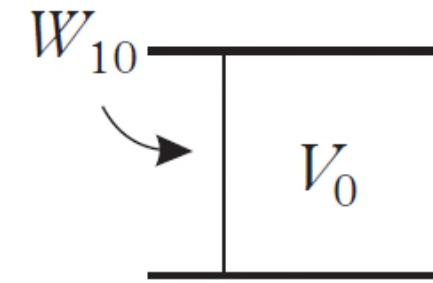
(a)



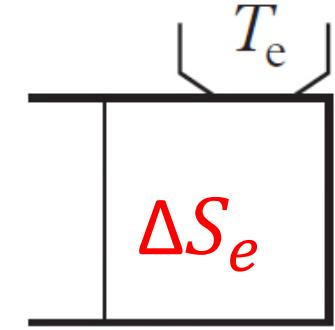
(b)



(c)



(d)



(e)

Stages (c) and (e): we pick T_c and T_e such that the radiation comes to equilibrium with **no net ΔU**

Stages (b) and (d):

Adiabatic change of volume (so work is done and **U changes and changes back**)

Argument:

$$\Delta U = 0 \rightarrow \Delta S_c \geq 0, \Delta S_e \geq 0$$

But no net change in state \rightarrow

$$\Delta S_{tot} = 0$$

$$\rightarrow \Delta S_c = \Delta S_e = 0$$

1. Wien's argument to show adiabatic expansion of cavity radiation preserves its thermal character
2. **Wien's laws:**
 1. **Wien's displacement law**
 2. **Wien's distribution law**
3. Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)
4. Energy, partition function, etc.
5. Model 2: indistinguishable photons
(conceptually harder but equally important)

Thermodynamics lecture 9. Thermal radiation in more detail

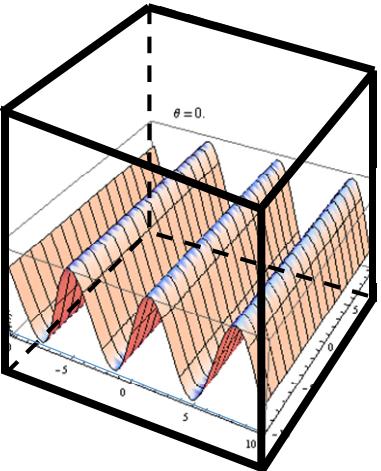
1. Wien's laws:
 1. Wien's displacement law
 2. Wien's distribution law
2. **Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)**
3. Energy, partition function, etc.
4. Model 2: indistinguishable photons
(conceptually harder but equally important)

Thermodynamics lecture 9. Thermal radiation in more detail

1. Wien's argument to show adiabatic expansion of cavity radiation preserves its thermal character
2. Wien's laws:
 1. Wien's displacement law
 2. Wien's distribution law
- 3. Statistical mechanics of cavity radiation,
Model 1: distinguishable modes (plane waves)**
4. Energy, partition function, etc.
5. Model 2: indistinguishable photons
(conceptually harder but equally important)

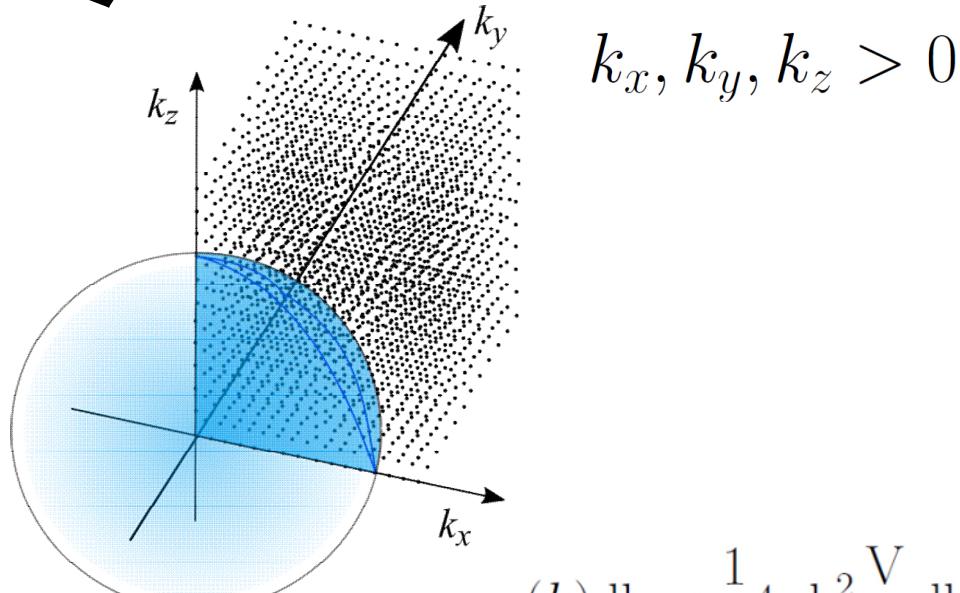
Modes of electromagnetic field

Standing waves in a box



$$\sin(k_x x) \sin(k_y y) \sin(k_z z)$$

$$\Delta k_x = \frac{\pi}{L}$$

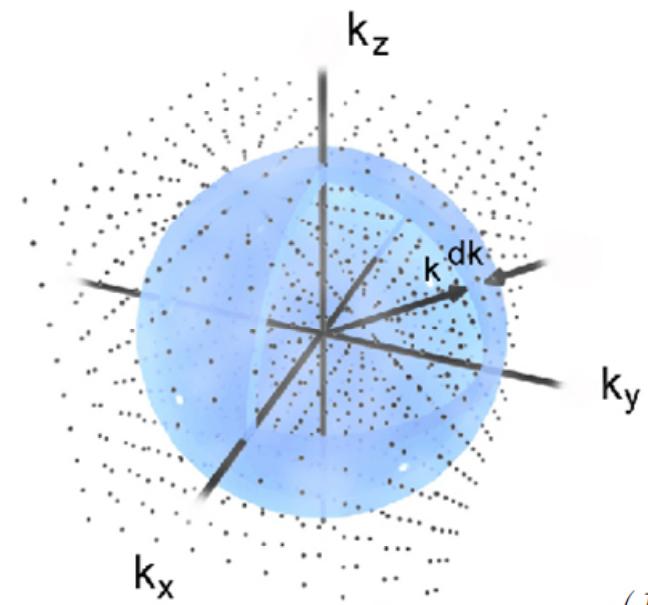


$$g(k)dk = \frac{1}{8}4\pi k^2 \frac{V}{\pi^3} dk$$

OR travelling waves with a *mathematical constraint*: must have period L .

Travelling waves,
 $e^{ik_x x} e^{ik_y y} e^{ik_z z}$

$$\Delta k_x = \frac{2\pi}{L}$$



$$g(k)dk = 4\pi k^2 \frac{V}{(2\pi)^3} dk$$

Comparison between cavity radiation and an ideal gas

	Ideal gas	Cavity radiation
Independent variables	U, N, V	U, V
Number of particles	N	$N = bVT^3$
Equation of state	$p = nk_B T$	$p = 0.9 nk_B T$
Energy	$U = \frac{1}{\gamma-1} N k_B T,$	$U = 2.7 N k_B T,$
u and p	$p = (\gamma - 1)u$	$p = \frac{1}{3}u$
Entropy	$S = N k_B \left(\ln \left[a \frac{T^{1/(\gamma-1)}}{n} \right] \right)$ $= \frac{U}{T} (\ln T - (\gamma - 1) \ln(n/a))$	<div style="border: 2px solid red; padding: 2px;">$S = 3.6 N k_B$</div> $= \frac{4}{3} \frac{U}{T}$
Chemical potential	$\mu = (U - TS + pV)/N$ $= (\gamma u - Ts)/n$	$\mu = 0$

$$b \simeq 2.03 \times 10^7 \text{ m}^{-3} \text{K}^{-3}$$