STATISTICAL THERMAL PHYSICS: BASIC IDEAS

Andrew M. Steane
Exeter College and Department of Atomic and Laser Physics, University of Oxford.

January 31, 2026

Abstract

This note presents basic ideas in statistical thermal physics, especially the calculation of entropy. The aim is
to be clear, especially about any approximations employed, and to avoid some widespread misconceptions. The
starting point is some preliminary understanding of the idea of a quantum state. The text includes derivations of
the Boltzmann factor and how to obtain entropy for an isolated system of fixed energy, and a system in thermal
equilibrium (arguing via microcanonical and canonical ensemble).

1 Where we are heading and how to get there

The statistical method in thermal physics is a set of ideas which relate the microphysics to the macrophysics. That
is, it is a set of concepts and methods that allow us to relate large-scale quantities such as total energy, entropy and
temperature to the way the small parts of some given system behave, especially in conditions of thermal equilibrium.
A central pair of equations is the following:

F = —kgThhZ, (1)
zZ = > P (2)
states ¢

where F' = U — T'S is the Helmholtz function of some system of total internal energy U, temperature 7" and entropy
S, Z is called the partition function, and the sum in the definition of Z is over all quantum states of the system,
their energies being ¢;, and 8 = 1/kgT. This is a wonderful pair of equations because they make the link, in one step,
from microphysics (the quantum states and their energies) to the macrophysics (Helmholtz function, entropy, internal
energy, etc.) However in order to use these equations with confidence one must first understand precisely what states
are being summed over, and in order to understand them one must learn where they come from, or in other words
how they relate to other ideas in thermal physics. It is the aim of this note to address these tasks. We do it by first
considering entropy, then finding a probability distribution which maximises entropy, and then using it to find the
average energy, and also how the temperature is expressed, which eventually allows us to write U — T'S in terms of Z.

Now on with the show.

2 Background: lost among the microstates

Once upon a time a man woke up somewhere in a huge city which was unfamiliar to him. Not knowing
where he was, he started wandering around. With no other plan to guide him, he just took random turns
at the junctions. Occasionally he came across an unusual building or a park, but mostly the streets were



/

Figure 1: Lost among the microstates. The large rectangle represents a collection of quantum states (often called
microstates) all at the same energy. Each tiny square (not shown) inside the rectangle represents a single microstate.
The regions inside the rectangle represent collections of microstates based on some further property in addition to
energy. For example, for a gas in a box, we could define the quantity f = N /N as the fraction of particles located
in the left half of the box, and then group the microstates based on values of f. The group with 0.05 < f < 0.15 will
be small; the group with 0.15 < f < 0.25 will be larger; the group with 0.45 < f < 0.55 will be the largest, etc. A
system which is equally likely to be in any of the states of the whole rectangle will be most likely to be found in the
largest such region.

quite like one another. The man did not know it, but this city was built according to a plan where a
few areas had shops or public buildings, but they were small areas. Most of the city was taken up by a
huge suburb full of residential housing. It was not long before the wandering man found himself in the
residential area, because that area took up so much of the city. And once in it, he was very unlikely to
find his way out of it because it was so large in comparison to the other areas.

This parable of the wandering man is an illustration of the internal dynamics of any physical system with a large number
of physical states but little internal structure. Left to its own devices (i.e. isolated, but not at zero temperature) the
system will wander among the microstates: that is, its physical configuration will evolve randomly among all those
internal states which have the same energy as the one the system started out in, and therefore, if those states are in
groups of different sizes, then subsequently the system is most likely to be found in one of the states in the largest
group. This idea will be made more precise in the rest of the discussion. The main thing to note at the outset is that
we make the following claim (and c.f. Fig. 1):

An isolated system at non-zero temperature wanders around all the mutually orthogonal quantum states
at some given energy in such a way as to spend equal amounts of time, on average, in each of them.

This claim can be justified by study of the dynamics as described by Schrodinger’s equation. For the present discussion
we shall not present that justification at this stage, but simply make the claim and discover what follows from it.
It turns out that a huge amount will follow: almost all of thermal physics! For, by making the claim we come to
understand the entropy of a thermal system. And if we also understand the energy then these two together suffice to
open the way to understanding all the thermal behaviour.

The above statement about spending equal times per state can be used to justify the following, closely related, claim:

For an isolated system in equilibrium, all accessible microstates are equally likely.

This is sometimes said to be ‘the fundamental assumption of statistical mechanics’.
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Figure 2: A simple example of Liouville’s theorem: free motion in one dimension. The diagram represents states of
motion a single particle (which is indicated by the dimensionality of the phase space). The rectangular shaded region
is a set of initial conditions; the parallelogram shows the associated states of motion after some elapsed time. The two
shapes have the same area.

2.1 Justifying the assumption: Liouville’s theorem

This section can be omitted on first reading, but I think it is better if you do read it.

If we assert the fundamental assumption as just that—an assumption—then it does not need to be justified. It will
prove its worth, after the fact, if it turns out to lead to telling insights, and predictions that are in agreement with
empirical observation. And it does turn out that way. But the assumption (of equal times or, equivalently, equal
probabilities per state) was not originally suggested by mere guess-work. It can be strongly motivated by Liouville’s
theorem. This is a mathematical result, in classical physics, concerning motion of sets of particles under conservative
forces (i.e. forces that conserve energy).

We describe the motion by furnishing, for each particle, its position and momentum, thus for N particles moving in
3 dimensions there are 6N variables, and each state of motion of the complete system can be specified by a single
point in an abstract 6/N-dimensional space called phase space. Let us gather all the 3N position variables into a
3N-component vector called r and let us gather all the 3N momentum variables into a 3/N-component vector called p.
For motion under conservative forces the dynamics can be described by furnishing a Hamiltonian H, and the evolution
of the system is then governed by Hamilton’s canonical equations of motion:!

. oH . 0H
r= $7 P——g- (3)

Liouville’s theorem concerns not individual points in phase space, but regions of phase space. We define a region
(often called a cell) T in phase space as some continuous collection of points {r,p}. The phase-space volume of the

cell is then
V= / / d*Nrd*Np (4)
r

This is simply the integral over both position and momentum for the given cell. (Suitable ST units for such a ‘volume’
would be J3V s3N). The theorem can be derived from Hamilton’s equations, and it asserts:

Liouville’s theorem: Under conservative dynamics, the phase space volume of a cell specified by a given
collection of states stays constant as the states evolve.

The idea is that as the system evolves, a given set of points {r, p} will move around phase space, such that the cell
specified by them will itself move and will typically change shape in complicated ways. But, according to the theorem,

I The notation (OH/9p) indicates that vector whose i’th component is (9H /3p;).



this shape-change preserves the volume of the cell. If it gets longer in one direction, it must get shorter in another.
A simple example is shown in Fig. 2. For systems of many interacting particles what typically happens is that a cell
which started out as some simple shape, such as a round blob, will soon be stretched out very thin and contorted into
spirals and the like, all while preserving its volume.

The importance of Liouville’s theorem for us is that it suggests that the dynamics of a system of many particles will
not tend to send the system into any one region of phase space in preference to another. The particles will not, for
example, tend to gather in one place or at one momentum. If the state was uncertain at the outset, say falling into
some given phase-space region but it is not known where in that region, then later on it will be somewhere in a region
of possibly a different shape but of the same size as the starting region.

The ‘fundamental assumption’ we make for statistical mechanics is only concerned with one type of initial condition:
the one called equilibrium. This is the condition the system will be in after it has been left undisturbed for long
enough. In such an equilibrium the particles are still moving (just as fast as ever on average) but not in any particular
pattern. Their motion will not correspond to sound waves or vortices, for example. In consequence we may assert,
in the case of an isolated system, that the cell in phase space in which the system state is to be found includes the
whole phase-space region at one particular energy, and the system state thereafter stays somewhere in that cell, but
not in any particular part of it in preference to another. This does not prove, but motivates, the assumption of equal
probabilities which we adopt for statistical mechanics.

The quantum treatment of the motion reproduces the classical one in the relevant limit, and adds some further details.
The main thing to note about the quantum result is that, at any given energy, uniform probability-density in phase
space corresponds to uniform probability per mutually orthogonal quantum state at the given energy.

Terminology around states.

1. A microstate is a single quantum state of the entire system. All different microstates are mutually orthog-
onal (in the quantum mechanical sense). It is convenient to adopt energy eigenstates as microstates.®

2. A macrostate is a (typically large) set of microstates, all of which are consistent with macroscopic con-
straints applied to the system.

For example, an ensemble of 10 harmonic oscillators and total energy 20 units has 9900605 microstates,
1 macrostate and 21 states accessible to each system (these states are the low-lying ones, having energy 0
to 20 units). If one had further information about the system, one may choose to say that the single macrostate
defined by total energy is made of two or more macrostates specified by their energy and some other property.
In that case the 9900605 microstates of given energy will be divided among the macrostates.

%An energy eigenstate is a quantum state of the system in which the energy has a single precise value.

3 Entropy

There are two basic statements about entropy in statistical mechanics. The first is the one due to Boltzmann:
S =kglnW. (5)
The second is associated with the name of Gibbs:

S =—kg Zpi Inp;. (6)

In Boltzmann’s formula, W is the number of microstates accessible to an isolated system.



In Gibbs’s formula, p; is the probability that the system will be found to be in its ¢’th microstate in more general
conditions, including, for example, when the system can exchange energy with other systems. On these two formulae
hang all the law of statistical mechanics. There are no other formulae greater than these.

If we recall the parable of the wandering man (i.e. if we make the fundamental assumption), we shall realise that in
the case of an isolated system one should adopt

in the Gibbs entropy (by arguing that all accessible microstates are equally likely for an isolated system in internal
equilibrium). Therefore one finds that the two formulae agree for that case:

S=—kg» pilnl/W =k » pilnW =kglnW. (7)

It follows from this that one does not need both formulae. It is sufficient to use the Gibbs formula. It will reproduce
Boltzmann’s result exactly when the Boltzmann formula applies.?

More generally the Gibbs formula can be seen as a kind of average:

S=kg Y pilnW;= (kglnW) (8)

where W; = 1/p;. However the probabilities p; do not always have a natural physical interpretation as the inverse of
some number of states.

The above is clear and unambiguous if we assume the isolated system to have a precisely-defined total energy. Such
an assumption is unproblematic in classical physics, because, by conservation of energy, if the system is isolated its
energy cannot change. However in quantum physics an isolated system can be in a quantum superposition of energy
eigenstates. In that case the Boltzmann formula (5) does not apply. That is, the Boltzmann formula does apply to
a quantum system with precisely-defined energy (one of its energy eigenvalues®), but not otherwise. (We will argue
later that the case of a superposition of states of differing energy can be handled by Gibbs’s formula.)

Having introduced the entropy, it remains to comment on it. Can Gibbs’s formula be derived from other considerations?
The reasoning goes as follows. The study of information theory yields a quantity called Shannon entropy which is given
by a formula with the same form as the Gibbs entropy (6). The Shannon entropy quantifies information content in a
precise way in the context of sending sets of symbols through a communication channel. The associated information
theory yields some results which are reminiscent of thermal physics. For example, information processing cannot
increase, but can reduce, the Shannon entropy. This is not a proof, but it leads one to propose the Gibbs formula as a
plausible candidate for the calculation of entropy in thermal physics. One then studies what follows from this choice,
and it turns out that it does make sense. Therefore we accept the plausible candidate as our working definition.

In Section 7 we will derive the Gibbs formula from the Boltzmann formula in the case of a system made of many
similar parts, in the limit where the number of parts tends to infinity. This is strong evidence that the Gibbs formula

2In the literature there is discussion about entropy which sometimes takes the form“the Gibbs entropy is this, but the Boltzmann
entropy is that”. But, as we have just shown, the formulae agree exactly in the case where they both apply, so no such ambiguity can
arise. (When the ambiguity arises it is because some other formula has been introduced and named after Gibbs or Boltzmann.)

3The term energy eigenvalue means simply the energy of the system when the system is in a state of precisely defined energy, with no
quantum uncertainty in the energy value.
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Figure 3: The diagrams show energy levels of a system with 9 quantum states at 3 energy levels (of degeneracies
1,3,5). The filled circles indicate the probability of being in one state or another. Left diagram: system in a single
energy eigenstate, entropy = 0. Centre: system in energy equilibrium at energy 1 unit, entropy = kgIn3 ~ 1.099 k.
Right: system in thermal equilibrium with mean energy 1 unit, entropy = 2.01 k.

is right. But nowadays we don’t usually rely on a derivation like that: we simply assert (6) as an axiom.

4 Ensembles, microstates and macrostates

The aim of this section is to introduce or clarify the following concepts:

macrostate, microstate,
canonical ensemble, microcanonical ensemble,
thermal equilibrium, energy equilibrium

The terms macrostate and microstate were introduced in the box before the previous section.

When a system has a precisely defined energy E there can be more than one accessible microstate because there
can be more than one quantum state (energy eigenstate) of energy E. It will be useful to have a name for the case
where an isolated system explores those degenerate (i.e. equal-energy) states equally. This is the condition where the
Boltzmann entropy formula applies. We shall call it an energy equilibrium. Figure 3 gives an example. Another kind
of equilibrium is thermal equilibrium. This is the condition where the system is in thermal contact with a reservoir
at fixed temperature and equilibrium has been reached. We will find later that when a system is composed of a
large number of smaller systems and has an amount of energy large compared to its energy level spacing, the energy
equilibrium and the thermal equilibrium are very similar.*

Another concept we shall need is that of a Gibbs ensemble. A Gibbs ensemble is a conceptual ensemble of copies of the
system in question, such that each of the copies is described by the same macroscopic quantities (such as volume and
mass) but the copies do not need to be all in the same quantum state (microstate). In a Gibbs ensemble we usually
also make a further assumption, namely that the collection of systems has relaxed to an equilibrium state in which
each system has the same average energy when averaged over time. For a large enough ensemble this equilibrium is
the one called thermal equilibrium in thermodynamics. However in the statistical approach we do not need to assume
the thermodynamic limit (which is the limit of very large numbers of accessible microstates), and for this reason the
equilibrium reached by a finite ensemble may or may not be a thermal equilibrium. For example, an isolated harmonic
oscillator prepared in a state of energy F (an energy eigenvalue) will simply stay in that state, which is not normally
called thermal equilibrium. A fully isolated system with a well-defined energy will relax to an energy equilibrium,
not a thermal equilibrium. That is because an isolated system cannot change its total energy so if it was prepared
in a state of well-defined energy it will continue in a state of well-defined energy. But in practice this case is very
rare for large systems. For systems with very many parts (e.g. a mole of atoms or photons or whatever) most likely
the system was prepared in a quantum superposition of a range of energy values, with the result that it relaxes to a
thermal equilibrium.

4. .. indeed many professional physicists are unaware of the difference between them because it was rather glossed-over when they learned

the subject.
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Figure 4: Ensembles. The microcanonical ensemble has some number N of systems in thermal contact with one
another, the whole ensemble being isolated and in energy equilibrium. The canonical ensemble has an infinite number
of systems in thermal contact with one another, in equilibrium. The thermal behaviour of any one member of the
canonical ensemble is the same as that of a single system in thermal contact with a reservoir at fixed temperature.

Among the various Gibbs ensembles which we can imagine, the following are of particular interest (see figure 4):

1. Canonical ensemble. A collection of N copies which are able to exchange energy but not material (e.g.
particles) with their neighbours, in the limit N — co.

2. Microcanonical ensemble. A finite collection of N copies which are able to exchange energy but not material
(e.g. particles) with their neighbours, the whole ensemble having a fixed total energy equal to one of the energy
eigenvalues of the entire ensemble.

The terminology is slightly misleading because there is nothing especially small about the microcanonical ensemble.
Its members can be large or small systems. Equally, the members of the canonical ensemble can be large or small. The
main difference between these ensembles is that the microcanonical ensemble has a fixed total energy, whereas if one
were to examine the energy of any finite sample from the canonical ensemble, the value can change from one moment
in time to the next and from one sample to another (because energy can flow around the ensemble and typically this
will result in local fluctuations).

The word ‘canonical’ has the meaning, roughly, of ‘standard’.

Another useful concept is that of a ‘heat bath’ or thermal reservoir. A thermal reservoir is a physical system with a
large heat capacity and thermal conductivity, and otherwise it does not matter what kind of system it is. So we can,
if we like, model the thermal reservoir as itself a canonical ensemble. From this it follows:

After relazation to thermal equilibrium, a system in a canonical ensemble behaves precisely in the same
way as a system (of the same type) which is in thermal contact with a thermal reservoir. c.f. Fig. 4.

For this reason we shall speak, in the following, of ‘a canonical ensemble at temperature 7°. We have now established
the correspondence:

canonical ensemble: each member is in thermal equilibrium (and so is the entire ensemble)

microcanonical ensemble: the entire ensemble is in energy equilibrium (but each member is not, unless
there is only one member); in the limit N — oo each member is in thermal equilibrium
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Figure 5: Definitions of S.(K, E) and S7(K,U). The diagrams show an example with K = 4. The left diagram
shows a microcanonical ensemble with 4 members. The right diagram shows a single system taken from a canonical
ensemble; we have adopted the strategy of indicating the rest of the (infinite) ensemble by drawing a heat bath. By
writing S7(K, F) in the right hand diagram we indicate the case where U in the canonical ensemble is equal to E.

We are now going to work towards getting clarity on how to calculate entropy for the two types of ensemble, and then
to show that the answers agree in the thermodynamic limit. Let us now define, for some given system type (e.g. a
harmonic oscillator, or a brick of one mole of particles, or a single particle, or an entire gas):

S.(K,E) = entropy of a microcanonical ensemble of K systems of the given type, the ensemble having
total energy E.

St (K, U) = entropy of a system C which is made up of a K systems of the given type, where now C isa
member of a canonical ensemble at temperature 7', and T is such that C has average internal energy U.

Figure 5 should make these definitions clearer. S, (K, E) may be called the microcanonical entropy and St(K,U) the
canonical entropy, but one should not suppose this means they are different types or definitions of entropy; rather they
give the entropy of a system in two different physical conditions. The subscript e on the first entropy is to remind us
it is for an energy equilibrium; the subscript T on the second entropy is to remind us it is for a thermal equilibrium.

The average referred to in the definition of St is an average over members of the ensemble. If we choose to model the
ensemble by having just a single member and a heat bath, then U is given by U = >, piU; where i ranges over the
states the system can access as heat flows in both directions between it and the heat bath, and p; is the probability
of the i'th such state. This same average can also be regarded as an average over time.’

It will emerge that there exists an expression for St applicable to any system:

Sr(1,U) = —kg» pilnp;  withp, =e 9/Z (9)

where Z = ), exp(—f¢;) the partition function mentioned in the introduction, the value of 3 is such that ). p;e; =
U, and ¢; is the energy of quantum state 4. This will be derived in Section 5. One may then show, by using the
thermodynamic result T'= 9FE/9S, that the temperature T is related to 8 by 8 = 1/kgT; this is shown in a separate
note (THE MAIN FORMULAE IN STATISTICAL THERMAL PHYSICS).

There exists a lot of confusion, in the physics literature (including textbooks), between S, and Sr. In fact we can do
almost all of statistical mechanics without bothering with S, at all. However, I think you will never understand St
properly unless you also understand Se, so I am going to discuss them both. For readers in a hurry who do not want
to learn physics but merely want to pass exams, you can ignore S,.

5Establishing that the time-average for one member of a canonical ensemble agrees with the ensemble average at any given time has
been a much-discussed aspect of the subject, but we shall not go into it.
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Figure 6: Illustrating (14)—(15). (a) NSr(4,16) (black dashed), S.(4N,16N) (green full) and N S, (4, 16) (blue dash-
dot) for a set of harmonic oscillators. (b) In energy equilibrium the entropy of a pair of systems in thermal contact
(and otherwise isolated) is greater than twice the entropy of either system alone. (This result differs from the case of
thermal equilibrium, for which Sp(2K,2F) = 25¢(K, E)).

In subsequent Sections we will derive the following relationships. I am introducing them here so that we can think
about them qualitatively before we establish them quantitatively:

ey AYSe(K, B)
111 T ——
K.N—oo Sc(NK, NE)

In words, the above can be stated:
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(13):
(14):
(

<
<

KSr(1,U/K)
NSr(K, U)
0 if the energy level is non-degenerate
Sr(K, E)
Se(NK, NE) < NSr(K, E)

Se(NK, NE)

=1
NS NSy (K, E)

(11): The entropy St (which is the thermal equilibrium entropy) is extensive.

(K, F) multiplied by N underestimates the entropy of the corresponding larger system.

e (15): All these entropies agree in the thermodynamic limit.

Figure 6 gives an example of these ideas.

A single system with given energy, and having only a single quantum state of that energy, has zero entropy.

(K, E) is less than the entropy of a system at temperature T having the same size and mean energy.

14): Sp(K, F) multiplied by N overestimates the entropy of the corresponding larger system if the latter has
strictly fixed total energy (i.e. having no fluctuation whether for classical or quantum reasons).

The entropies S.(K, F) and S7(K,U) are both correct; they do not need to agree because they describe different
physical conditions. The reason why the entropies do not all agree for finite systems is as follows. When we put N
systems next to each other, if they remain entirely isolated from each other then we would expect the entropy simply to



go up by a factor N. However if we allow them to be in thermal contact then they gain access to further states in which
some have more energy, some less, than the average, at any given time. This explains why S.(NK, NE) > NS (K, E).
Similarly, if the energy of the entire ensemble is restricted to a single value then the total entropy is less than that of
a collection of the same size and mean energy in thermal equilibrium.

Another way to understand why NSy (K, E) > S.(NK,NE) is to start with a set of N systems, each in thermal
equilibrium separately, and notice that the internal energy fluctuations of one are uncorrelated with those of another.
But if we now impose a constraint such that the total energy is fixed, then the energy fluctuations are correlated: if
one system’s energy goes down, another’s (in the set of N) must go up. Such correlation reduces the entropy. This is
related to the concept of mutual information in information science.

5 Maximum entropy: Boltzmann distribution

We will prove the following:

For a closed system with fixed average energy U, the entropy (6) is maximised when the probabilities p;
are given by the Boltzmann distribution:

p; o e B (16)

Proof. We wish to find a stationary value of ), p; Inp; subject to the constraints
Zpi =1 szfi =U. (17)
i i
The method of Lagrange multipliers converts this problem to that of finding a stationary value of

> (pilnp; + ap; + Bpiei) (18)
i
with respect to change in the variables p;, where the Lagrange multipliers a and 8 have to be set so that the constraints
are satisfied. By taking the partial derivative with respect to p;, with p;«; held constant, we obtain

Inp; +1+a+ B¢ =0 (19)
hence
pj = exp(—1 —a — Be;) = Ae P (20)

where A = exp(—1 — «) is a normalization constant. One can check that this is indeed a maximum not a minimum
nor saddle point for the entropy. QED

We can now derive the formula for St, eqn. (9). The derivation consists in asserting that the thermal equilibrium
state is the one which mazximises the entropy for a given mean energy. With this definition of thermal equilibrium,
(6) and (16) imply (9) immediately. The physical reasoning has to be considered carefully in order to justify this
step. The mathematical steps leading from (17) to (20) are incontrovertible, but to what physical situation does the
derivation apply? By allowing the system to have access to many different energies €;, we imply that the system is
not isolated, and yet we are treating a case where its mean energy is fixed. Fixed by what? How fixed? The answer
to these questions is that the derivation applies to a system in contact with a heat bath (thermal reservoir) of fixed
temperature. The physical claim is that such a system will have an energy which can fluctuate around some fixed
value but which does not drift inexorably away from that value. We are also claiming that the statistical definition of
entropy agrees with the thermodynamic entropy.

It will emerge, in a study of the dynamics of relaxation to equilibrium, that the statistical definition does reproduce the
thermodynamic one in the right limit. A central element of the proof can be seen immediately. Suppose we have two

10



systems in thermal equilibrium with a heat bath and each another, and weakly interacting. Here weakly interacting
is a much-used concept in statistical physics, it means the systems can exchange energy but such interactions do not
significantly change the energy levels of either. The above derivation can be applied to either system, so we shall find

p; = Aje e pj = Aqe P26 (21)

where i labels the states of system 1 and j labels the states of system 2. Equally, by applying the derivation to the
composite system we must find

pij = Ae Pt (22)

since a state (¢,j) has energy €; + ¢;. But p; ; = p;p; since when the systems are in thermal equilibrium with the
reservoir their states are uncorrelated with one another. Therefore

Ay Age(Breithacs) — fge=Bleites), (23)

This is not just one equation: it is a set of equations for all the values of ¢ and j. The only solution for all i and
j (assuming there are more than 2 of them) is 8 = 8 and = 3 so we must have 81 = f2. The important
point is that there exists a solution, and therefore the assumption that the Boltzmann distribution corresponds to
thermal equilibrium has not been ruled out by this argument. One may then enquire whether some other probability
distribution could possibly also consistently describe the thermal equilibrium of two or more systems. The crucial
feature is that a case where the probabilities multiply (p; ; = p;p;) corresponds to a case where the energies add
(65, = € +¢€;). It follows that the relationship between probability and energy must be exponential in thermal
equilibrium. Hence, the condition of thermal equilibrium and the condition of maximum entropy are one and the
same.

5.1 Extensivity of thermal equilibrium entropy

We will now prove (10), which expresses the extensivity of thermal equilibrium entropy. The proof is like the one
around (23) just described. We suppose we have a collection of K copies of a system, in thermal equilibrium, and
we add one more. The joint probability distribution will be given by (23) where now i labels the states of the whole
collection of K copies, and j labels the states of the further system. The entropy of the new collection (of size K + 1)
is

Sr(K+1,U) = _kBZPiJlnPi,j

,J

= —kg Y _pip;Inpip;

= kgD > pip; (n(pi) +In(p;)) (24)

Now
SO pipi(n(p) +1n(py)) = D > pilnp | + | Y _pi > pjlnp))
i g i j i j
= Zpiln(pi) ij +ij1n(19j) (sz)
i J j i
= Y pilnpi+ > pjlnp; (25)
i J
Hence

ST(K+1aU) :ST(Kvﬁ)+ST(1aU) (26)

11



Figure 7: Energy level structure for an example treated in Eqn (29).

and (10) follows by induction, and so does (11).

Note that the only assumption we required in the above proof was that the probabilities were uncorrelated. Therefore,
more generally we have that the entropy of a system composed of two or more subsystems such that the probability
distributions are uncorrelated will be equal to the sum of the entropies of the subsystems.

6 Proving the inequalities

Equation (12) asserts that an isolated system in a single energy eigenstate has zero entropy. This follows immediately
from either of the Boltzmann or Gibbs formulae. In the Boltzmann formula one has W = 1. In the Gibbs formula
one has just a single probability in the sum, equal to one.

Equation (13) asserts that the entropy in energy equilibrium is less than the entropy in thermal equilibrium. This
follows from the fact that the thermal equilibrium maximises the entropy at the given mean energy U (proved in section
5). Therefore the entropy of any state at all (having the given mean energy), other than the thermal equilibrium state,
will be less than S7. It just remains to note that the energy equilibrium state is not the thermal equilibrium state,
because the former has all microstate probabilities zero except those at the given energy, whereas the latter has an
exponential distribution of probabilities.

By the same argument we can establish the second inequality of (14). For, by extensivity of thermal equilibrium
entropy,

St(NK,NE)= NSr(K,E) (27)
and by maximum entropy for thermal equilibrium,
Sr(NK,NE) > S.(NK,NE). (28)
Hence S.(NK,NE) < NSr(K, E), which is the second inequality in (14)

We already proved the first inequality of (14) by arguing that a set of NV copies of any system has more microstates of
given total energy than just the ones in which the energy is equally distributed among the copies. Therefore, whether
by the Boltzmann or the Gibbs formula, its entropy is larger.

It is instructive to examine in detail an example of this, as follows. We consider a pair of systems, each of whose

energy level structure is as shown in Fig. 7. (Each system could be a 2-dimensional harmonic oscillator, for example).
We suppose the total energy available is Eyo; = 4. We want to find how many ways there are for the composite system
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to have total energy 4. This is
4
W= WE)W@A-E)=1x5+2x4+3x3+4x2+5x1=35 (29)
E1=0
where W (E;) is the degeneracy of the energy level at energy E; for a single system. In this example W = 35 so
S =5.(2,4) = kg In 35. (30)
Meanwhile the number of ways for a single system here to have energy 2 is W = 3, so
Se(1,2) = kgIn3 (31)
Hence

250(1,2) = kp2In3 = kgIn9 < S.(2,4). (32)

The fact that the entropy in energy equilibrium, S.(N, E), is extensive in the limit of large systems is illustrated in
Fig. 6, and proved in the next section. The proof turns on the fact that most of the microstates in a microcanonical
ensemble of large systems correspond to the case where the energy is equally, or almost equally, divided among the
systems.

7 Proving the equality in the limit

This Section addresses the important question: do the Boltzmann and Gibbs definitions of entropy agree? The answer
is “well, they certainly agree for a microcanonical ensemble in energy equilibrium, because then p; = 1/W, but,
more importantly, they also agree, in the thermodynamic limit, for all but some very unusual or artificial cases.” The
agreement for finite systems in thermal equilibrium is not exact, but it is very close. In the face of this inexactness
the standard practice is to take the Gibbs definition, not the Boltzmann one, as the definition of Sr.

In this section we will show that, for a microcanonical ensemble of N systems,

Stot = kg In W = —kg Zpi Inp; ~ —Nkg Zpk In pg, (33)
i k

where 7 labels the microstates of the entire ensemble and k labels the microstates of one system and the approximation
becomes accurate in the limit of large N. In that limit the rest of the ensemble acts as a thermal reservoir for any
one of its members, and therefore the energy equilibrium of the ensemble as a whole realises a thermal equilibrium
for each member. It follows that, in the limit of large N, the quantity on the right of (33) is equal to St, the thermal
equilibrium entropy.

The result can be expressed in words thus:

For an ensemble of N like systems, weakly interacting and in energy equilibrium, in the limit N — oo the
total entropy (as given by either of (5) and (6)) is equal to N times the entropy of any one system as given

by (6).

In (33) the probabilities py for any one system are obtained by averaging over the behaviour when the whole ensemble
is in energy equilibrium (this will be clarified in the following). The relationship (33) is important because it amounts,
almost, to a proof that the Gibbs entropy (6) is the correct generalization of the Boltzmann formula (5). It is not
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quite a proof, but a strong motivating argument. After receiving the motivation the modern approach is to adopt (6)
as a definition and then show afterwards that the behaviour is consistent with the name ‘entropy’ for this quantity.

The main idea we shall invoke, in order to prove (33), is to regard the entire collection of systems in the microcanonical
ensemble as one big isolated system. We can then use Boltzmann’s formula for the entropy Siot of the entire ensemble,
and having done this, deduce how the entropy of each member of the ensemble is related to its own internal behaviour.

It will emerge that it will not be necessary for N to be very large in order to get quite good accuracy. The precision
will be high even for a finite system because the main approximation is to invoke Stirling’s approximation:®

Inn! ~nlnn —n+ O(Inn) (34)

for any integer n. The relative precision of this approximation is approximately

Inn 1
n(n(n) —1) ~ n (35)

which you can see illustrated by the following table:

Y z
n Inn! nlnn —n (y—2)/y
100 363.739 360.517 0.00886 (36)
10 1.2815518 x 107 1.2815510 x 107 6 x 10~”
1010 2.2 x 1011 2.2 x 1011 6 x 10711
1020 4.5 x 102! 4.5 x 102! 6 x 102!

Already at n = 10% the precision is greater than that of most measurements in science. In practice we will often be
dealing with truly vast values of n, of order exp(10'%) or more. In that case the precision of Stirling’s approximation
will be greater than that of all measurements in science.

Now we shall treat a microcanonical ensemble and adopt the following notation:

symbol meaning example value

N number of systems 4

E total energy of ensemble 4

w number of available microstates for entire ensemble 35

k quantum state of one system 1-5

i microstate of entire ensemble 1-35

r row of occupation number table 1-5
W, number of ensemble microstates for r’th group 4,12, 6,12, 1

The example values in the table are for a simple case illustrated in Figure 8. W is the number of microstates consistent
with some given macrostate, such as a state of given energy, volume and other such properties. The microstates give
the details which are left unspecified by any given set of macroscopic measurements. We shall be studying these
microstates by noting that they can be gathered into groups (to be shown), with W, microstates in the r’th group.
Therefore

W=> W, (37)

We treat a microcanonical ensemble of N systems of some given type. The individual systems could be single molecules,
for example, or they might be themselves quite large, such as a brick made from a mole of molecules. We suppose

6 A more full statement of Stirling’s approximation is Inn! ~ nlnn — n + (1/2) In(27n).
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Figure 8: An example case for the calculation of entropy in the microcanonical ensemble (energy equilibrium). We
have 4 systems whose energy levels are shown on the left, with an example microstate illustrated by the blue dots, for
the case of total energy E = 4e. On the right are shown the energy levels of the entire ensemble, with, indicated, the
number of microstates W at that energy (in physics more generally the letter g is often adopted for this quantity).
The reader is encouraged to deduce the W values for themselves. For example, the ground state has W = 1 not 4,
because the only way to get zero total energy is when all the systems are in their ground state. The blue dot indicates
the case considered in the example treated in the text, for which there are 35 microstates.

that there are various states k which any given system might be in, so one way to specify a complete microstate of
the whole ensemble would be to write a list of N values of k, specifying which state each system is in. This is not the
most convenient way however. A better way is to write down a list saying how many of the systems are in each of the
available system states at some given time. Such a list is called a set of occupation numbers, denoted thus:

{nk}.

A set such as {n;} = {5,3,1,0,0,0,...} means 5 of the systems are in their ground state, 3 are in their first excited
state, 1 in the second excited state, and none in the other states. For a fixed number of systems N, we must have

> m=N (38)
k
and for a fixed total energy F we must have

anek =F (39)
k

where €, is the energy of state k of any one system. A complete list of possible sets of occupation numbers is as follows
for the example case, in which the ensemble has a total energy 4e:

le 2¢ 3¢ 4e¢ 5e 6e --- | W,
4
12
6
12
1
35

O = NN WO
=N O = O
S =N OO
o OO = O
[ NeNeNelS
O OO OO
OO O OO
OO O OO

The first row in this table shows the energies of the various system states (in this example they are equispaced because
we choose to treat a harmonic oscillator). Each row after that gives a possible set of occupation numbers. The final
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column says there are 4 microstates having occupation numbers {3,0,0,0,1}, and there are 12 microstates having
occupation numbers {2,1,0,1,0}, and so on. (Eqn (40) below shows how these values of W, are calculated).

There can be many microstates of the ensemble corresponding to any given set {ny}. Since the systems are all alike
we can make the following assertion:

The macrostate of the ensemble will be the same for all microstates corresponding to a given set of
occupation numbers {ny}.

The idea is that energy may move between the systems, so that some gain and some lose energy, but if the occupa-
tion numbers stay the same then the total energy and total size of the ensemble has not changed and therefore its
macrostate has not changed, even though its microstate has.

There is no general formula for how many sets of occupation numbers are consistent with any given macrostate of the
entire ensemble: it will depend on the type of system. However, it is easy to calculate how many microstates of the
ensemble are consistent with a given set of occupation numbers. It is simply the number of ways one can rearrange
the states of excitation of the systems so as to get the same occupation numbers. For the case where the systems are
distinguishable from one another, for example because they are located at different places, this is

N!

Wiy = (40)

This is the number of ways to choose n; items out of N and ns items out of N —n; and ng items out of N —nj; — ny
and so on.”

The following result will be important. Using (40), the number of microstates associated with some given set of
occupation numbers {n} = {ny,ng,---ng---} is

MWy = InN'=> Inmng! (41)
k

R

NInN - N — Z(nk Inng —ng) (42)
k
= =) ni(lnn, —InN) using (38)

k
ng ng
= NS DEp I
Zk:N YN

= —-N Zpk In py, (43)
k
where we used Stirling’s approximation in the first step, and we introduced the probabilities
ng
Pr = N (44)

in the last step. Don’t forget that k in these sums refers to the microstates of a single system. By comparing (43)
with the Gibbs definition of entropy (6) we begin to see how the latter can be emerge in the present calculation. To
make the connection we now need to argue carefully.

We can write the entropy of the entire ensemble like this:

Siot = kglnW =kgln lz WT] (45)
T
"This can be proved by induction quite easily. Here is the general idea:
N! N — !
ways to choose = X ( ) PEEE

ni!(N —n1)!  n2!l(N —ni — n2)!
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where the sum is over all possible sets of occupation numbers (i.e. those which are consistent with the macroscopic
constraints) and, by using equation (40),

N!

Wy ==,
Hknk,rl

(46)
in which ny , is the occupation of system state k in the r’th set of occupation numbers.

We now make the following observation:

Eqgn (43) shows that if the macrostate of the ensemble were described by just a single set of occupation
numbers then the entropy of the ensemble would be equal to N times the Gibbs entropy of each system (up
to the precision of Stirling’s approximation), with py given by (44).

This follows immediately by replacing the sum in (45) by a single term and then using (43) and (44). Note, this is
just an observation, not a proof. But it gives us an idea of how to proceed.

What we need to do now is consider the fact that the macroscopic constraints are satisfied by more than one set {ny}
of occupation numbers. In this case we need to reconsider what the probabilities py refer to. For clarity, let’s refer to
the set of microstates consistent with a given set of occupation numbers as a group. Some groups have very large W,
making them macroscopic, others have small W,., making them microscopic. The question is, what do the probabilities
pr used in the Gibbs entropy refer to? They refer to the probabilities that the system in question is in each of its
internal (and mutually orthogonal) quantum states. In the present case this is the probability for a system to be in
its state k when the whole ensemble can explore all available microstates equally. This means we must replace (44) by

- <nk> - 1 Wr
k=" TN Z T e (47)

r

where the second version tells you precisely which average we have in mind when we write (ng). This (ng) is the
average occupation of the k’th quantum state of any single system in the ensemble. It is an average over the sets of
occupation numbers, weighted by the number of microstates in each group. Our example case gives

60 40 24 12 4

_ 6040 24 12 4 4
<n1>a <'fl2>, <’I’L3>, <n4>’ <n5> 35735735 35 3570 ( 8)
1.71, 1.14, 0.69, 0.34, 0.11, 0 (49)

1

Now consider the total entropy, as given by (45). It has the form of a logarithm of a sum. Notice that for large N the
terms in the sum include some very large numbers, of order

W, ~ O (Z/eN)

(by using (43)), where v is the number of subsystem states having non-negligible probability.® This W, is truly
enormous when N is equal to Avogadro’s number, for example. Observe next that the logarithm of a sum of very
large numbers can be accurately estimated by the logarithm of the largest term in the sum:

anXi ~In X* where X ™ = max(X;) (50)
Proof:
X< X <mX* (51)
i=1

where m is the number of terms in the sum. Hence

X" <) X; <lnmX* (52)

8A rough estimate for this v in conditions of thermal equilibrium is v ~ kgT/Ae where Ae is a typical spacing between subsystem
energy levels.
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which gives

mX*<In» X; <InX*+Inm. (53)

Therefore the fractional error involved in using In(X*) as an estimate of the log of the sum is approximately
In(m)/In(X*). We are interested in cases with X; ~ vexp(N) and m ~ vN so the fractional error is approximately

In(vN) Inv+IhN

~ 1 hen N > 1,Inv. 54
m(veM) N < when N > 1,Inv (54)

With this in mind, we now argue that Eqn (45) can be replaced by
Stot = kglnW* (55)

where W* is the value of W, for the largest group (i.e. the set of occupation numbers with the largest microstate
count) and the approximation is very good for large N. It follows that if the probabilities p; are calculated for just
that group, then (33) will follow.

This completes the derivation of (33). One should also note, as already remarked, that this derivation provides a
strong hint that the Gibbs formula (6) is indeed the correct one to describe entropy in general.

For clarity we will now display the entire derivation again, as a single sequence of steps:

Siot = kglnW =kgln lz WT]

~ kglnhW*
= ky <1an Zlnn;!>
k
~ —Nkg» prlnps (56)
k

where the first approximate step was explained in equations (53) and (54) and the second approximate step invoked
Stirling’s approximation for the occupation numbers.

There remain some subtleties which are only important for modest or small values of N. This concerns the slight
difference between the probabilities given by (44) (using the most likely occupation numbers) and the average proba-
bilities given by (47) (obtained from the average occupation numbers). If we use the latter we obtain a more accurate
statement of the entropy per system, and (56) is still found as long as correlations between systems are negligible.
This shows that (56) is more accurate than is implied by (54) if we use the average occupation numbers to give the
probabilities, as long as the correlations are small enough.’

It follows that the main requirement, in order for the above discussion to be accurate, is that the Stirling approximation
be accurate for the most likely sets of occupation numbers. At very low temperatures, or for small isolated systems,
this condition may not be met. In that case one must reconsider what exact case we wish to study. For example,
a small system in thermal equilibrium with a heat bath can differ substantially from an isolated small system. In
modern physics the standard practice is to assert that Gibbs’ formula gives the entropy no matter the conditions, but
it may require careful study to deduce what are the probabilities p; in any given case.

8 Thermodynamic entropy

So far we defined a quantity which was given the name ‘entropy’. It remains to justify that name, by connecting the
Gibbs entropy with the thermodynamic definition of entropy. Our task is to show that the quantity defined by (6)

91t turns out that the average occupation numbers match the thermal equilibrium distribution very well even for quite small values of
N: see Fig. 10(b).
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has the properties associated with thermodynamic entropy in the thermodynamic limit (i.e. for systems with a very
large number of accessible states.) These properties are:

1. Entropy is an extensive property in the thermodynamic limit.

2. The internal dynamics of an isolated system can result in increase of entropy, or constant entropy, but not a
decrease in the system’s entropy.

The first property was treated in section 5.1. The second property requires a more involved study which is not the
subject of the present note. The essential idea is that internal dynamics of any system are such that as time goes on,
a larger and larger set of microstates can be explored by the system, and the system state is much more likely to be
found in a group containing a larger and larger number of microstates as time goes on.

9 Worked example: a set of harmonic oscillators

A particle of mass m undergoing simple harmonic motion at angular frequency w has the hamiltonian

2

1
H= % + EmwaQ. (57)
The quantum theory of this system leads to a set of energy eigenstates whose eigenvalues are (n + 1/2)hw where n is

a non-negative integer (thus having values n = 0,1,2,...), with one state at each energy.

In this section we will discuss the energies in units of fiw, and we will choose the zero of potential energy so that the
ground state has zero energy. In these units the energies F; available to a single harmonic oscillator are simply the
non-negative integers: £y =0,1,2,....

Because of the simple spectrum of energy levels (an equispaced ladder) it is easy to find how many states are consistent
with a given total energy E for an ensemble of NV oscillators. It is equal to the number of ways F items can be shared
out about N different boxes, with the items all alike. The answer is

(58)

W(N, E) = <E+N—1) (B4 N-1)

N-1 ) (N-1)E!

See Fig. 9 for an argument to derive this.

Equation (58) solves the problem of calculating entropy for all microcanonical ensembles of harmonic oscillators! The
answer is

(59)

Se(N,E) = kgInW(N,E) = kg In <E;]X 1_ 1>.

This was used to plot the examples shown in Fig. 6.

To find the value of St (the entropy for the canonical ensemble, i.e. the thermal equilibrium value) we employ the
Gibbs’ formula (6) with the probabilities given by the Boltzmann distribution (16). We have

p; = exp(—Pe;)/Z (60)
with
o] 00 1
_ —Bei —Bnhw _
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Figure 9: Argument to find the number of microstates of an ensemble of oscillators of total energy E. First we imagine
a line of £+ N — 1 locations (top diagram). Next we place a circle on F of these locations and a vertical line on the
remaining N — 1 locations (middle diagram). The number of ways to do this, assuming the circles are all alike and the
lines are all alike, is equal to the number of ways to choose N — 1 things out of £+ N — 1 without respect to ordering.
This is given by the binomial coefficient as shown in Eqn (58). Next we interpret the lines as partitions, dividing up
the E circles into N groups. Each group corresponds to one oscillator; it receives an energy equal to the number of
circles in the group. Thus we derive (58). The argument turns on persuading oneself that this does correctly account
for all the ways of dividing up the energy, and without over-counting. Trying out examples with small values of F and
N may help to build familiarity with the reasoning.

where nhw is the energy of the state with quantum number n (when we set the zero of energy at the ground state)
and the final expression comes from summing the geometric series. The quantity Z is the partition function and it
is a central concept in statistical physics. Once one has an expression for Z in terms of suitable macroscopic variables
such as 8 and w, one can derive all the thermodynamic behaviour! One finds, for example, that the entropy is given
by

olnZ
Sr=kg|(InZ — 62
r =k (m2-5%07) (62)
(the derivation is provided in the next section). Applied to a single harmonic oscillator, this expression gives
Sr=hp | —In(1—e 63
T = Rp 6b 1 — 1n ( — € ) ( )
where b = Shw.
Another important result is the formula for the mean energy:
_ 107
= i€ = a5 4
U=2 pei=-73;5 (64)
which will be derived in the next section. Applied to the harmonic oscillator this gives
U 1
~ S 65
hw et —1 (65)

This can be used to find the value of b for a given mean energy, and thus to find Sr(1,U). One obtains (exercise 3)
Sr(LE)=kg(F+1)In(E+1)— ElnE). (66)
where E = U/hw. Hence, by using the extensivity of thermal equilibrium entropy (Eqn (10), proved in Section 5.1),
Sr(N,E)=Nkg ((E+1)ln(E+1)—FEInE). (67)
This was used to plot the dashed line in Fig. 6.

Fig 6 illustrates how large N needs to be in order that the microcanonical entropy and thermal equilibrium entropy
shall approximately agree. One finds, for example, that for the case E = 10N (i.e. 10 units of energy per oscillator),
S, reaches 99% of St at N = 175, and 99.9% at N ~ 2200. When E = 40N, S, reaches 99% of St at N = 152.
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Figure 10: (a) shows the degree to which S, (68) approximates the microcanonical entropy for small N. The full
curve is an exact numerical calculation (for harmonic oscillators); the dashed curve is 1 —31n(N)/2N. (b) Shows that
the entropy (69) calculated using average occupation numbers in a microcanonical ensemble approaches closely to the
canonical entropy even for modest values of N.

We will now explore the question, how accurate is the approximation leading to Eqn (56)7 This question is largely an-
swered by (54) and by Fig. 10 which shows, for a system of harmonic oscillators, the degree to which the microcanonical
and canonical entropies are matched by two approximate entropies defined as:

S, = kglhhW* (68)
Say = —Nkg Zpk In py, with pp = (ng)/N (69)
k

where both refer to a microcanonical ensemble. The first of these is the approximation adopted in (55), and Fig. 10(b)
illustrates that the second approaches closely to the canonical entropy, even for modest values of N.

10 Exercises

1. A system has three energies levels with energies {0, 1, 2}e, and degeneracies 1, 3,5, as in Fig. 3. Find the value of
[ for a state in thermal equilibrium with mean energy €. Hence find the probability of occupation of the ground
state, and the entropy. [Ans. Be =In+/5, py =~ 0.29925, S ~ 2.01118 ky.]

2. A certain system has equally spaced energy levels, with the following degeneracies (i.e. number of states at that

energy):

energy W
0 1
€ 5
2¢ 15
3e 35
4e 70
He 126

(i) What is the entropy when the system in is energy equilibrium with energy 2¢?

(ii) What is the entropy of a pair of such systems in thermal contact and otherwise isolated, with total energy
exactly 2e?

(iii) As part (ii), but with total energy exactly 4e? [Ans. kgIn15, kg In 55, kg In715 |
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3. Derive (66) from the equations leading up to it.
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