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1998 3. The first two excited configurations of the
helium atom, 1s2l, each give rise to terms labelled 1L
and 3L. What does the notation 1L and 3L signify?
List the terms that arise from the two configurations.
Sketch the energy level diagram of the helium atom,
showing these terms, the ground state, and the ion-
ization energy. [6]

Indicate the positions of the n = 1 and n = 2 levels of
hydrogen on the same scale, using the ionization limit
of each atom as the common zero energy. (Ignore fine
structure.) Discuss the physical origin of the similari-
ties and differences between the energy level diagrams
of the hydrogen and helium atoms. [11]
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The singlet term of the 1s2p configuration lies at an
energy of 3.37 eV below the helium ionization limit.
The wavelength of the transition from this level to the
ground state is 58.4 nm. Estimate (giving your rea-
soning) the wavelength of the transition between the
singlet term of the 1s3p configuration and the ground
state. Explain why electric dipole transitions cannot
occur between the terms of the lowest excited config-
uration and the ground state. [8]
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1998 6. A particle is confined in a one-dimensional
well described by a potential V (x) which is zero for
|x| < 1

2a and infinite for |x| > 1
2a. Use the Schrödinger

equation to find the energies available to the particle.
Give sketch graphs showing the wavefunctions of the
three states of lowest energy. [6]

Without detailed calculation, explain how the wave-
function of the ground state is changed if the well is
perturbed by a small added potential ∆V

(a) ∆V = V1x
(V1 > 0, V1a ¿ E0, the ground-state energy)

(b) ∆V = V2x
2

(V2 > 0, V2a
2 ¿ E0). [6]
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The well is perturbed by the addition to V (x) of a po-
tential ∆V = V3 sin(πx/a), as a result of which the
ground-state wavefunction acquires an admixture of
other wavefunctions. Find the amount by which the
first excited-state wavefunction appears in the mix-
ture. Show that in the first order of perturbation the-
ory this is the only wavefunction to be mixed with the
ground-state wavefunction. [13]
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1999 3. The spin-orbit interaction for the electron
in a hydrogen atom can be represented by a term

µ0

4π

e2

2m2
e

1

r3
l · s

in the Hamiltonian, where r is the radial co-ordinate
of the electron and l and s are the orbital and spin an-
gular momentum operators respectively. Give simple
arguments which justify the form of this expression.
[8]

6



[ For an electronic state of given n and l in hydrogen,
〈 1

r3

〉
=

1

a3
0n

3l(l + 1/2)(l + 1)
]

Calculate in eV the positions of the 3p 2P3/2 and 3p 2P1/2

levels in hydrogen relative to the position of the unper-
turbed 3p configuration. Give an energy level diagram
showing the splitting. Explain briefly whether your
diagram would apply without modification to the cor-
responding levels of anti-hydrogen (a positron bound
to an anti-proton). [7]

Calculate also the splittings in eV of the 3p configu-
rations in

(a) hydrogen-like 11Na (a sodium nucleus with a single
bound electron);

(b) muonic sodium (in which a muon moves in hydrogen-
like states in the field of a sodium nucleus). [7]
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The spin-orbit splitting of the 3p configuration in neu-
tral sodium is 6.8 × 10−4 eV. Comment on the or-
der of magnitude of this splitting in relation to those
you have calculated for hydrogen and hydrogen-like
sodium. [3]
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1999 5. Explain what is meant by the Variational
Principle, and show how it can be applied to give
an upper bound to the true ground state energy of a
quantum mechanical system. [6]

A particle of mass m moves in one dimension, in the
potential

V (x) = ∞ (x ≤ 0)
V (x) = ux (x > 0)

where u is a constant. Make a rough sketch of the
wavefunctions for this particle in the ground and first
excited states. [4]
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Show that for a trial wavefunction of the form

ψ(x) = 0 (x ≤ 0)
ψ(x) = Ax exp(−ax) (x > 0)

the expectation value of the potential energy is

〈V 〉 = 3u/2a

and that of the kinetic energy is

〈T 〉 = h̄2a2/2m

Hence obtain an estimate of the ground state energy.
[12]

Explain why the true wavefunction can be expected
to fall off more rapidly than the trial wavefunction at
large x. [3]
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1999 6. Two particles, with masses m1 and m2 and
positions r1 and r2, interact via the potential V (r),
where r = |r1− r2|. The radial part of the wavefunc-
tion for relative motion obeys the equation



− h̄2

2µ



1

r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2


 + V (r)




φ(r) = Eφ(r)

Discuss the physical significance of the terms in this
equation and the meaning of the symbols µ, l and E.
[6]
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Consider an attractive interaction of the form

V (r) = 0 (r < a)
V (r) = V0 (r ≥ a)

where V0 is a constant. Let l = 0 and set φ(r) =
u(r)/r. Show that

− h̄2

2µ

∂2u(r)

∂r2
+ V (r)u(r) = Eu(r)

State and justify the conditions which must be satis-
fied by u(r) at r = 0 and r = a. [7]

For the case V0 = ∞, find the ground state energy for
relative motion of the system. [6]

In this state, what is the mean separation of the par-
ticles? [6]
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1999 7. Write down expressions for the operators
representing the position, momentum and kinetic en-
ergy of a particle moving in one dimension. [4]

The wavefunction ψ(x, t) satisfies the time-dependent
Schrödinger equation for a free particle of mass m,
moving in one dimension. Consider a second wave-
function of the form

φ(x, t) = eı(ax−bt)ψ(x− vt, t)

Show that φ(x, t) obeys the same time-dependent Schrödinger
equation, provided the constants a, b and v are related
by

b =
h̄a2

2m
and v =

h̄a

m
[9]

Calculate the expectation values of position, momen-
tum and energy for a particle in the state φ(x, t) in
terms of those for a particle in the state ψ(x, t). Show
that the uncertainty in momentum is the same in both
states. [8]

What physical interpretation can be given to the trans-
formation from the state ψ(x, t) to the state φ(x, t)?
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[4]
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1999 8. Give an account of the elementary theory
of measurement in quantum mechanics, using the fol-
lowing questions as a guide.

(a) What role is played in the theory by operators?

(b) What are the possible results of a measurement?

(c) How does one calculate the probability of obtaining
a given result from a measurement?

(d) What happens if two successive measurements,
possibly of different quantities, are made on a system?

Illustrate your answer by discussing a simple exam-
ple, such as measurements of the components of the
angular momentum of a spin-1

2 particle. [25]
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2000. 4. Under certain assumptions the time inde-
pendent Schrödinger equation for atomic helium can
be written as



− h̄2

2me
∇2

1 −
h̄2

2me
∇2

2 −
Ze2

4πε0r1
− Ze2

4πε0r2
+

e2

4πε0r12




ψ = Eψ

where r1 and r2 are the radial coordinates of the two
electrons and r12 is their separation.

What is the physical origin of each term in this ex-
pression? What approximations have been made in
deriving the expression in this form? [8]
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A solution of the form ψa,b = ψa(r1)ψb(r2) can be
found when the term e2/4πε0r12 is ignored, where a
and b label the states occupied by electrons 1 and
2. By considering an exchange of these labels explain
why a wavefunction of the form ψa,b is not accept-
able for two identical particles. Discuss the symmetry
properties of the wavefunctions that describe the 1s2

and 1s2s electron configurations. Sketch an energy
level diagram for helium showing the terms that arise
from these configurations. [12]

The energy required to remove an electron from the
ground state of atomic helium is approximately 25 eV.
For the helium-like ion O6+ the corresponding energy
is approximately 740 eV. For helium and oxygen com-
pare these energies with those required to remove an
electron from the ground states of the hydrogen-like
ions He+ and O7+. Comment on your results. [5]
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2000 7. A particle of mass m is confined in a 3-
dimensional infinitely deep potential well. The sides
parallel to the x-, y-, z-axes each have length L. The
origin of the coordinate system is the middle of the
well, L/2 away from each side. Derive the normalized
time-independent wavefunction of the ground state
and an expression for the energy levels. What is the
degeneracy of the first excited state? [10]
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Explain why pressure acting on the walls of the well is
given as − 1

3L2
∂E
∂L where E is the energy of the particle.

[5]

The energy difference between the ground state and
the first excited state is 140 MeV. The mass of the
particle is Mp/3. Calculate the value of L in Fermi.
[4]

In an instantaneous event the size of the well suddenly
expands. The new side length is 2L. The well is oth-
erwise unchanged. Before the expansion the particle
was in its ground state. Find the probability of observ-
ing the particle in its new ground state immediately
after the expansion. [6]
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2001 5. Two identical non-interacting particles oc-
cupy the same one-dimensional simple harmonic oscil-
lator potential well. The single-particle spatial wave-
functions for the ground state and first excited state
are ψg(x) and ψe(x) respectively, where

ψg(x) = N exp


− x2

2a2


 andψe(x) =

√
2N



x

a


 exp


− x2

2a2




Both N and a are positive real constants.

In an excited state of the two-particle system, one
particle is in the ground state ψg and the other in the
first excited state ψe. Write down a spatial wavefunc-
tion ψ§(x1, x2) that is symmetric in the coordinates
and also a spatial wavefunction ψA(x1, x2) that is an-
tisymmetric in the coordinates, showing explicitly the
dependence on the particle coordinates x1 and x2.

For each wavefunction ψ§(x1, x2) and ψA(x1, x2) write
down the probability densities P§(x1, x2) and PA(x1, x2).
[10]

Evaluate the probability density for each wavefunction
when x1 = x2 and give a simple argument to suggest
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which is the larger of 〈(x1−x2)
2〉§ and 〈(x1−x2)

2〉A.
[6]

Explain why, for a given configuration, the singlet
state of an energy level in helium is higher than the
corresponding triplet state. [9]
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2001 6. Explain how the general solution to the
time-dependent Schrödinger equation for a system may
be written in terms of the eigenfunctions and eigenval-
ues obtained from the corresponding time-independent
Schrödinger equation. [4]

A particle of mass m moves in one dimension with
potential energy V (x) = 1

2mω2x2. Verify that a nor-
malized solution of the time-dependent Schrödinger
equation for the particle is

Ψ(x, t) = Ψ0(x, t) sin γ + Ψ1(x, t) cos γ, whereΨ0(x, t) = α1/2


1

π



1/4

exp



−α2x2

2


 exp


−ı

E0

h̄
t


 Ψ1(x, t) = α3/2



4

π



1/4

x exp



−α2x2

2


 exp


−ı

E1

h̄
t


 ,

γ is a fixed real parameter and E0 = h̄ω/2. Obtain
expressions for α and E1. [10]

What are the possible outcomes of measurement of
the energy of the particle in the state Ψ(x, t)? What
is the probability of each outcome? [4]

Explain what is meant in quantum mechanics by the
expectation value of an operator. Calculate the ex-
pectation value of position x, as a function of time t,
for the particle in the state Ψ(x, t). [7]
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2001 7. Explain what is meant by probability cur-
rent density. Show that the probability current den-
sity j can be written as

j(x, t) =
ıh̄

2m


Ψ(x, t)

∂Ψ∗(x, t)

∂x
− Ψ∗(x, t)

∂Ψ(x, t)

∂x




where Ψ(x, t) is a wavefunction. [7]

A particle of mass m and energy E is incident from
negative x on the potential step

V (x) = 0 for x ≤ 0V (x) = V0 > 0 for x > 0

Write down the form of the wavefunction ψ(x) in the
two regions, as well as the boundary conditions, for
the cases E > V0 and 0 < E < V0. Using proba-
bility current densities, derive an expression for the
transmission probability for E > V0. [8]

Make a sketch graph of the reflection and transmission
probabilities as functions of E/V0, paying attention to
both cases: E/V0 < 1 and E/V0 > 1. [4]

figure=3a-q7.eps,width=109truemm

The diagram shows the reflection probability R and
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transmission probability T for a barrier potential

V (x) = V0 for 0 < x < aV (x) = 0 for x ≤ 0, x ≥ a

Explain the physical origin of any features that are
new, compared with the case of a potential step. [6]
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2001 8. Hydrogen-like wavefunctions have the form

ψn`m(r) = Rn`(r)Y`m(θ, φ)

Which property of the Coulomb interaction allows for
the above separation of variables? What do the sym-
bols n, ` and m represent? For a given n, what values
can ` and m take? [5]

The ground-state wavefunction is given by

R10(r) =


Z

a0



3/2

2 e−Zr/a0 and Y00(θ, φ) =
1

(4π)1/2
,

where a0 = 4πε0h̄
2/(µe2) and r is the distance from

the nucleus. What do µ and Z represent? What is
the significance of a0? Sketch the probability density
for the electron as a function of r. [5]

A hydrogen-like atom is formed by a proton and a π−

particle. Evaluate a0 for this system.

The Coulomb interaction between a proton and a π−

is modified by the nuclear interaction between them.
The nuclear interaction can be described by the Yukawa

25



potential

U(r) = g
e−r/b

r
,

where b = 1 fm and g = 15 h̄c. Using first-order
perturbation theory, calculate the energy shift of the
ground state. [10]

Compare the above energy shift with the ground-state
energy due to the Coulomb interaction only, and com-
ment on the applicability of first-order perturbation
theory to this case. [5]
2763

[End of paper]
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