
Example finals answers

Prof. Andrew Steane

March 3, 2004

1



1999. 3. The spin-orbit interaction is a coupling between
the magnetic dipole moment of the electron and the magnetic
field it experiences:

H = −µ ·B.

Now µ = −gµBs/h̄

where g = 2, µB =
eh̄

2m
and s = spin operator.

Hence µ = − e

m
s

Field:

B =
−v ∧ E

c2
=



−v ∧ r

c2



E

r
=



r ∧ p

mc2




e

4πε0r3
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But

c2 = 1/ε0µ0

and l = r ∧ p

So

−µ ·B =
e

m
s · l



µ0

m

e

4πr3




=
µ0

4π

e2

m2

1

r3
l · s

When Thomas precession is taken into account, this result is
reduced by a factor 1/2: → form given.
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Use 1st order perturbation theory:
energy shift ∆E = 〈H〉
Now j = l + s
so j2 = l2 + s2 + 2s · l
Hence

〈s · l〉 =
j(j + 1)− l(l + 1)− s(s + 1)

2
h̄2

So

∆E =
µ0

4π

e2h̄2

2m2

j(j + 1)− l(l + 1)− s(s + 1)

2a3
0n

3l(l + 1/2)(l + 1)

Now
µ0

4π

e2h̄2

2m2

1

2a3
0

= 3.622× 10−4 eV
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3p 2P3/2:
s = 1/2, l = 1, l; j = 3/2

∆E =
(3/2)(5/2)− 2− 3/4

27× 1(3/2)(2)
· · ·

= 4.47× 10−6 eV
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3p 2P1/2:
s = 1/2, l = 1, l; j = 1/2

∆E =
(1/2)(3/2)− 2− 3/4

etc

= −2× (previous result)

= −8.94× 10−6 eV

→ diagram
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Electromagnetic interactions are insensitive to charge con-
jugation, therefore exactly the same result is expected for
anti-hydrogen.
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a) Hydrogen-like sodium:
scaling is Z4, hence splitting (13.5× 10−6× 114 = 0.197 eV.

b) muonic sodium: have m as well as Z dependance.

Consider a0mαc = h̄ ⇒ a0 ∝ 1/m

Hence overall, splitting is ∝ mZ4.

mµ = 207me,
hence splitting = 207× 0.197 = 41 eV.
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(The final part is now off 2nd year syllabus, but is straight-
forward: For neutral atom, the observed result is intermedi-
ate between hydrogen and the hydrogen-like ion. It is more
than for hydrogen, because when the electron penetrates the
core it experiences a greater electric field. It is less than for
the ion, because the nuclear charge is nevertheless somewhat
screened, so the electric field is smaller than that in the ion.)
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2000. 4.

Physical origin of terms: · · ·
Approximations:
(1) neglect relativistic corrections, including spin-orbit effect
(2) neglect nuclear effects (finite volume, magnetic dipole
moment of the nucleus)
(3) neglect motion of nucleus (i.e. assume heavy nucleus)
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Electrons are identical fermions, and therefore their joint
state must have the property

ψ(1, 2) = −ψ(2, 1)

i.e. it merely changes sign when the labels are exchanged
(Exchange Principle).

Any state whose spatial part is ψa,b = ψa(r1)ψb(r2) does not
have this property and so is not possible.

The state of the electrons can have the form
either ψS(spatial) × χA(spin)
or ψA(spatial) × χS(spin)

(both of these are antisymmetric overall).

χA is the singlet spin state (S = 0).
χS is the triplet group of spin states (S = 1).
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The 1s2 configuration has both electrons in the same spatial
state, so its spatial part must be symmetric w.r.t. exchange:

ψspatial = φ1s(r1)φ1s(r2)

Therefore it must be a singlet: 1S0.
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The 1s2s configuration has two possibilities:

ψS =
1√
2

(ψa,b + ψb,a)

ψA =
1√
2

(ψa,b − ψb,a)

The first must be the singlet, the second the triplet.

The first has more energy because the electrons are on av-
erage closer together in ψS so have more energy from their
Coulomb repulsion.

→ diagram
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Helium: Z = 2
Oxygen: Z = 8 (since O6+ is helium-like)

Hydrogen-like ion has energy levels E =
−Z2ER

n2

So to ionize He+ requires 22ER = 54.4 eV.
So to ionize O7+ requires 82ER = 870 eV.

We can understand the results by using the idea of screening.
Each electron in the helium-like system experiences a net
electric field from the combination of the nucleus and the
other electron. Therefore to ionize the helium (-like) system
requires less energy than to ionize the hydrogen-like ion.
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The screening effect can be estimated by adjusting the nu-
clear charge to Z − σ.

(2− σ)2ER = 25 eV

gives σ = 0.64 for He.

(8− σ)2ER = 740 eV

gives σ = 0.62 for O6+.

So both results are consistent with partial screening by a
single electron.
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2000. 3. Electric dipole selection rules:

1. total angular momentum:
J = 0 ↔/ J = 0
MJ = 0 ↔/ MJ = 0 when ∆J = 0
∆J = 0,±1
∆MJ = 0,±1

2. parity must change
⇒ ∆l = ±1

3. Configuration: only one electron jumps
4. when L and S are good quantum numbers:

∆S = 0,
∆L = 0,±1 and L = 0 ↔/ L = 0
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Justification:
In electric dipole radiation, the photon carries 1 unit of angu-
lar momentum, and angular momentum is conserved. This
explains the selection rules on J and MJ .

The parity must change because the electric dipole operator
∑

i−eri has odd parity, so only connects even parity states
to odd parity ones, and vice versa.
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1s2 2p 2P1/2 – 1s2 3d 2D5/2 disallowed (∆J = 2)

1s2 2s2p 1P1 – 1s2 2p3p 1P1 allowed
(comment: 2s → 3p)

1s2 2s2 1S0 – 1s2 2p2 3P1 disallowed:
2 electrons changed, no parity change, ∆S = 1
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alkali ⇒ S = 1/2.

4 “σ+/σ−” lines and 2 “π” lines
hence (diagram) J1 = 1/2, J2 = 3/2
(we are told J2 > J1)

L1 = 0 or 1.
L2 = 1 or 2.

Selection rules: as above, and
the π lines are ∆M = 0,
the σ+/σ− lines are ∆M = ±1.
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∆E = −〈µ ·B〉
= gJµBBMJ

where Bohr magneton µB = eh̄/2me.

Different L1, L2 will give different gJ hence different splittings
and associated Zeeman spectrum.

L2 = 2 and we know L1 = 0 or 1. Hence, to obey ∆L
selection rule, must have L1 = 1.
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S = 1/2, L = 2, J = 3/2 ⇒ g2 =
3× 15/4 + 3/4− 6

2× 15/4

=
3× 15 + 3− 24

30
= 4/5

S = 1/2, L = 1, J = 1/2 ⇒ g1 =
3× 3/4 + 3/4− 2

2× 3/4

=
1

3/2
= 2/3
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→ diagram.

MJ2 MJ1 relative position (g2MJ2 − g1MJ1)

3
2

1
2

3
2 · 4

5 − 1
2 · 2

3 = 6
5 − 1

3 ' 0.867

1
2

1
2

1
2 ·

(
4
5 − 2

3

)
= 2

3 − 1
3 ' 0.067

−1
2

1
2

1
2 ·

(−4
5 − 2

3

)
= −2

5 − 1
3 ' −0.73

1
2 −1

2

−1
2 −1

2 negative of the above

−3
2 −1

2
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OR: For convenience, use

gJµBBM = (15gJ)µBB(2M)/30,

and 15g2 = 12,

15g1 = 10.

2MJ2 2MJ1 relative position
3 1 3× 12− 1× 10 = 26
1 1 (12− 10)× 1 = 2
−1 1 (−12− 10) = −22
1 −1
−1 −1 negative of the above
−3 −1 → diagram
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2002. 2. The quantum numbers L, S, J,MJ are associated
with the angular momentum operators for the electrons in
the atom:

L̂ =
∑

i
l̂i = total orbital angular momentum

Ŝ =
∑

i
ŝi = total spin angular momentum

Ĵ = L̂ + Ŝ = total angular momentum

Ĵz = z-component of Ĵ

The eigenvalues of L̂2, Ŝ2, Ĵ2, and Ĵz are
L(L + 1)h̄2, S(S + 1)h̄2, J(J + 1)h̄2 and MJh̄ respectively.
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Electric dipole selection rules:

1. total angular momentum:
J = 0 ↔/ J = 0
MJ = 0 ↔/ MJ = 0 when ∆J = 0
∆J = 0,±1
∆MJ = 0,±1

2. parity must change
⇒ ∆l = ±1

3. Configuration: only one electron jumps
4. when L and S are good quantum numbers:

∆S = 0,
∆L = 0,±1 and L = 0 ↔/ L = 0
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Justification:
In electric dipole radiation, the photon carries 1 unit of angu-
lar momentum, and angular momentum is conserved. This
explains the selection rules on J and MJ .

The parity must change because the electric dipole operator
∑

i−eri has odd parity, so only connects even parity states
to odd parity ones, and vice versa.

The spherical harmonics Ylm have parity −1l, hence the par-
ity rule together with the angular momentum change by at
most 1, implies δl = ±1.

The electric dipole operator does not act in spin space, so
∆S = 0.

Its effect on L is limited by the same angular momentum
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conservation considerations as for J .
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The electric dipole matrix element is a sum of terms, each
involving the operator ri of a single electron:

∑

i
〈ψ2| − eri |ψ1〉 .

In the central field approximation the electrons move inde-
pendently, so have product wavefunctions ψ. If more than
1 electron jumps, each term in the matrix element will be
a product of a non-zero part and a zero part owing to the
orthogonality of the single-electron wavefunctions.
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If J does not change, the only way to add 1 unit of angular
momentum from the photon, and still get the same J , is if
the direction of the vector J changes:

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

©©©©©©©©©©©©*

A
A
A
AU

J

J

1

This implies either its z com-
ponent must change, hence ∆MJ = ±1, or it is rotated in
the x-y plane (∆MJ = 0). However, for MJ = 0 there is no
φ-dependence (eimφ) in the wavefunction, so the latter case
is not in fact a change in the state, so does not change the
angular momentum direction, so is ruled out.
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gJ characterises the coupling between the magnetic dipole of
the atom and the applied magnetic field. The energy shift
(in 1st order perturbation theory) of a state MJ in level J is

∆E = 〈−µ ·B〉 = gJµBBMJ

where µB is the Bohr magneton.
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Problem given: let 2 be upper level, 1 be lower.
We have S2 = 1, L2 = 2, hence J2 = 1, 2 or 3.
To satisfy selection rules, must have S1 = 1, L1 = 1, 2 or 3,
J1 = integer.
12 components in the Zeeman spectrum suggests maybe J1 =
3/2? But already ruled this out. Try J1 = J2 = 2: gives
correct number. No other value works ⇒ J1 = J2 = 2.

It remains to find L1.

g2 =
3× 6 + 2− 6

2× 6
=

14

12
= 7/6

g1 =
20− L(L + 1)

12
,

Try L = 1: g1 = 18/12 = 3/2 = 9/6
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g2 = 7/6, g1 = 9/6:

MJ2 MJ1 relative position
2 2 (7− 9)× 2 = −4
1 2 (7× 1− 9× 2) = −11
2 1 (7× 2− 9) = 5
1 1 −2
0 1 −9
1 0 7

etc. (symmetric pattern)
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Wrong pattern. Quickly rule out L1 = 2 (gives same gJ so
lines at zero).
Hence must be L1 = 3

(Check: g1 = (20− 12)/12 = 4/6

MJ2 MJ1 relative position
2 2 (7− 4)× 2 = 6
1 2 (7× 1− 4× 2) = −1
2 1 (7× 2− 4) = 10
1 1 3
0 1 −4
1 0 7 → correct. )
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(Spectrometer apparatus: see practical course.

Don’t forget to filter out other spectral lines.)
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A one-dimensional quantum simple harmonic oscillator has
the potential energy function V = (1/2)mω2x2. The lower-
ing operator a is defined by

a =


mω

2h̄



1/2 

x + i
p

mω




Given that aψn =
√

nψn−1, where ψn are the energy eigen-
states and n is the vibrational quantum number, find a†ψn.

A perturbation V ′ = εx2 is introduced, where ε ¿ mω2.
Find the shifts of all the energy levels given by first order
perturbation theory, and confirm your answer by an exact
treatment of the system.

[You may quote the formula for the energy levels of a har-
monic oscillator]
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