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Abstract

The equipartition theorem (of statistical thermal physics) is stated and derived, with some associated discussion.

When one begins the study of statistical mechanics one comes across the following facts, among others:

1. For a one-dimensional harmonic oscillator of frequency ω, the heat capacity at high temperature tends to the
value kB, independent of the value of ω.

2. For a rigid rotator with an axis of symmetry (such as a diatomic molecule), the heat capacity at high temperature
tends to the value kB, independent of the value of I, the moment of inertia.

3. For a monatomic gas in a box of volume V , but otherwise free to move, the heat capacity tends to (3/2)kB per
particle at high temperature, independent of the mass and other properties.

It is natural to ask whether these can be seen as examples of a single idea. They can:

Equipartition theorem. Each independent quadratic term in the Hamiltonian makes a contribution
1
2
kBT to the mean internal energy in thermal equilibrium when the associated motion is highly excited.

To understand the statement of the theorem, we can use the above examples.

1. Harmonic oscillator in one dimension: Hamiltonian

H(x, px) =
p2x
2m

+
1

2
mω2x2 (1)

a term quadratic in px and a term quadratic in x, hence two such terms. Therefore the theorem asserts that the
internal energy will be 2× 1

2
kBT = kBT at high temperature.

2. Rigid rotator in 3 dimensions, with a symmetry axis:

H(θ, ϕ, L1, L2) =
L2
1

2I
+

L2
2

2I
(2)

where L1 and L2 are the angular momenta for rotations about the two directions orthogonal to the symmetry
axis. Hence there are two independent quadratic terms, so the theorem asserts that the internal energy will be
2× 1

2
kBT = kBT at high temperature.
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3. Translational motion for free particles

H(x, y, z, px, py, pz) =
p2x
2m

+
p2y
2m

+
p2z
2m

(3)

Three terms, so the internal energy is (3/2)kBT at high temperature.

In the above examples we expressed the Hamiltonian in each case as a function of its proper variables, which are
position variables and the associated canonical momenta. It is important to note that whereas translational kinetic
energy can be written p2/2m where p is the total momentum, there are nonetheless three terms in the Hamiltonian,
not one, because we have to count the independent motions. A similar remark applies to angular momentum and L2.

The proof of the theorem has one main ingredient which we assume as an axiom. We shall present some examples at
the end to show how the axiom is underpinned by quantum theory:

Axiom. Mutually orthogonal quantum states fill phase space at a uniform density on average.

The phrase ‘on average’ here means after averaging over a region containing some moderately (or very) large number
of states. Phase space here is position-momentum space. For motion of a single particle in D dimensions, phase space
is a 2D-dimensional abstract mathematical space, each point of which specifies a state of motion by giving a position
and momentum. The idea of filling phase space at uniform density is that if we examine a region of phase space
containing a large number of quantum states, we shall find the number of mutually orthogonal states is proportional
to the volume of the region.

1 Proof

1.1 First method

We can now prove the equipartition theorem, as follows. We treat a single particle moving in three dimensions in the
first instance. Suppose the Hamiltonian of some given system has the form

H(x, y, z, px, py, pz) = ax2 +K(y, z, px, py, pz) (4)

where K accounts for any contributions which do not involve x. In thermal equilibrium we have〈
ax2

〉
=

∑
i

ax2
i pi =

1

Z

∑
i

ax2
i e

−β(ax2
i+Ki) (5)

where xi and Ki refer to the value of x and K, respectively, in the relevant state. Next we assume the temperature
is high enough that many terms in the sum contribute significantly, and therefore it can be well approximated by an
integral. Using now the property that mutually orthogonal states are uniformly distributed in phase space, we find〈

ax2
〉

=

∫∫∫ ∫∫∫
ax2e−βax2

e−βKdxdydzdpxdpydpz∫∫∫ ∫∫∫
e−βx2e−βKdxdydzdpxdpydpz

(6)

=

∫
ax2e−βax2

dx∫
e−βax2dx

(7)

=
1

2β
= 1

2
kBT (8)

A similar calculation involving a term of the form bp2x would give the same result, and for a sum of terms one would
get a sum of integrals in the numerator, leading to a sum of 1

2
kBT values. Finally, for two or more particles one has

to integrate over more variables but the integrals factorize just as in the above and the outcome is unchanged. This
completes the proof.
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1.2 Proof via energy

It is instructive to prove the equipartition theorem by an alternative (but related) route, as follows. First we note
that if the partition function has a power-law dependence on temperature then the internal energy depends linearly
on temperature:

Z = ATm ⇒ U = kBT
2 ∂lnZ

∂T
= mkBT. (9)

Also, if the number of states in a range of energy dϵ is g(ϵ)dϵ then

Z =

∫ ∞

0

e−βϵg(ϵ)dϵ (10)

Consider the case where the density of states g(ϵ) has a power-law dependence on energy. One finds

Z ∝
∫ ∞

0

e−βϵϵrdϵ ∝ T r+1 (11)

which is easy to prove by making a change of variable in the integral.

Using the above, we deduce that if the density of states satisfies

g(ϵ) ∝ ϵ(n/2)−1 (12)

where n is the number of independent quadratic terms in the Hamiltonian, then the equipartition theorem will follow.

It is easy to prove that g(ϵ) does indeed have the form (12). Let us first consider the case n = 2, to get the idea. With
two quadratic terms, for example in x and px, the states of motion have energy satisfying

ϵ = ax2 + bp2x (13)

where a and b are constants. Therefore the states at a given energy lie on an ellipse in the x–px phase space. The
area of an ellipse is π times the product of its semi-major and semi-minor axes, giving

area = π(
√
ϵ/a)(

√
ϵ/b) (14)

Using now the uniform distribution of states per unit area of phase space, we deduce that the number of quantum
states of energy between zero and ϵ is

N(ϵ) ∝ area = πϵ/
√
ab (15)

and therefore

g(ϵ) =
dN

dϵ
∝ ϵ0. (16)

For this example, therefore, (n/2)− 1 = 0 in eqn (12) which implies n = 2 so the thermal energy is 2× 1
2
kBT = kBT .

Generalizing now to any number of quadratic terms, we find the states at given energy lie on an n-dimensional ellipsoid
in the phase space. The volume of the ellipsoid is proportional to the product of all its principle radii, giving

N(ϵ) ∝ volume of ellipsoid ∝ ϵn/2 (17)

from which (12) follows, and hence the equipartition theorem.
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Figure 1: Two ways of counting states in phase space for the harmonic oscillator. States of motion of a given energy
lie on an ellipse. On the left we divide the ellipse into rectangular regions with one state per region. On the right we
show elliptical rings of equal areas, with one state per ring. The two ways of counting states agree.

2 Areas in phase space

Let us also confirm the uniformity of the areas in phase space occupied by orthogonal quantum states, by examining
three examples.

Example 1: the harmonic oscillator. The energy eigenvalues are (n + 1/2)ℏω and the state of energy ϵ falls on an
ellipse in phase space. The area of the elliptical ring between one state and the next is

area = π(x0 +∆x)(p0 +∆p)− πx0p0 = π (x0∆p+ p0∆x) (18)

where x0 and p0 are the amplitudes of oscillations in x and p, given by

ϵ =
1

2
mω2x2

0 = p20/2m (19)

and ∆x, ∆p are the changes in these quantities from one state to the next:

ϵ+ ℏω =
1

2
mω2(x0 +∆x)2 = (p0 +∆p0)

2/2m (20)

By combining the last two equations one finds

x0∆x = ℏ/mω and p0∆p = mℏω (21)

Eqn (19) gives p0 = mωx0 so we have x0∆ = ℏ and p0∆x = ℏ. Substituting these into (18) we find

area = 2πℏ = h (22)

Hence all the rings have the same area, and that area is Planck’s constant.

Example 2: particle in an infinite square well. A classical particle moving in a well bounded by hard barriers at x = 0
and x = L moves between those barriers at constant momentum, such that a state of given energy lies on a rectangle
in phase space, with sides at x = 0, x = L, p =

√
2mϵ and p = −

√
2mϵ. For a quantum particle the momentum values

are given by p = ℏk where kL = nπ for positive integer n. Hence the change in momentum between one state and the
next is

∆p = ℏ∆k = ℏπ/L. (23)
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Figure 2: States in phase space for a particle in a box. The pair of filled regions represents a single state.

The difference in area between each rectangle and the next is therefore

2(p+∆p)L− 2pL = 2∆pL = 2πℏ = h (24)

where the factor 2 is because the rectangle extends from −p to +p. The area agrees with the value found for the
harmonic oscillator.

Example 3: rigid rotator (in 3d but with a symmetry axis). For this case we will show that the density of states
g(ϵ) is like that of the oscillator, after averaging over the interval from one eigenvalue to the next. For, the energy
eigenvalues are L(L+ 1)ℏ2/2I and the degeneracies are (2L+ 1). Consider a given energy level described by L. The
energy half way between this one and the one below is ϵ− = L2ℏ2/2I and the energy half way to the one above is
ϵ+ = (L+1)2ℏ2/2I. Therefore when the energy increases from ϵ− to ϵ+ the energy changes by (2L+1)ℏ2/2I and the
number of states increases by (2L+ 1). Therefore the density of states, as a function of energy, is constant.

3 Application to gases and crystalline solids

Most metallic elements and monatomic crystalline solids have a molar heat capacity of about 3R at room temperature,
where R = NAkB is the molar gas constant. Solids such as silver bromide and sodium chloride have a molar heat
capacity of about 6R at room temperature. These observations can be understood by arguing that at room temperature
the heat capacity of these materials is mainly owing to vibrations of the atoms in the crystalline lattice. With N
atoms there are 3N normal modes of vibration in three dimensions. If all these normal modes are well excited then
the equipartition theorem predicts C = 3NkB, which gives the observed values of 3R when N = NA and 6R when
N = 2NA (in a mole of NaCl there is a mole of Na atoms and a mole of Cl atoms and therefore 2NA atoms altogether).
A substance such as diamond, with its high Young’s modulus, has normal mode frequencies extending to higher values.
Consequently it has a lower molar heat capacity at room temperature because the vibrations are not fully excited.

The heat capacity of a gas of diatomic molecules has the generic form shown in figure 3. At low temperatures
the molar heat capacity is (3/2)R, reflecting the three translational degrees of freedom giving the kinetic energy of
translational motion. At intermediate temperatures there is also rotation, which introduces two more independent
quadratic contributions to the Hamiltonian of each molecule, therefore increasing the molar heat capacity by R (two
lots of (1/2)NAkB) once the rotation is fully excited. At higher temperatures there is also vibration along the line
separating the nuclei. This is a one-dimensional harmonic motion, described by two more quadratic terms (p2r and r2,
where r is the relative coordinate) and therefore contributing a further R to the molar heat capacity.
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Figure 3: Heat capacity of a diatomic gas. Temperature values are given for hydrogen.

Molecule TR (K) Tv (K)
H2 87.6 6247
N2 2.88 3521
O2 2.08 2256
F2 1.27 1320
HF 30.2 5957
HCl 15.2 4303
HBr 12.2 3787
CO 2.78 3103
CO2 0.561 960, 960, 1997, 3380
H2O 40.1, 20.9, 13.4 2293, 5262, 5404

Table 1: Rotational and vibrational temperature of some example molecules in their electronic ground state.

The rotational temperature is below the boiling point at one atmosphere of pressure for most substances, therefore at
one atmosphere the substance is a liquid at the rotational temperature. For such materials as soon as the substance
is gaseous its rotation is already fully excited. Hydrogen is the only exception.

3.1 Counting normal modes

We asserted above that a crystalline solid of N atoms has 3N normal modes of vibration. This is correct if we assume
the solid overall is itself located in a harmonic potential well, or if N is large enough that we don’t mind miscounting
the normal modes by a number of order 1.

For a molecule which is free to move and rotate, the number of normal modes is smaller than 3N , where N is the
number of atoms in the molecule. For example, for a diatomic molecule (N = 2) there is just one normal mode. The
general formula is
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molecule type number of normal modes
with rotational symmetry axis 3N − 5

no rotational symmetry 3N − 6

These values can be obtained by counting the coordinates and momenta as follows:

monatomic with symmetry without symmetry
total 6 6N 6N
translation 6 6 6
rotation 0 4 6
vibration 0 6N − 10 6N − 12

For example, the 6 translational contributions consist of three coordinates to locate the centre of mass, and 3 momenta
to specify the total momentum of the molecule. The rotational contribution consists of the number of angle coordinates
required to specify the orientation in space, and an equal number of angular momenta. The vibration contribution
accounts for the rest. Each normal mode involves two terms (a position and a momentum) so this leads to the numbers
of normal modes as given in the previous table. For example, the CO2 molecule, which has a symmetry axis, has 4
normal modes of vibration, and the H2O molecule, which has no symmetry axis, has 3 normal modes of vibration.

4 Generalized equipartition theorem

By using a power series expansion of the Hamiltonian, or otherwise, one can readily show that, in thermal equilibrium
at high temperature, 〈

xi
∂H

∂xi

〉
= kBT (25)

where xi is any one of the coordinates or momenta in terms of which the Hamiltonian is expressed. For example, if
there is a term in H of the form axq for some power q then we find ⟨qaxq⟩ = kBT and therefore such a term contributes
a mean energy kBT/q.

Also, by generalizing the method of Section 1.2, it is easy to prove that if the density of states has the form g(ϵ) ∝ ϵr

for some power r (not necessarily integer), then at high temperature U = (r + 1)kBT . By combining this with (25)
one can show (exercise) that for any Hamiltonian of the form

H =
p2x
2m

+ axq (26)

(for example, a particle moving in a power-law potential well in one dimension), the density of states at high energy
must be of the form

g(ϵ) ∝ ϵ(1/q)−(1/2). (27)

5 Exercises

1. Estimate the specific heat capacities of silver bromide and of niobium at room temperature. [Relative atomic
masses of Ag, Br, Nb are 107.87, 79.90, 92.91]

2. Helium gas is confined in a small flat box of dimensions 0.1 × 10 × 10 microns. Sketch the heat capacity as a
function of temperature in the range 1 to 100 µK.

3. A particle is confined in a one-dimensional quartic potential well (V (x) ∝ x4). Find the heat capacity in the
high temperature limit.

7


	Proof
	First method
	Proof via energy

	Areas in phase space
	Application to gases and crystalline solids
	Counting normal modes

	Generalized equipartition theorem
	Exercises

