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We consider radiation reaction and energy conservation in classical electromagnetism. We first treat

the well-known problem of energy accounting during radiation from a uniformly accelerating

particle. This gives rise to the following paradox: when the self-force vanishes, the system providing

the applied force does only enough work to give the particle its kinetic energy—so where does the

energy that is eventually radiated away come from? We answer this question using a modern

treatment of radiation reaction and self-force, as it appears in the expression due to Eliezer and Ford

and O’Connell. We clarify the influence of the Schott force, and we find that the radiated power is

2q2a0 � f0=ð3mc3Þ, which differs from Larmor’s formula. Finally, we present a simple and highly

visual argument that enables one to track the radiated energy without the need to appeal to the far

field in the distant future (the “wave zone”). VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4914421]

I. INTRODUCTION

This paper discusses the physics of an accelerating electric
charge, with particular regard to the emitted radiation and
the radiation reaction force. In the first part of the paper, we
present some issues concerning radiation reaction that often
confuse students. As an appealing way to introduce the sub-
ject, we start with a paradox that has been treated before but
perhaps is less well known than it might usefully be. A well-
framed paradox, and its resolution, offers a helpful way to
capture a physical idea, and is often easily memorable for
students. In the second part of the paper, we invoke some
simple and easily visualized arguments to gain further under-
standing of the radiated power.

The paradox concerns the radiation of a charge undergoing
uniform acceleration. When students first learn about radiation
reaction, it often leads to confusion because the self-force van-
ishes, which appears to imply either that there is no radiated
energy, or, if there is, then energy conservation has broken
down (as we elaborate below). Indeed, this situation caused
confusion in the professional physics community for a long
time, even though the essential insight was already given by
Schott in 1915.1 Since 1960, and perhaps earlier, there has not
been good reason to doubt that, when observed by an inertial
observer, a uniformly accelerating charge radiates,2–5 but the
right way to describe self-force and radiation reaction
remained unclear until at least 1991.6–9 The work done by the
self-force was described by Ford and O’Connell,10,11 who
thus obtained the formula for the radiated power. It is slightly
different from Larmor’s formula, owing to the fact that the
radiating charge cannot be truly point-like. Here, we describe
both this and the work done by the Schott term either differ-
ently or somewhat more fully than was done previously.12–15

Our treatment is informed by a discussion of Rohrlich, who
performed the equivalent analysis based on a slightly different
formula for the self-force.16 We find that the radiated energy
per unit time taken to emit it is

2q2

3mc3
_vkf k; (1)

where _vk is the four-acceleration, fk is the applied four-force,
q and m are the charge and mass, and Gaussian electromag-
netic units are adopted (to obtain the result in SI units,

replace q2 by q2/4p�0). This expression differs slightly from
the formula given by Ford and O’Connell, but the difference
is insignificant, as we discuss in Sec. II B; however, the dif-
ference from Larmor’s formula is significant. Equation (1)
was previously noted in Ref. 12 and, at low velocities, in
Ref. 14.

In the second half of the paper, we introduce a convenient
method to understand the radiant energy in the field, which
avoids the need to consider the details of the field either
close to or far from the particle. We obtain the radiated
power from the field energy and show that it agrees with the
conclusions obtained from the self-force.

The two parts of the paper have in common that they con-
cern energy movements in the electromagnetic field, and
they offer ways to calculate the power in the electromagnetic
radiation without the need to invoke the “wave zone.” For
any given event at which a charge is accelerating, the wave
zone is the exterior of a large spherical surface centered on
the event’s position in a given frame, at a time in the distant
future such that the surface lies on the future light cone of
the event. This surface is usually invoked (either explicitly
or implicitly) in derivations of Larmor’s formula for the
emitted power,17,18 but it is useful to note that the formula
can be obtained without appealing to that abstraction.

II. AN ENERGY PARADOX

We will consider a charged object whose spatial size is
small compared to most other relevant distances in the prob-
lem, so we will refer to it as a “particle,” though it should
not be assumed that this “particle” is truly point-like, only
small.6,8,19 The precise shape of the object is not important,
but if we take it to be roughly spherical then its radius R
must exceed �q2/mc2, where q is its charge and m its
observed mass, and we assume the motion under discussion
has an acceleration small compared to c2/R.

Consider two such particles. The first moves permanently
at constant velocity v in the positive x-direction, whereas the
second undergoes a period of acceleration. To be specific,
the second particle moves initially with speed v in the oppo-
site direction to the first, then it undergoes constant proper
acceleration in the positive x-direction, until its velocity
matches that of the first, after which it moves inertially (Fig.
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1). These two motions represent two different scenarios that
we will compare.

In these two scenarios, the initial and final kinetic energies
of the two particles are the same. Also, the initial electro-
magnetic fields are the same in the two cases, up to a transla-
tion and a reversal of orientation in the magnetic part. The
final electromagnetic field is not the same, because in
the second case there is electromagnetic radiation, while in
the first case there is not. However, in the second case, as the
radiation propagates outward the field becomes identical to
that in the first case throughout a larger and larger region of
space, and the radiated pulse conserves its own energy as it
propagates. Therefore, the total energy in the final electro-
magnetic field in the second case is greater than that in the
first, by the energy W in the radiated pulse. It also follows
that the net change in field energy between initial and final
conditions in the second case is equal to W.

The question is, where has the energy W come from?
Consider the work done by the applied force f. (To be

clear, throughout this paper the symbol f (and f) without
label refers to the external force that is applied to the particle
in question and is not caused by any field sourced by the par-
ticle). The exact relativistic equation of motion is

f þ fself ¼
d

dt
cmvð Þ; (2)

where fself is the self-force that is associated with momen-
tum movements in the field sourced by the charge, such as
radiation reaction, and m is the observed rest mass (which
includes a contribution from electromagnetic energy and
binding energy). Motion at constant proper acceleration has
the special property that the self-force vanishes: fself¼ 0
(see Eq. (3) and Sec. II B). But if fself vanishes in Eq. (2)
then the equation is the same as that describing the motion
of an uncharged particle, and, in particular, the total work
done by the external force, in the motion under considera-
tion, is precisely zero (since there is no overall change in
the particle’s kinetic energy). In other words, the work done
by f is just sufficient to provide the observed kinetic energy
change of the particle—zero in total—and no more.
Therefore, it would appear that the external force has not
supplied the radiated energy W. So where has the radiated
energy come from?

One can see that the radiated energy has not come from
the bound field of the charge in question, because the final
bound field eventually becomes identical to the initial bound
field, apart from a translation and a sign change in the mag-
netic part. Once again, then, what physical system has sup-
plied the energy that ends up in the radiation?

In the scenario under consideration, the energy is distrib-
uted over an extended system (the electromagnetic field),
whereas energy conservation is enforced locally, so perhaps
the problem is that we have added up the contributions in the
wrong way, or over the wrong hyper-surface in spacetime?
Or could it be something to do with the nonzero spatial
extent of the object and a failure to construct its momentum
in the right way?

Readers who are unfamiliar with this paradox are invited
to come to their own conclusions before reading on.

A. Resolution of the paradox

The paradox is closely connected to the long-studied ques-
tion of whether a uniformly accelerated charge radiates at
all.2–4 Relative to an inertial observer it certainly does, but
subtleties arise when one considers the observations of a uni-
formly accelerated observer.20,21 Here, we restrict attention
to inertial observers, and then the resolution is simple. The
above presentation of the paradox has neglected to consider
the two brief periods when the motion does not have constant
proper acceleration, at the beginning and end of the period of
hyperbolic motion. Even though those periods are brief, it
turns out that they contribute non-negligibly because during
these times the external force provides all of the energy that
is eventually radiated away, as we now show.

For the sake of simplicity, consider the case of low veloc-
ities (the non-relativistic limit), which retains all the impor-
tant features of the paradox. In this limit, the spatial part of
the self-force is [c.f. Eq. (9)]6–8

fself ¼ sq
_f ; (3)

where sq¼ 2q2/3mc3, so the equation of motion is

f ¼ m _v � sq
_f : (4)

If the initial and final speed is u then the acceleration during
the hyperbolic motion is a¼ 2u/T, where T is its duration.

Fig. 1. A pair of small charged objects with the same final state of motion; one has accelerated, one has not.
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Let dt be the duration of the brief period when the applied
force changes from zero to ma and assume that it also takes
this same time dt for the force to change from ma to zero at
the end. Then during the first such period we have _f ’
ma=dt and during the second we have _f ’ �ma=dt (we shall
make a more precise statement in Sec. II B). The work
done by the external force during each period is approxi-
mately f � vdt. Using Eq. (4), this has a part m _v � vdt, which
goes into changing the kinetic energy of the particle, and a
part

6sq
ma

dt
� v dt; (5)

which contributes energy to the electromagnetic field around
the particle. In this equation, a is a constant but v is not, and
in fact it has opposite sign in the two contributions, so that
they are both equal to

sqmau ¼ sqma2 T

2
; (6)

because the initial and final speed is u¼ aT/2. In other
words, in both the initial and the final periods of changing
applied force, _f is in the opposite direction to v, so the exter-
nal force in Eq. (4) has to do some extra positive work, put-
ting energy into the field, to the total amount

2� sqma2 T

2
¼ PLT; (7)

where

PL ¼
2q2

3c3
_vk _vk ¼ 2q2

3c3
a2 (8)

is Larmor’s formula for the radiated power. We conclude
that the external force does, in total, just the required amount
of work to supply all the radiated energy, and therefore there
is no energy-conservation paradox here. An exact treatment
is given in the next section.

The surprise is that the external force provides all this
energy in two brief periods at the start and end of the acceler-
ated motion. Does this mean that the particle is not radiating
in between these periods? Not at all. The particle radiates
whenever it accelerates. The energy accounting during accel-
erated motion has to consider exchange of energy between
the bound, or co-moving, field of the charged particle and
the radiated field. During the motion at constant acceleration,
energy is continuously moving from the former to the latter,
as was first noted by Schott,1 and as we show explicitly
below. Although this basic picture has been available since
Schott’s work in 1915, it is surprising how often it has been
unclear in the literature; see Rowland15 for further
comments.

Figure 2 summarizes the argument by showing the results
of an example exact calculation. We start from a given
assumed f(t) and then obtain its derivative and hence _v and
v(t). From this, it is easy to extract the work done.

Note that for this example, and more generally whenever
the force does not change too abruptly, the acceleration as a
function of time (dashed curve in the top graph in Fig. 2) is
almost the same as the applied force per unit mass evaluated
at a slightly later time (solid curve). This is not an example

of “pre-acceleration”; the equation of motion is strictly
causal: the acceleration at any time is given by the total force
f þ sq

_f evaluated at that same time, without regard to what
may happen at later times.

B. Self-force is not just radiation reaction

The situation of constant applied force, which leads to
zero self-force, is easy to misunderstand because of the com-
mon practice of calling the self-force by the name “radiation
reaction.” This is a poor choice of terminology that has mis-
led the physics community for a century. As Rohrlich rightly
emphasizes,5,16 it is a misnomer because in fact the self-
force has three parts. First there is an “inertial” part describ-
ing the supply of 4-momentum to the bound field, which has
been absorbed into the definition of the mass of the particle
in our discussion. Next there are the two terms in the follow-
ing expression for the self-4-force:

f l
self ¼ sq½ _f

l � ð _vkf kÞvl=c2�; (9)

where the dot signifies d/ds (differentiation with respect to
proper time along the worldline). Readers unfamiliar with

Fig. 2. A summary of the forces and powers involved in the example motion

considered in the text, each plotted as a function of time. The top graph

shows the applied force (solid line) and resulting ma (dashed line). The next

graph shows df/dt; the self-force is proportional to this. The third graph

shows the particle speed v(t). The last graph shows two contributions to the

power delivered to the electromagnetic field: the radiated power (solid line)

and the power delivered to the bound field (dashed line). When f is changing

most of the power goes to the bound field. When f is constant but nonzero

the two contributions are equal and opposite. The total area under the dashed

curve is zero. (The essential insight here is not new, but the author has not

been able to find a presentation like the above in prior work.)
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this form of the self-force equation (because, perhaps, they
learned the Lorentz-Abraham-Dirac approach) are referred
to Refs. 7, 8, 22, and 23. It is the equation first proposed by
Eliezer and obtained by Ford and O’Connell; it is closely
related to but slightly different from the equation proposed
by Landau and Lifshitz.8,24 The first term in Eq. (9) is the
Schott term, which accounts for redistribution of 4-
momentum within the bound field. The second term
describes the supply of energy and momentum to the radi-
ated field. It would be logical to reserve the phrase “radiation
reaction” for the second term alone, but it is commonly
applied to both. In this paper, we will use the unambiguous
phrase “self-force” when discussing both terms together. The
radiated field always transports energy away from the source,
but the bound field may act either to accelerate or decelerate
the source, depending on the recent history of the motion. In
physical terms, to push a charged particle is to push some-
thing that is permanently attached to a “springy” medium.

Equation (9) comes from a treatment that is relativistically
consistent but not guaranteed to be exact, because the self-
force in general depends on the shape and internal motion of
the accelerating body. However, for a body of given total
charge and not exhibiting extreme behaviors such as internal
resonance, the corrections to the equation are of higher order
in powers of sq, so for small entities such as electrons, Eq.
(9) is very accurate. The non-relativistic form (3) follows by
substituting dt for ds and neglecting the second term in com-
parison with the first, which does not amount to neglecting
the radiation. This subtle point is discussed in Ref. 16.

One way to prove that the self-4-force vanishes for motion
at constant proper acceleration (hyperbolic motion) is to
search for the motion in which the self-4-force vanishes.
When f l

self ¼ 0, the equation of motion reads f l ¼ m _vl

(assuming constant rest mass m) so the bracket on the right-
hand side of Eq. (9) is ðm€vl � ma2

0v
l=c2Þ, where a0 is the

proper acceleration, obtained from a2
0 ¼ _vk _vk using a metric

signature (–1, 1, 1, 1). But the condition c2€vl ¼ a2
0v

l implies
hyperbolic motion,18 so we find f l

self ¼ 0 if and only if the
motion is hyperbolic, and we also see that this result arises
by virtue of equal and opposite contributions from two
effects. In the case of hyperbolic motion, during the initial
short period during which f increases from zero to some non-
zero value, the external force does more work than is needed
to supply the energy eventually required by the bound field.
In the subsequent hyperbolic motion, according to Eq. (4),
the applied force does less total work than is needed to sup-
ply both the radiated energy and the kinetic energy of the
particle; this is because during such motion the bound field
near the particle also does work on the particle. While the
particle slows, the system providing the force has work done
on it by the particle, and the bound field holds the particle
back a little, tending to maintain its kinetic energy. As the
speed passes through zero this process continues, but now
the system providing the force does work on the particle, and
the bound field “helps” by pulling the particle along a little,
doing work on it. At this stage, an energy deficit is building
up: the bound field has less energy than it will eventually
require. This deficit is filled by the applied force during the
second period when it changes. In the second such short pe-
riod, _f is again opposed to v so again the external force does
more work than is needed to supply either kinetic energy or
radiated energy; the energy passes to the bound field and
stays there.

We now provide a quantitative statement of the above
ideas by calculating the rate of doing work by the applied
force, in both the general (any v) and low-velocity (v � c)
cases. Our discussion of the various contributions matches
that of Rohrlich,16 except that we use a different expression
for the self-force. Previously several authors have treated the
radiation power and the Schott power implied by Eq. (9); our
discussion slightly extends or modifies the prior ones.10,12–14

Assuming that the rest mass is constant, the relativistic
equation of motion is

f l þ sq½ _f
l � ð _vkf kÞvl=c2� ¼ m _vl: (10)

The rate of doing work is given by the zeroth component of
this 4-force:

dW

ds
¼ f 0c ¼ m _v0 � sqc _f

0 þ sq _vkf kc; (11)

where c is the Lorentz factor. The three terms on the right-
hand side are the rate of change of kinetic energy, the Schott
power, and the radiated power. The Schott power takes the
form of a total derivative, so the net work done by the Schott
term between any two events where the 4-force has no net
change is zero. The radiation term gives, for the radiated
power per unit time taken to emit it,

PR ¼
dWR

dt
¼ 2q2

3mc3
_vkf k; (12)

where we used dt/ds¼ c, and we note that the resulting
expression is Lorentz-invariant. By evaluating this expres-
sion in the instantaneous rest frame, one finds that
PR ¼ sqa0 � f0, where a0 is the proper acceleration and f0 is
the applied force in the instantaneous rest frame (in the ab-
sence of self-force the latter would be equal to a0/m, but here
that is not the case). Equation (12) is not quite the same as
Larmor’s expression (8), because the latter does not take the
nonzero size of the accelerating body into account. We will
elaborate on this point below and in Sec. III.

In the low-velocity limit, Eq. (4) gives the rate of doing
work:

f � v ¼ m _v � v� sq
_f � v: (13)

The first term on the right-hand side is the rate of change of
kinetic energy of the particle. To clarify the physical inter-
pretation of the second term, use

_f � v ¼ d

dt
f � vð Þ � f � _v; (14)

so we have

f � v ¼ d

dt

1

2
mv2

� �
� sq

d

dt
f � vð Þ þ P; (15)

where

P ¼ 2q2

3c3

_v � f
m

: (16)

The three contributions to the rate of doing work in Eq. (15)
correspond to the three appearing in the more general

706 Am. J. Phys., Vol. 83, No. 8, August 2015 Andrew M. Steane 706

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

163.1.240.159 On: Mon, 31 Aug 2015 17:21:51



expression (11). The radiated power agrees exactly with the
expression (12) when P is evaluated in the instantaneous rest
frame.

Ford and O’Connell10 also considered this question based
on the same starting point (4), but they arrived at a different
result for the radiated power,

PFO ¼
2q2

3c3

f

m

� �2

; (17)

and a more detailed subsequent treatment came to the same
conclusion.13 In order to understand this discrepancy,
express _v in terms of the force using Eq. (4):
m _v � f ¼ f � f þ sq

_f � f; substituting into Eq. (16) then gives

P ¼ PFO þ
s2

q

2m

d

dt
f 2
� �

: (18)

Hence, the two expressions differ only when the size of the
applied force is changing, and, furthermore, they predict the
same total radiated power between any two events at which
the applied force has the same size. It follows from this that
the choice between P and PFO is largely a matter of conven-
tion, concerning how to apportion the energy between the
Schott field and the radiation while f is changing. We are
here making one choice, in agreement with two previous
authors,12,14 while Heras and O’Connell made the other.13

Also, even when f is changing, the two expressions differ
only at the next higher order in sq, where our original expres-
sion (9) is not guaranteed to be accurate, so one should not
over-interpret this small difference. (This point was also
noted by Rohrlich.12) Rowland15 offers essentially the same
physical interpretation of the energy movements, but his
detailed calculation is limited to the case of constant proper
acceleration, where PR, PFO, and PL all agree. Therefore, his
result (Eq. (15) of Ref. 15) should not be assumed to apply
to general motion, and in fact it is imprecise in general
because it adopts the Larmor radiation formula.

For the case of a constant force ( _f ¼ 0), the Schott power
evaluates to �sqf � _v ¼ �sqf 2=m, and then Eq. (15) gives

f � v ¼ d

dt

1

2
mv2

� �
þ 2q2

3c3

f 2

m2
� f 2

m2

� �
: (19)

Here, we explicitly exhibit both the radiated power and the
power leaving the bound field for this case. This helps one to
see clearly that in the presence of an applied force, the radia-
tion is happening throughout the motion, not just when the
force is changing.

The overall conclusion is that energy conservation is
maintained, and the external force does indeed supply the
energy required by both the bound field and the radiated
field. The inertial contribution to the energy of the bound
field has been absorbed into the definition of m, and we have
exhibited the other part (the Schott term) explicitly.

III. FINDING RADIATED ENERGY WITHOUT

RECOURSE TO THE WAVE ZONE

We now turn to the direct calculation of radiated energy
by examining the field around a particle that has accelerated.

The standard derivations of Larmor’s formula (8) for the
power radiated by an accelerating point charge require an

assumption that only the part of the field associated with
acceleration leads to radiation, and that one may legitimately
calculate the energy associated with this part of the field
alone, and call it radiated energy. One way to justify this
assumption is to take the limit r ! 1, where r is the dis-
tance from the source event to the field event. For a given
source event, the field events in such a calculation are
located on an infinitely large spherical surface in the infinite
future—the “wave zone” or “radiation zone.” Sometimes,
the consideration of this limit is problematic. In the radiation
zone, the radiated field carries almost all the energy, when
integrated over all directions, but in some directions, it van-
ishes completely where the bound field does not, and even
where it is strong it does not dominate in all respects. For
example, its divergence is everywhere equal and opposite to
that of the bound field. In any case, it is interesting to ask
whether one can avoid an appeal to the radiation zone. It
should, after all, be possible to learn about something hap-
pening in the here and now without recourse to the far dis-
tance and the infinite future.

In a classic paper, Teitelboim25 addressed this issue,
among others, and gave much insight into the energy and
momentum movements in the fields sourced by a charged
particle undergoing arbitrary motion. Subsequent work has
further elucidated particular cases or has extended the ideas,
for example, to non-flat spacetimes. In the present discus-
sion, we wish to give an argument that, owing to its visual
nature and great simplicity, might be useful as a teaching
aid. The aim of the argument is to get some general insight
into the movement of energy in an electromagnetic field and
to derive Larmor’s formula without invoking the wave zone.

A. Point particle

First, we consider a point particle. Strictly, a point charge
is impossible for finite q and m, but it is a convenient case to
consider because the fields are simple to calculate.

Consider a charged particle that moves initially at some
constant velocity and finally at some constant velocity (not
necessarily the same), relative to a given inertial frame. For
any such motion, there exists an inertial frame relative to
which the initial and final velocities are equal and opposite.
Adopt this frame, oriented so that the initial and final veloc-
ities are 7u in the x-direction and suppose that the part of
the worldline for which the motion is arbitrary (but always
timelike) extends between events (t1, x1) and (t2, x2). At any
time t> t2, divide all of space into three regions. Region 1 is
the exterior of a sphere of radius c(t – t1) centered at x1.
Region 2 is the interior of a sphere of radius c(t – t2) centered
at x2. Since the worldline is timelike, these regions do not
overlap. Define region 3 as the region between them. These
regions are shown, for a particular case, in Fig. 3(a). By rea-
soning about this figure, we will make an important observa-
tion about the energy movements in the field.

In region 1, the electromagnetic field is that of a charge
uniformly moving at the initial velocity; in region 2 the field
is that of a charge uniformly moving at the final velocity; in
region 3 the field is more complicated, having both radiative
and bound parts. The electric field in region 2 extends radi-
ally outwards from the present position of the particle. The
electric field in region 1 extends radially outwards from the
projected position given by

xp ¼ x1 � uðt� t1Þ: (20)
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This is the position the particle would now have (at time t)
had it continued permanently in its initial state of motion
with velocity –u. Since u< c, the projected position is
located inside the sphere enclosed by region 1.

So far we have simply taken a general look at the form of
the electromagnetic field. The only assumption has been that
the particle moves initially and finally at constant velocity,
and for convenience we have adopted the reference frame in
which those velocities are equal and opposite.

Let Ui be the energy contained in the electromagnetic field in
region i. By conservation of energy, we have for all times t> t2,

U1 þ U2 þ U3 ¼ constant: (21)

There is a divergent contribution to U2 coming from the fields
close to the particle, but we will show how to regularize this.

Next, consider the case of a particle that has never acceler-
ated but has always moved in the final state of motion of the
particle just described. In other words, this “reference”

particle has constant velocity u and after t2 it is located at the
same place as the original particle; its electric field is illus-
trated in Fig. 3(b). Let UH

i be the energy in the electromag-
netic field of the reference particle in region i (the H here
stands for “Heaviside”; we shall call the field of a uniformly
moving point charge a “Heaviside field” in honor of O.
Heaviside, who was the first to calculate it.26 This field is,
roughly speaking, a “moving Coulomb field,” but we have in
mind an exact treatment including Lorentz contraction).
Since the fields of the actual particle and the reference parti-
cle are identical in region 2, clearly UH

2 ¼ U2, but we cannot
make any such simple statement about U1 or U3.

The crucial part of the argument is to identify yet another
region of interest. This region, region 4, is the exterior of a
sphere of radius c(t – t1) centered at

xt � uðt� t1Þ ¼ x2 � uðt2 � t1Þ; (22)

where xt¼ x2þu(t – t2) is the present position of the refer-
ence particle (this is also the location of the original particle
after t2). This means the center of the spherical surface defin-
ing region 4 is displaced from the present location of the ref-
erence particle by the same amount (but in the opposite
direction) that the center of the spherical surface defining
region 1 is displaced from the projected position of the actual
particle. There are two useful implications. First, because
u< c, region 4 does not overlap region 2. Second, the elec-
tromagnetic field of the reference particle in region 4 is the
same as the electromagnetic field of the actual particle in
region 1, except for a displacement and a reflection in a
plane normal to the x-axis. An example of this correspon-
dence can be seen by examining the pattern of the field lines
in Fig. 3. Such a displacement and reflection does not change
the energy content of the field, and therefore

U1 ¼ UH
4 : (23)

Finally, define region 5 as that between region 2 and
region 4. (Note that regions 3 and 5 share a common inner
boundary but have different outer boundaries.) Since the ref-
erence particle is in a state of steady motion in which no
energy is being supplied, we must have

UH
4 þ UH

2 þ UH
5 ¼ constant: (24)

Subtracting this from Eq. (21) gives

U1 þ U2 þ U3 � ðUH
4 þ UH

2 þ UH
5 Þ ¼ constant: (25)

Now, using UH
2 ¼ U2 and Eq. (23), we obtain

U3 � UH
5 ¼ constant: (26)

This simple result tells us something interesting about the
electromagnetic field sourced by a particle undergoing arbi-
trary motion: the energy content of that field differs from
what it would need to be to construct the Heaviside field of a
particle in the same final state of motion by an amount that
does not change with time. As time goes on, all the light
spheres we have identified grow, and the energy contents of
all the regions change. But regions 3 and 5 have the interest-
ing property we have identified, which is

U3ðtÞ ¼ UH
5 ðtÞ þ UR; (27)

Fig. 3. The top diagram shows the electric field around a particle that has

recently accelerated and now undergoes uniform motion to the right at a ve-

locity equal and opposite to the velocity it had before the acceleration began

at t1. The bottom diagram shows the electric field of a particle that has the

same final state of motion but has not accelerated. The circles indicate vari-

ous regions defined in the text. The bold double-ended arrow has the same

length and direction in the two diagrams. This ensures that the electromag-

netic field in region 1 is everywhere the same as that in region 4, apart from

a translation and reflection. It follows that the energy in region 3 exceeds

that in region 5 by an amount that is independent of the moment in time cho-

sen to draw the diagram (see text).
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for some UR that is independent of time. Since as time goes
on, the field around the actual particle becomes more and
more like a Heaviside field, we can identify UR as an energy
that has become detached from the particle. It is the radiated
energy.

This argument allows us to make the standard observa-
tions about the source of electromagnetic radiation (for iner-
tial observers in the absence of gravity), namely that
accelerated motion always results in radiated energy, non-
accelerated motion never does, and the radiated energy
moves outward from the source at the speed of light. We can
also obtain Larmor’s formula, as follows.

The fields of a particle in an arbitrary state of motion are,
in Gaussian units,

E ¼ qr3

r � r0ð Þ3c2
c2 � v2ð Þr0 þ r� r0 � að Þ

h i
; (28)

B ¼ n� E; (29)

where r is the vector from the source event to the field event,
r0 ¼ r� vr=c; n ¼ r=r, and v and a are the particle’s veloc-
ity and acceleration at the source event. For a given source
event, in the instantaneous rest frame these expressions sim-
plify to

E ¼ q
n

r2
þ n� n� að Þ

c2r

� �
; B ¼ �q

c2r
n� a: (30)

The energy density in the field is

u ¼ 1

8p
E2 þ B2ð Þ ¼ q2

8p
1

r4
þ 2a2 sin2h

c4r2

� �
; (31)

where h is the angle between n and a (in SI units one would
have q2/4p�0 instead of q2 in the last expression).

Now consider the argument of Fig. 3 applied to a particle
that accelerates only during a short interval dt. In this case,
region 3 is, to lowest-order approximation, a spherical shell
of thickness dr¼ cdt. Integrating Eq. (31), we obtain for the
total field energy in such a shell,

dU ¼
ðp

0

ð2p

0

ur2 sin h dh d/ dr ¼ q2 1

2r2
þ 2a2

3c4

� �
dr:

(32)

This dU is an example of the energy we have called U3 in
the argument above. To get the radiated energy, we subtract
from it UH

5 , the energy in the Heaviside field in the appropri-
ate shell. This energy is equal to the first term in Eq. (32);
hence we find

UR ¼
2

3

q2a2

c4
dr: (33)

The time taken to emit this energy is the time taken for a
light sphere to grow from radius r to rþ dr, so we find that
the energy radiated, per unit time taken to emit it, is as given
by Larmor’s formula, Eq. (8). This derivation assumed that
the acceleration took place only during a short burst.
However, the result can be extended immediately to arbitrary
motion, by arguing from causality: the fields at any given
event depend only on the part of the worldline that acted as

source, so Eq. (33) gives the radiated energy for the part of
the worldline we considered, no matter what the motion was
at other times.

B. Extension to objects of nonzero size

The preceding treatment, like Larmor’s, gives the answer
for a point charge. No point-like object can have a nonzero
charge, however, unless the observed mass tends to infinity,
owing to the contribution from the electromagnetic field
energy.8,19 Therefore, Larmor’s formula and Eq. (33) are
valid only in the limit q ! 0. In that limit sq ! 0 and then
Eq. (8) agrees with Eq. (16). For an entity of nonzero charge
and finite mass, and therefore nonzero spatial extent, we
should expect a departure from Larmor’s formula, and Eq.
(16) or (17) gives, to first approximation, what that departure
is. It can be understood as a small modification in the energy
in the radiation field, owing to the difference between the
field of a small extended object and the field of a point-like
object. For a small rigid body moving non-relativistically,
this departure can be obtained from Eq. (10) of Ref. 11,
which gives the squared electric field in the radiation zone as

jE r;xð Þj2 ¼
q2jfq kð Þj2x4

c4r2
a~fð Þ2 sin2h; (34)

where ~f is the Fourier transform of the applied force, a is the
linear response function, and fq is the form factor of the rigid
charge distribution. A suitable expression for the latter is6,11

jfq kð Þj2 ¼ 1

1þ x2s2
q

: (35)

It follows that the radiated power is proportional to

x4jfqj2jaj2j~f j2 ¼
j~f j2

m2
; (36)

in agreement with Eq. (17), where we used the expression
a¼ (–1þ ixsq)/mx2 that describes the response of a free
particle according to Eq. (4). The above calculation was pre-
sented at greater length in Ref. 27. This result does not nec-
essarily offer a reason to prefer Eq. (17) over Eq. (16),
because the difference between them appears at a higher
order in powers of sq than is assumed in the approximations
leading to Eq. (34).

We note that Eq. (17) can also be reproduced to this order
of accuracy by replacing a! a� sq _a in the Larmor for-
mula, but this is a mere observation, not a derivation.

The argument of Fig. 3 and Eqs. (21)–(27) remain valid
for the case of an extended charged body, if we adapt it as
follows. We consider the case where the body moves in such
a way that its initial and final motions are inertial, as before,
and we adopt the frame in which the initial and final veloc-
ities are equal and opposite. We assume that the body has the
same proper size and shape in the initial and final states, and
that it produces no magnetic field in its rest frame when it is
not accelerating. By transforming from the rest frame, one
finds the electric field (in some given frame, not the rest
frame) of such a body is the same for two inertial states of
motion that differ only in the sign of the velocity, and the
magnetic field is equal and opposite. This allows the argu-
ment to proceed essentially as before.
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The spherical surfaces are located such that regions 1 and
2 only contain fields owing to inertial motion, so all the com-
plications owing to acceleration are contained in region 3.
This can be arranged by choosing these regions in a variety
of ways, but for clarity, a specific choice may be helpful.
This could be, for example, spheres centered on x1 and x2 as
before, where now these refer to the locations, at t1 and t2, of
a convenient point on the extended body, such as its centroid.
The spheres lie on the future light cones of events 1 and 2; in
other words, their radii are c(t – t1) and c(t – t2), respectively,
at time t. One must choose t1 early enough, and t2 late
enough, to ensure that regions 1 and 2 only contain fields
owing to inertial motion. Equation (21) applies as before.

The primary aim of the argument is to show that there is a
contribution to the total field energy that is independent of
time and that propagates outwards from the charged body at
the speed of light. A secondary aim is to give one way to
locate and calculate this energy. The primary aim is achieved
immediately, because regions 1 and 2 contain two parts of
the field that would be produced by a similar body in perma-
nent inertial motion (the “reference field”), apart from trans-
lations and a sign change in the magnetic part. Hence, the
extra energy in the actual field, compared to the energy in
the reference field, is all in region 3, and it is constant
because the total energies of both fields are constant.

In order to make this argument as general as possible, in par-
ticular in order not to require reflection symmetry in the field,
one must locate region 4 differently from before. This region
is defined such that, at any time t, the reference field in region
4 matches the actual field in region 1, up to translation and
sign changes. In order to guarantee this, region 4 is centered at
xtþu(t – t1); this replaces Eq. (22). This means the boundary
of region 4 may move at speeds above c, and regions 2 and 4
may overlap, but this does not affect the argument. The only
important point is that the difference between the total field
energy and the energy of the reference field is wholly owing to
an excess energy located in region 3, and this excess energy is
independent of time. Since the boundaries of region 3 are mov-
ing outwards at the speed of light, so is this energy.

IV. CONCLUSION

This paper has offered contributions of two types: accurate
statements about radiant energy and self-force and easily
visualized or remembered ways of thinking about them. The
statements correct or clarify earlier work (by a modest
amount). Equation (1) is more accurate than Larmor’s equa-
tion for emitted power. The physical scenarios offer, we
hope, a useful teaching method, whose ideas are captured in
the three figures.
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