
The Two-Body Problem

In the previous lecture, we discussed a variety of conclusions we could make
about the motion of an arbitrary collection of particles, subject only to a few
restrictions. Today, we will consider a much simpler, very well-known problem
in physics - an isolated system of two particles which interact through a central
potential. This model is often referred to simply as the two-body problem.
In the case of only two particles, our equations of motion reduce simply to

m1r̈1 = F21 ; m2r̈2 = F12 (1)

A famous example of such a system is of course given by Newton’s Law of
Gravitation, where the two particles interact through a potential energy given
by

U12 (|r1 − r2|) = U21 (|r2 − r1|) = G
m1m2

|r1 − r2|2
, (2)

where G is Newton’s constant,

G = 6.673× 10−11 N m2/kg2. (3)

How can we go about finding the most general solution to this set of equations?
As with any physics problem, the first thing we should do is make maximal

use of the symmetries or conservation laws of our problem. First, because
the two particles interact via a central potential, these two forces should obey
Newton’s third law, as we discussed in the previous lecture. We know that as a
result, the total momentum of our system will be conserved, and so we should
consider the center of mass,

R =
m1r1 +m2r2

m1 +m2
=
m1r1 +m2r2

M
(4)

the time derivative of which is given by the center of mass velocity,

vCM =
m1v1 +m2v2

M
. (5)

Now, in the previous lecture, we found that the acceleration of the center of
mass depended on the net external force,

Fext = MaCM . (6)

Since our system is isolated, the center of mass acceleration must be zero, and
hence the center of mass velocity must be a constant,

v
(0)
CM =

m1v
(0)
1 +m2v

(0)
2

M
. (7)

Thus, the center of mass motion is given by

R (t) = v
(0)
CM t. (8)
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Since we already know the motion of the center of mass on general grounds,
we can make use of this information to simplify our problem. To see how, let’s
define the vector of relative distance

r = r1 − r2. (9)

A simple algebraic rearrangement then yields

r1 = R +
m2

m1 +m2
r ; r2 = R− m1

m1 +m2
r. (10)

From this expression, and the fact that we already know R, our problem simply
reduces to finding r.

To find the equation of motion satisfied by r, we return to our original
equations of motion and multiply the first by m2 and the second by m1, in
order to find

m1m2r̈1 = m2F21 ; m1m2r̈2 = m1F12. (11)

If we then subtract the second equation from the first, we have

m1m2 (r̈1 − r̈2) = m2F21 −m1F12 ⇒
m1m2

(m2 +m1)
r̈ = F21, (12)

where we have made use of Newton’s third law in the second equation. Be-
cause the forces are derived from a central potential which only depends on the
distance between the two particles, we have

F21 = − ∂

∂r1
U12 (|r1 − r2|) = ∇1U12 (|r1 − r2|) (13)

Now, since the potential only depends on r, and not the center of mass R,
we can use the chain rule to write for the x-component of the derivative, for
example,

∂

∂r1x
U12 (|r|) =

∂rx
∂r1x

∂

∂rx
U12 (|r|) +

∂Rx
∂r1x

∂

∂Rx
U12 (|r|) =

∂

∂rx
U12 (|r|) , (14)

and so on for the other coordinates. Thus, I find that I can write

m∗r̈ = − ∂

∂r
U (|r|) ≡ F (r) , (15)

where
m∗ =

m1m2

(m2 +m1)
(16)

is the reduced mass of the system. Thus, our problem has effectively been
reduced to a one-particle system - mathematically, it is no different than a single
particle with position vector r and mass m∗, subject to an external force F.
Therefore, conservation of momentum has dramatically simplified our system.

2



Conservation of Angular Momentum

Since our two particles interact with each other through a central potential, we
know that the total angular momentum of the system is conserved. However,
since we have reduced our problem to a one-particle system, it makes more
sense to reformulate this statement in terms of the angular momentum of this
fictitious particle,

L = m∗r× v, (17)

where
v = ṙ. (18)

Now, a short exercise in the chain rule shows us that

F (r) = − ∂

∂r
U (|r|) = −r

r

dU (r)

dr
; r = |r| . (19)

Therefore, the torque on the particle due to F is

τ = r× F ∝ r× r = 0. (20)

That is, the torque vanishes because the force is parallel to the displacement
vector. Thus, in the absence of any torque, the angular momentum of the
particle must be constant,

d

dt
L = 0. (21)

This fact is a general result for the motion of a particle in an external central
potential.

For our one-particle system, conservation of angular momentum allows us
to make a further simplification. For any three vectors, we can form the scalar
triple product,

a · (b× c) = b · (c× a) = c · (a× b) . (22)

The fact that all three of these expressions are equal is left as an exercise on
your homework. If we use this identity, we can see that

r · L = m∗r · (r× v) = m∗v · (r× r) = 0. (23)

Because this inner product is zero, it must be the case that r is always perpen-
dicular to the angular momentum L,

r ⊥ L (24)

However, because the angular momentum is constant, there must be a fixed
vector in space which the position vector r is always perpendicular to. Given
that the position vector is always perpendicular to a certain orientation in space,
it must be the case that the position vector always lies in a plane.

As a result of this fact, not only has our problem been reduced to a one-
particle system, it has also been effectively reduced to two dimensions. Because
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our problem is described by a radial force in two dimensions, at this point it is
most convenient to switch over to polar coordinates,

rx = r cos θ ; ry = r sin θ. (25)

We have chosen the convention that the plane which the particle travels in is
the x-y plane, and that the angular momentum is oriented along the z-axis. In
this set of coordinates, we can write

dθ

dt
= l/m∗r

2 ; l ≡ |L| , (26)

which you’ll show on your homework. This expression for the time derivative
of the angular coordinate makes another fact clear - the sign of dθ/dt is always
positive, so that the particle always rotates around the center of our coordinate
system in the same direction.

Conservation of Energy

There is one last conservation law we of course have at our disposal, which is
the conservation of energy. Since our particle’s motion is described in terms of
a potential energy function, we know that the quantity

E =
1

2
m∗v

2 + U (r) (27)

should be conserved. Now, as we discussion in section this week, we remember
that in polar coordinates, we can write

v2 = ẋ2 + ẏ2 = ṙ2 + r2θ̇2. (28)

Therefore, our energy conservation constraint becomes, in polar coordinates,

E =
1

2
m∗ṙ

2 +
1

2
m∗r

2θ̇2 + U (r) . (29)

However, we can eliminate dθ/dt from this expression, using the result we found
above. Substituting in this result, we find

E =
1

2
m∗ṙ

2 +
1

2
m∗r

2

(
l

m∗r2

)2

+ U (r) , (30)

or,

E =
1

2
m∗ṙ

2 +
1

2

l2

m∗r2
+ U (r) =

1

2
m∗ṙ

2 + Ueff (r) , (31)

where we have defined the effective potential

Ueff (r) =
1

2

l2

m∗r2
+ U (r) . (32)
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Notice that aside from depending on the (constant) value l, the effective
potential is only a function of r - there is no longer any θ dependence in the
energy conservation equation. The expression above is mathematically identical
to a single particle in one dimension, with a coordinate r, whose energy is the
sum of its “kinetic energy”

K =
1

2
m∗ṙ

2, (33)

and also its potential energy, described by the effective potential. For this rea-
son, we have now effectively reduced our problem to a one-dimensional system.
The time evolution of our system is now determined by the two equations

E =
1

2
m∗ṙ

2 + Ueff (r) ;
dθ

dt
= l/m∗r

2. (34)

The first equation can be solved using the methods we have already been devel-
oping in the course up until this point. Once we have done so, and determined
the functional form of r (t), we can find the angular coordinate by simply inte-
grating

θ (t) = θ0 +
l

m

∫ t

0

dt′

r2 (t′)
. (35)

The combination of linear momentum, angular momentum, and energy con-
servation in our system has led to a dramatic simplification - a system of two
particles in three-dimensional space has been reduced to a problem of finding
the motion of one particle travelling in one dimension. Notice that while two
particles moving in three dimensions involves 12 pieces of information (the posi-
tion and velocity of both particles), our current simplified problem only involves
two - the position and velocity of a one-dimensional particle. Thus, we have ten
fewer pieces of information to find. This dramatic simplification, along with the
incredible ubiquity of the central potential, makes the two-body problem one of
the most well-known and most important problems in all of physics.

Notice that in addition to being a nice mathematical trick, the reduction
of our problem to one particle moving in an external central potential is of-
ten physically motivated as well. In many situations, especially in celestial
mechanics, it is often the case that one of the two bodies is much, much more
massive than the other. If we assume this body is m2, then the reduced mass
simply becomes

m∗ =
m1m2

(m2 +m1)
≈ m1, (36)

and the center of mass becomes

R =
m1r1 +m2r2

m1 +m2
≈ r2 (37)

Therefore, the difference vector

r = r1 − r2 ≈ r1 −R, (38)
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simply defines the position of the smaller mass with respect to the position of the
larger mass, which is the center of mass itself. Thus, to a good approximation,
we can imagine that the lager mass is stationary (since the center of mass moves
with a constant velocity, which we can take to be zero), and that the smaller
mass is subject to an external potential due to this larger mass. So in the
following discussion when we consider the motion of such a system, you may
find this intuitive picture to be helpful. This idea is shown in Figure 1.

Figure 1: In the case that one of the two bodies is much more massive than
the other, the location of the larger body effectively becomes the location of the
center of mass, which we can take to be stationary. In this case, the smaller
mass is considered to be moving in an external potential due to the larger mass.

Given that a recurring theme of this course has been the subject of approx-
imation methods, you may be wondering why we are so concerned with one of
the few exactly solvable cases which appear in physics. However, remember that
whenever we perform a perturbative calculation, we also need an exactly solv-
able case to perturb away from. Many problems in astronomy (and physics in
general) can be well-modelled by starting with the solution to some sort of two-
body problem, and then perturbing away from that. This makes the two-body
problem all the more important to understand.
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Physical Interpretation of the Reduced System

Before moving on to solve for the motion of our system, we can say a little bit
more about the physical interpretation of the reduced problem we have set up.
Our simplified system is described by a position vector r, which is constrained
to lie in a plane while under the influence of the external potential U (r). To
understand the meaning of r somewhat better, let’s write the position vectors
of the two bodies, as measured with respect to the center of mass,

r′1 = r1 −R =
m2

m1 +m2
r ; r′2 = r2 −R = − m1

m1 +m2
r. (39)

Make sure to notice that the vectors r′1 and r′2 are the position vectors of m1 and
m2, in a coordinate system where R is situated at the origin. From the above
expressions, we can see that in such a coordinate system, the vector r points
from the origin, towards the location of the first body. Likewise, the vector −r
points from the origin, towards the location of the second body. Be careful to
notice, however, that r does not have the same length as the position vectors
- it only gives the correction directions. The factors of m2/M and m1/M scale
the length of r in order to give the correct position vectors r′1 and r′2. These
ideas are illustrated in Figure 2. In particular, when the mass of the second
body is much larger than the first,

m2 � m1 ⇒ r′1 ≈ r ; r′2 ≈ 0. (40)

In addition to the physical interpretation of the difference vector, we can
also ask about the quantity we defined previously

L = m∗r× v, (41)

which we referred to as the angular momentum of the fictitious one-particle
system with mass m∗. How does this relate to the actual angular momentum of
the full two-particle system? To answer this question, let’s write the expression
for the total angular momentum in the center-of-mass coordinate system,

L = m1r
′
1 × ṙ′1 +m2r

′
2 × ṙ′2. (42)

Using the expressions for these position vectors in terms of the difference vector,
we find

L =
m1m2

M2
(m2r× ṙ +m1r× ṙ) =

m1m2

M
r× ṙ, (43)

or
L = m∗r× ṙ. (44)

Thus, the angular momentum we previously defined is nothing other than the
full two-body angular momentum, evaluated in the center-of-mass frame (re-
member that the value of the angular momentum depends on our choice of
coordinate system, although the fact that it is constant is always true in any
particular frame).
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Figure 2: The two position vectors in the two-body problem, with respect to
the center of mass coordinate system. Notice that the difference vector points
from the origin towards the location of the first body, although it doesn’t have
the same length as the first body’s position vector.

Lastly, we may ask how the energy of the fictitious one-particle system,

E =
1

2
m∗ṙ

2 + U (r) , (45)

compares with the energy of the full two-body system. To answer this question,
let’s write the total energy of the two-body system in terms of the center of
mass quantities,

ECM =
1

2
m1 (ṙ′1)

2
+

1

2
m2 (ṙ′2)

2
+ U (r) , (46)

which we know can be written as

ECM =
1

2
m1

(m2

M
ṙ
)2

+
1

2
m2

(m1

M
ṙ
)2

+ U (r) . (47)

With some simple algebra, we can see that ECM is precisely the quantity E that
we had previously defined.

Thus, we see that all of the quantities we have introduced to describe the
fictitious one-particles system with mass m∗ have a natural interpretation in
terms of the two-body quantities, as expressed in the center-of-mass coordinate
system.
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Radial Oscillations

Now that our problem has been reduced to a one particle system moving in
an external potential in one dimension, we can apply all of the same tools we
used in the first half of the course. First, in the case that the effective potential
admits a local minimum, we know from our previous considerations that we
will find oscillatory behaviour for the radial coordinate r in the vicinity of this
potential minimum. An example of this is shown in Figure 3 for the potential

U (r) = −1

r
, (48)

which as we will discuss shortly is of particular importance in physics. Notice
that because the effective potential is explicitly dependent on the value of the
angular momentum, its shape, and also the location of its minimum, will change
with different values of the angular momentum. Smaller values of angular mo-
mentum will result in effective potentials with much deeper potential minima,
while larger values of the angular momentum will result in very shallow effective
potentials. In some sense, we can think of the increased angular momentum as
creating a “centrifugal force” which is flinging the particle outwards, although
keep in mind that this fictitious force is an artefact of reducing the problem to
a one-dimensional system through the use of the effective potential.

1 2 3 4 5

-1.0

-0.5

0.5

Figure 3: A collection of different effective potentials, for m = 1, and U (r) =
−1/r. The various values of the angular momentum are l = 0 (blue curve),
l = 0.65 (orange curve), l = 0.8 (green curve), and l = 1.25 (red curve).
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Notice also that because the angular momentum part of the effective poten-
tial is always positive

Ul (r) =
1

2

l2

m∗r2
, (49)

the behaviour of the effective potential at small values of r will always increase
to large positive values, since the inverse square behaviour of this term causes it
to dominate at small values of r. For this reason, we often say that a non-zero
angular momentum creates a “centrifugal barrier” which prohibits the particle
from reaching the origin at r = 0. Only when l = 0 can the particle ever reach
this point (of course, in a realistic system describing, for example, a satellite
orbiting the Earth, it is certainly still possible for the satellite to crash into
the Earth even with a non-zero angular momentum, since of course the surface
of the Earth exists at a non-zero radius away from the center of mass of the
system).

When the effective potential does not admit a minimum, or when the par-
ticle possesses a suitably large enough energy that it can escape the potential
minimum, then it is possible for the particle to escape to infinity and never
return. We will discuss this possibility in a moment when we discuss orbital
shapes.

Assuming that the particle is indeed trapped within a potential minimum,
as the particle moves, its radial coordinate will oscillate between some minimum
and maximum values. At the point of closest approach to the origin, when the
radial coordinate is at a minimum, we say that the particle is at its perigee.
Similarly, when the particle is at its maximum distance from the origin, we say
that it is at its apogee. If we want to be quantitative about this behaviour, we
can say that the time it takes to travel from perigee to apogee is given by

Tp→a =

√
m∗
2

∫ ra

rp

dr′√
E − Ueff (r′)

, (50)

with the positive sign chosen, since we are moving from a smaller radius to a
larger one. In the case that the particle is sitting precisely at the minimum of
the effective potential,

U ′eff (r∗) = 0, (51)

the radial coordinate will be constant for all time. This of course corresponds
to a circular orbit. Thus, we see that so long as the effective potential admits
a minimum, there will exist a circular orbit.

Thanks to our heavy use of conservation laws, finding the radial motion of
our particle has essentially been reduced to the previous two-page recap of our
previous discussions in the course. Of course, understanding how the interplay
between the angular momentum and bare potential determines the effective
potential is an interesting question, and is precisely the sort of question you
will explore more on the homework. But for now, let’s move on to the angular
motion.
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Orbits

Returning to the angular motion of our particle, the equation we derived previ-
ously allows us to write

dθ

dt
= l/m∗r

2 ⇒ θ (t) = θ0 +
l

m∗

∫ t

0

dt′

r2 (t′)
. (52)

After solving for the motion of the radial coordinate, we can always perform
the integral in this equation, thus finding the angular motion of the particle.
However, we can actually say something interesting about the motion of the
particle without even solving for the motion as a function of time. Again using
energy conservation, we can write write

dt = ±
√
m∗
2

dr√
E − Ueff (r)

. (53)

In the previous section we use this fact to find the travel time between any
two radial points. However, we can also use this expression for dt to perform a
change of variables in the integral for the angle. Making this substitution, we
find

θ (r) = θ0 ±
l√

2m∗

∫ r

r0

dr′

r′2
√
E − Ueff (r′)

. (54)

This integral equation we have found now relates the radius to the angle, and
thus allows us to find the shape, or orbit of the particle - how the radius changes
as the angle precesses. In many situations, determining the orbit is much more
important than determining the actual time evolution of the radius and angle
coordinates themselves.

In particular, for a particle bound in a potential minimum, this expression
allows us to find the change in angle as the particle travels from perigee to
apogee, given by

θp→a =
l√

2m∗

∫ ra

rp

dr′

r′2
√
E − Ueff (r′)

. (55)

This will in fact be equal to the angle traced out as the particle travels back
from apogee to perigee,

θa→p =
−l√
2m∗

∫ rp

ra

dr′

r′2
√
E − Ueff (r′)

=
+l√
2m∗

∫ ra

rp

dr′

r′2
√
E − Ueff (r′)

= θp→a.

(56)
Again, this equality comes from choosing the opposite sign out in front of the
integral, and then removing the sign by swapping back the order of integration.

In general, this angular difference could be some arbitrary number, which
depends on the energy, the detailed shape of the potential, and the particle’s
mass and angular momentum. Thus, it could very well be an irrational multiple
of π. In this case, as the particle travels from perigee to apogee, and back to
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perigee, its angular coordinate will advance by some irrational multiple of π,
and then repeat the process over again. Each iteration of this process will result
in a new perigee (radial point of closest approach) at a different angle than
the starting angle, and since the angular difference is not a rational multiple
of π, there will never be another perigee at the original starting angle. A
demonstration of this type of behaviour is shown in Figure 4, for the choice of
potential

U (r) = −e
−r

r
, (57)

This type of potential is known as a Yukawa potential, and appears in many
areas of physics (you’ll explore some of its properties in the homework). Each
color shows the motion of the particle during one radial cycle as it moves from
perigee to apogee, and back to perigee again. Notice that after the particle
completes its first radial cycle, it has advanced by an angle which is more than
2π. Thus, the point it returns to in two-dimensional space after completing
one radial cycle is not the same as its starting point. This type of behaviour
is known as orbital precession. For comparison, Figure 5 shows the radial
coordinate as a function of time, while Figure 6 shows the angular coordinate
as a function of time. A plot of the effective potential is shown in Figure 7.

The Kepler Problem

However, there is a very important result which occurs for two special choices
of potential. The first choice is

U (r) = −γ
r

; γ > 0, (58)

while the second choice is

U (r) = γr2 ; γ > 0, (59)

where in both cases, γ is some positive constant. For the first choice, it turns
out that we always have

θp→a = π, (60)

while for the second choice, we always have

θp→a = π/2. (61)

In these two special cases, we say that the orbit of the particle is always closed.
In the first case, as the particle travels from perigee to apogee, and then back
to perigee, a full 2π radians have been traced out by the angular coordinate.
As such, once the particle returns to its initial starting radius, it also returns to
its initial starting angle. Therefore, after one radial cycle, the particle returns
to its original starting point in two-dimensional space. The radial oscillations
then continue, and the particle continues to trace out one closed orbit, with
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Figure 4: The motion of a particle subject to a Yukawa potential, with m∗ = 1
and l2 = 0.5. The initial starting radius is chosen to be r = 0.4. The red curve
shows the first radial cycle, while the blue and green curves show the second and
third cycles, respectively. Notice that the points of closest approach (perigees)
occur when the curve changes color.

absolutely no precession of its perigee. In the second case, after the particle
has experienced one radial cycle, its angular coordinate will have advanced by
π radians. After a second radial cycle, the angular coordinate will have traced
out 2π radians, and the particle will have returned to its initial starting point.
An example of this type of behaviour is shown in Figure 8. Notice that this
result does not depend on the values of m∗, γ, or E.

This result regarding closed orbits is especially important, because many
physical systems (including gravitational systems) are described by the −γ/r
potential. The two-body problem in the context of such a potential is often
known as the Kepler problem, named after Johannes Kepler, whose work on
the subject of astronomy helped lay the groundwork for Newtonian mechanics.
For this reason, we want to spend some time understanding the orbits in such a
potential in more detail. To do so, however, it will be most convenient to make
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Figure 5: The radial coordinate as a function of time for the particle subject to
the Yukawa potential.
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Figure 6: The angular coordinate as a function of time for the particle subject
to the Yukawa potential.
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Figure 7: The effective potential resulting from the bare Yukawa potential, with
m∗ = 1 and l2 = 0.5.

a slight change of variables. For this potential, it is a straight-forward exercise
to verify that there is a minimum of the effective potential at the radial value

r∗ = l2/γm∗, (62)

at which point the value of the effective potential is given by

Ueff (r∗) = −m∗γ2/2l2. (63)

For a given angular momentum l and mass m∗, these two quantities set the
characteristic length scale and energy scale of the problem. So, it is natural to
introduce the new, dimensionless variables

ρ = r/r∗ ; ε = E/|Ueff (r∗) |. (64)

If we then make a change of variables in the integral describing the angular
coordinate, it is a simple exercise in algebra to show that

θ (ρ) = θ0 ±
∫ ρ

ρ0

dρ′/ (ρ′)
2√

ε− 1/ (ρ′)
2

+ 2/ρ′
. (65)

It turns out that performing this integral is not too difficult, through the
use of an integral table, or Mathematica. Choosing to first consider motion in
which the radial coordinate is increasing, the result that we find is

θ (ρ) = arccos

[
(1/ρ)− 1√

1 + ε

]
− arccos

[
(1/ρ0)− 1√

1 + ε

]
+ θ0. (66)
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Without loss of generality, we can always choose θ0 to be whatever we wish, since
this just amounts to rotating our choice of coordinates. Thus, if we assume we
have chosen θ0 in such a way as to cancel the second term, we find

θ (ρ) = arccos

[
(1/ρ)− 1√

1 + ε

]
⇒ ρ (θ) =

1

1 + e cos θ
, (67)

where we have defined the eccentricity e as the quantity

e =
√

1 + ε. (68)

Similar considerations show that this expression also holds as the radius is de-
creasing. We now have an expression which determines the (scaled) radius as
a function of angle, which determines the shape of our orbit. It turns out that
the above equation is in fact the defining equation of the conic sections - the
family of geometric shapes which include the ellipse, the parabola, and the hy-
perbola. Which shape the orbit takes in particular will depend on the value of
the eccentricity. Let’s consider each of the various cases.

First, notice that as r → ∞, the effective potential goes to zero. Thus, if
a particle has an energy E < 0, its energy is less than the potential energy
at infinity, and is thus incapable of escaping to infinity. In this case, we say
that the orbit of the particle is bounded - its radial coordinate will oscillate
between perigee and apogee forever. In the case that the energy of our particle
is negative,

E < 0 ⇒ ε < 0 ⇒ e =
√

1 + ε < 1. (69)

Conic sections with an eccentricity less than one are in fact ellipses, with one
focus at the origin. This is demonstrated in Figure 8. Also, notice that as
promised, the radius is in fact periodic in θ with a period of 2π - the orbit is
closed. An important special case of this result occurs when the particle is
sitting precisely at the minimum of the effective potential, so that

ε = Ueff (r∗) /|Ueff (r∗) | = −1 ⇒ e = 0. (70)

In this case, we simply have the circle defined by

ρ = 1 ⇒ r = r∗. (71)

While it is not immediately obvious, our equation for the elliptical orbit can in
fact be rewritten in the form

(x+ d)
2

a2
+
y2

b2
= 1, (72)

where

a =
l2

γm∗

1

1− e2
; b =

l2

γm∗

1√
1− e2

; d = ae. (73)

This is shown in Figure 9. The parameters a and b are known as the semi-major
and semi-minor axes, respectively. The appearance of the term d indicates that
the center of the ellipse is not at the origin, but instead it is a distance d away.
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In particular, since Newton’s Law of Gravitation involves precisely this type
of potential energy function that we have been considering, these results have
of course played a very important role in the history of physics and astronomy.
While Johannes Kepler had proposed that the motions of planets were described
by ellipses based on observational data, it was not until Newton’s work on
gravitation that this result could be derived from a simple assumption regarding
the attraction between two bodies. Although our solar system is of course not
a single two-body system, because the Sun is so much more massive than any
other planet, to a good approximation, we can assume that the Sun remains
sitting stationary at the origin, while all of the planets, comets, asteroids, and
other members of the solar system orbit around it. Each planet’s motion is an
ellipse, with one focus at the location of the Sun. Corrections to the motions
of the planets which stem from their interactions with each other can then be
introduced as a perturbation on top of this two-body solution.

If instead the particle in question has a positive energy, then it is possible
for it to escape to infinity - in this case, we say that the particle’s orbit is
unbounded. In this situation,

E > 0 ⇒ ε > 0 ⇒ e =
√

1 + ε > 1. (74)

Conic sections with an eccentricity greater than one are known as hyperbolas.
An example of this is shown in Figure 10. Notice that there is in fact a max-
imum angle that can be obtained by a particle subject to a hyperbolic orbit,
given by

ρ (θ) =
1

1 + e cos θ
=∞ ⇒ θmax = arccos

[
−1

e

]
, (75)

which comes from simply setting the denominator on the left equal to zero. In
the special limiting case that the energy is exactly zero, we have

E = 0 ⇒ ε = 0 ⇒ e =
√

1 + ε = 1, (76)

which defines a parabola, an example of which is shown in Figure 11. In some
sense, the parabola is the marginal case between an ellipse and a hyperbola.
Hyperbolic orbits in general are incredibly important in astronomy, since they
describe gravitational slingshots. When planning missions that will send
spacecraft on interplanetary missions, astronomers can use the gravity of other
planets to influence the motion of the spacecraft, without necessarily sending
the spacecraft into orbit.

While it is a relatively straight-forward (though tedious) task to explicitly
work out the time dependence of the radial and angular coordinates, the result-
ing expressions are not as neat as the ones we have found for the orbital motion,
and so we will not bother to state them here. However, you will explore some
basic aspects of the time evolution (for example, how the orbital period related
to the semi-major axis) on the homework.
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Figure 8: An ellipse with eccentricity e = 0.5. This type of shape describes the
orbit of a particle with an energy less than zero. Due to a special property of
the 1/r potential, this orbit will always be closed, regardless of the detailed
physical parameters of the problem.
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Figure 9: Figure 8.10 from Taylor. Notice the use of the alternative terminology
perihelion and aphelion, instead of perigee and apogee. Also, Taylor makes use
of the Greek letter φ, as opposed to θ, in order to describe the angular motion.
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Figure 10: A hyperbola with eccentricity e = 1.25, which is an example of the
motion of a particle with positive energy. This type of orbit describes a particle
which can escape to infinity, and never return.
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Figure 11: A parabola with eccentricity e = 1, which is in fact the only ec-
centricity a parabola can have, by definition. This type of orbit describes the
motion of a particle with just barely enough energy to escape to infinity.
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