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This is not a thorough introduction to Lagrangian methods, it is simply some notes on a few issues.

1 Derivation of Euler-Lagrange for a single field

Suppose we have a Lagrangian density of the form

L = L (φ, ∇φ, ∂tφ) (1)

This expression asserts that L is an explicit function of a field φ, its spatial gradient ∇φ and its time
derivative ∂φ/∂t. The notation implies that this L does not depend on time or spatial coordinates
except indirectly through the way that the field φ(t, x, y, z) may depend on those quantities.

It is important to be clear that when we write ∇φ and ∂tφ in (1) we mean the following:

∇φ = ∇φ|t , ∂tφ =

(
∂φ

∂t

)
x,y,z

(2)

That is, in the first expression the gradient is understood to be taken at fixed t, and in the second
expression the time derivative is at constant x, y, z. It is important to be clear about this because
later on we may encounter things like a time derivative at constant φ or ∇φ, which is not what we
have here.

The Lagrangian of the system is the volume integral of the Lagrangian density:

L =

∫
L d3r (3)

(where d3r is a shorthand for the volume element dxdydz). The action is given by the time-integral
of the Lagrangian along some given path (more on this path in a moment):

S =

∫ tB

tA

Ldt. (4)
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The path along which the time integral is performed is stipulated by giving the value of φ(t, x, y, z) at
each time t, for all of space. This is a strange sort of path: to imagine it, you have to imagine a plot
of φ verses time at each x, y, z and it is a path on that graph, but there is a continuous infinity of such
graphs: one at each x, y, z. Note, we do not need to stipulate either ∇φ or ∂tφ in addition, because
∇φ is already given by specifying φ at all locations (at any given time), and ∂tφ is also stipulated
by specifying φ at all times. A good way to take note of these facts is to specify the path as follows.
First we suppose that one particular path is set by some function φ(t, x, y, z), and then we note that
other paths can be specified as

φ+ δφ (5)

where δφ is some function of (t, x, y, z). In the Euler-Lagrange method we will be interested in cases
where δφ is small.

Now let’s examine the Lagrangian density when the field is given by (5). We have

L (φ+ δφ, ∇(φ+ δφ), ∂t(φ+ δφ)) = L (φ+ δφ, ∇φ+ δ(∇φ), ∂tφ+ δ(∂tφ)) (6)

where we introduced the definitions

δ(∇φ) ≡∇(δφ), δ(∂tφ) ≡ ∂t(δφ). (7)

Often you see the notation ∂iφ instead of ∇φ. When we have lots of δ and ∂ symbols around, the
notation can become confusing. You might find it helpful to introduce the symbols

u ≡ ∂φ

∂t
, v ≡∇φ (8)

and then the right hand side of (6) can be written

L(φ+ δφ, v + δv, u+ δu). (9)

You can think of u and v as a set of ‘velocities’ of the field.

Now we are ready to proceed with the argument concerning least action. The idea is that the path
specified by φ shall be the one giving a stationary value (often a minimum, but it can be a maximum)
of the action S with respect to variations δφ. So with this in mind, we assume δφ is small and we
expand L in a Taylor series expansion up to first order:

L(φ+ δφ, v + δv, u+ δu) ' L(φ, v, u) +
∂L
∂φ

δφ+
∂L
∂v
· δv +

∂L
∂u

δu (10)

where you should understand that

∂L
∂φ

means

(
∂L
∂φ

)
v,u

∂L
∂v

means the vector with components

(
∂L
∂vi

)
φ,vj 6=i,u

∂L
∂u

means

(
∂L
∂u

)
φ,v

2



Ok, now we can write that the change in the action brought about by the field variation δφ(t, x, y, z)
is

δS =

∫ tB

tA

dt

∫
d3r [L(φ+ δφ, v + δv, u+ δu)− L(φ v, u)] (11)

'
∫ tB

tA

dt

∫
d3r

[
∂L
∂φ

δφ+
∂L
∂v
· δv +

∂L
∂u

δu

]
(12)

by using (10). You often see this expression written with an equals sign. This is because we shall
eventually take the limit where the variation tends to zero, so the 2nd and higher order terms of the
Taylor expansion will be negligible. On the right hand side of (12) there is a term involving δφ which
we shall leave as it is, and terms involving δv and δu which we can develop by making use of (7):∫

dt
∂L
∂u

δu =

∫
dt
∂L
∂u

(
∂(δφ)

∂t

)
x,y,z

(13)

Now perform an integration by parts, not forgetting the limits on the integral. We thus obtain[
∂L
∂u

δφ

]tB
tA

−
∫ tB

tA

dt
∂2L
∂t∂u

δφ. (14)

At this point we bring in the fact that the variation δφ is chosen in such a way that it shall be strictly
zero at the two limits tA and tB , so the first term here is zero and we are left with just the second
term (the integral). By similar reasoning one also finds∫ tB

tA

dt
∂L
∂v
· δv = −

∫ tB

tA

dt

(
∇ · ∂L

∂v

)
δφ. (15)

(and see the footnote1). Next we substitute the results (14) and (15) into (12), giving

δS '
∫ tB

tA

∫
d3r

[
∂L
∂φ
−∇ · ∂L

∂v
− ∂t

∂L
∂u

]
δφ (16)

where the expression is exact in the limit δφ→ 0. Now we can note that the integral has to come out
zero no matter what form the variation δφ may take (provided only that it is small), so we can infer
that for this to happen the integrand must itself be zero. Hence we obtain

Euler-Lagrange equation for a single field

∇ · ∂L
∂v

+ ∂t
∂L
∂u

=
∂L
∂φ

(17)

1In index notation, with the summation convention, the term in the bracket here would be written(
∇ ·

∂L
∂v

)
= ∂i

∂L
∂vi
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This completes the calculation to obtain the Euler-Lagrange equation. I shall now present the result
in two further versions, by modest changes of notation. If we introduce a quantity uα having four
values for the index, such that

u0 ≡
∂φ

∂t
, ui ≡ ∂iφ

then the Euler-Lagrange equation can be written

∂µ

(
∂L
∂uµ

)
=
∂L
∂φ

(18)

where the notation on the left implies a sum over the four terms µ = 0, 1, 2, 3. Finally, you often see
it written the following way:

Euler Lagrange equation (again)

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (19)

Equations (17), (18), (19) are all precisely the same, merely written in terms of different symbols.
Speaking for myself, I find (17) and (18) helpful as a way to remind myself precisely what (19) means,
with no mistake.

Exercise. What is held constant in each partial derivative in (17)?

Exercise. (harder) In the particle case we have that two Lagrangians differing by a total time
derivative describe the same physics. Show that the corresponding result for Lagrangian densities is
that one can add a 4-divergence to a Lagrangian density:

L → L+ ∂µf
µ (20)

without changing the physics (i.e. the path of stationary action is not changed), under the assumption
that f vanishes sufficiently quickly at spatial infinity. [Hint: Gauss’ theorem in 4 dimensions.]

1.1 Intuition

Let’s try to get some physical/mathematical intuition about our result. The Euler-Lagrange equation
for a classical dynamical system described by coordinates q and velocities q̇ is

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
(21)

where the index i picks out one of the coordinates and its associated velocity (the set of qi and q̇i
make up q and q̇), and L = L(q, q̇, t) is the Lagrangian.

This equation has a physical interpretation as
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(rate of change of)(generalized momentum) = (generalized force)

and the total derivative with respect to time indicates that the derivative is to be taken along the
path followed by the system.

The EL equation for a field shares most the features of the one for a particle or set of particles: there
is a partial derivative of L with respect to a ‘velocity’ (i.e. ∂µφ) and a partial derivative of L with
respect to a ‘coordinate’ (i.e. the field φ). The main difference is that whereas the particle result has
a total derivative with respect to time, the field result has a four-divergence (that is, the differential
operation ∂µ acting on each part of ∂L/∂uµ and a sum is taken). Recall that, in the field case, the
‘path’ followed by the system is not a single line in coordinate space, but an infinite set of lines, one
at each x, y, z. So the ‘path’ is a 4-dimensional quantity. This may help to remind us that in the
field case we need to take a 4-dimensional derivative along the ‘path’. The equation can then be read
loosely as

(4-divergence of)(momentum density) = (force density)

One observes that terms in L involving φ and not its derivatives are to do with potential energy, and
terms involving ∂tφ but not φ itself are to do with kinetic energy.

2 A Lagrangian yielding Schrödinger’s equation

Consider now a Lagrangian involving two fields, which we shall call A and B. Each is a scalar field,
but we allow that it may be complex-number-valued. Suppose we have a Lagrangian density

L = L(A, ∇A, ∂tA, B, ∇B, ∂tB) (22)

This statement is needed in order that it shall be clear in subsequent expressions what is being held
constant in any given partial derivative. We consider the case where L is given by the expression

L = − h̄2

2m
∇A ·∇B − V AB + ih̄ (B∂tA−A∂tB) (23)

where V (t, x, y, z) is some function. With two fields there are two Euler-Lagrange equations:

∂

∂t

∂L
∂uA

+ ∇ · ∂L
∂vA

=
∂L
∂A

, (24)

∂

∂t

∂L
∂uB

+ ∇ · ∂L
∂vB

=
∂L
∂B

. (25)
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where I introduced uA = ∂tA, vA = ∇A and similarly for uB , vB . Let’s first evaluate the first of
these. We have

∂L
∂uA

=
∂L

∂(∂tA)
= ih̄B, (26)

∂L
∂vA

=
∂L

∂(∇A)
=
−h̄2

2m
∇B, (27)

∂L
∂A

= −V B. (28)

(The first and last of these are straightforward if you are clear on what is being held constant in each
case; the middle one may take a little thought.) Hence the Euler-Lagrange equation reads

∂

∂t
(ih̄B) + ∇ ·

(
− h̄2

2m
∇B

)
= −V B (29)

which gives

− h̄2

2m
∇2B + V B = −ih̄∂B

∂t
. (30)

Note that this equation only includes one of the fields! This is rather convenient (it won’t happen for
all Lagrangians). The calculation for field A is now easy since it goes the same apart from the sign in
front of i, so we get

− h̄2

2m
∇2A+ V A = ih̄

∂A

∂t
. (31)

This is the Schrödinger equation, and furthermore we can note that whenever A satisfies this equation,
then the function B = A∗ will satisfy (30). In other words, after completing the analysis as far as
getting Euler-Lagrange equations, we can think of A and B as a field and its complex conjugate, so in
a sense we have just one field not two in the end. This is why you often see (23) written in the form

L = − h̄2

2m
∇ψ ·∇ψ∗ − V ψψ∗ + ih̄ (ψ∗∂tψ − ψ∂tψ∗) . (32)

This equation should not be understood as a complete statement of the Lagrangian function. Rather,
it shows the way that function can be expressed at locations along the solution path (the one satisfying
EL equations), in the case where we have taken B = A∗.

One should take a moment to consider what we just did. We took it that the fields A and B were
complex-number-valued. They are not operators, so we are not doing quantum field theory. We are
doing classical field theory. But one can’t help noticing that the equation we arrived at is the one
which applies to wavefunctions in quantum mechanics (in its non-relativistic formulation). Are we
doing quantum mechanics after all then? The answer is: no, not really. We are just observing some
mathematical facts which link a Lagrangian density with an equation of motion for a field, if we
assume the field behaves so as to give a stationary value of the action with respect to variation of
the field. That has nothing to do with quantum mechanics except that the field theory gave a partial
differential equation which we happen to know also appears in quantum mechanics.
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3 Energy conservation for a field

In particle mechanics, energy conservation can be related to the Lagrangian via the result

dH

dt
= −∂L

∂t
(33)

where H = −L +
∑
i piẋi (where pi = ∂L/∂ẋi). This gives us the hint that field energy ought to

be related to the Lagrangian in a similar way, and its conservation will be related to an absence of
time-dependence in the Lagrangian. In the following we will make these remarks more precise.

In the field case, energy conservation takes the form of a continuity equation.

We will show that if a Lagrangian density has no explicit time-dependence, then there is a scalar
conserved quantity. By mutual agreement this quantity is called energy. The proof includes not just
global energy conservation but also local conservation. Local conservation means that the change
in total energy in any region matches the net flow of energy into that region. This means we are
looking for two quantities not just one: energy density ρ and energy flux N. Conservation of energy
is expressed by

Continuity equation

∂ρ

∂t
+ ∇ ·N = 0. (34)

Here is how it is done for the case of a single field.

We consider a Lagrangian density of the form

L = L (φ, ∇φ, ∂tφ, t) (35)

where the partial derivatives expressed by ∇ and ∂t are as presented in (2). Note that we allow here
that the Lagrangian density might be an explicit function of time. We then have the total derivative

dL =
∂L
∂φ

dφ+
∂L
∂u

du+
∂L
∂v
· dv +

(
∂L

∂t

)
φ,u,v

dt (36)

where for convenience we introduced u and v as defined in (9). We would like to consider the change
in L for a small change in t while holding (x, y, z) constant. By taking the above equation and dividing
by dt at constant (x, y, z) we obtain(

∂L
∂t

)
x,y,z

=
∂L
∂φ

∂tφ+
∂L
∂u

∂tu+
∂L
∂v
· (∂tv) +

(
∂L

∂t

)
φ,u,v

(37)

where, throughout, the symbol ∂t means differentiation at constant (x, y, z). (It is, of course, important
to be clear about the distinction between this and constant φ, u,v.) Next we use ∂tφ = u by definition,
and also

∂tv = ∂t∇φ = ∇(∂tφ) = ∇u, (38)
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so (37) can be written

∂tL =
∂L
∂φ

u+
∂L
∂u

∂tu+
∂L
∂v
· (∇u) +

(
∂L

∂t

)
φ,u,v

. (39)

Now use the Euler-Lagrange equation to replace the ∂L/∂φ term:2

∂tL =

(
∇ · ∂L

∂v
+ ∂t

∂L
∂u

)
u+

∂L
∂u

∂tu+
∂L
∂v
· (∇u) +

(
∂L

∂t

)
φ,u,v

= ∂t

(
∂L
∂u

u

)
+ ∇ ·

(
∂L
∂v

u

)
+

(
∂L

∂t

)
φ,u,v

. (40)

(where we used that the two terms involving v make the derivative of a product, and similarly for u).

Finally, an insightful way to present this result is:

−
(
∂L

∂t

)
φ,u,v

= ∂t

(
∂L
∂u

u− L
)

+ ∇ ·
(
∂L
∂v

u

)
. (41)

By comparing this with the continuity equation (34) we find that if we introduce the definitions

ρ ≡ ∂L
∂u

u− L, (42)

N ≡ ∂L
∂v

u (43)

then we have that, in the case where L has no explicit dependence on time, i.e. when(
∂L

∂t

)
φ,u,v

= 0 (44)

then ρ and N satisfy the continuity equation (34), and therefore ρ is the density and N the flux of a
scalar conserved quantity. That quantity we choose to call energy.

The total energy in the field, at any given time, is

H =

∫
d3r ρ =

∫
d3r

[
∂L
∂u

u− L
]
. (45)

This expression has obvious similarities with the relation between hamiltonian and lagrangian in
particle mechanics.

The above discussion is sufficient for a consideration of energy conservation when L has no explicit
dependence on t. More generally, one can have a case where L does have a t-dependence, but such
as to have some more general symmetry, for example such that the action does not change under a
transformation t→ t′ = t+ τ for some function τ(t,x). To study this case requires a longer argument
involving action integrals, in which one allows that τ may depend on time.

2In section 1 we derived the EL equation for a Lagrangian with no explicit time-dependence. The reader may wish
to revisit the derivation allowing for a time-dependence; one finds that this does not change the result.
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4 Momentum conservation

Linear momentum conservation is related to symmetry with respect to displacement in space. In this
section we will not explore the most general such symmetry. We will treat the simplest case, which is
the one where L is unaffected by spatial translation. Consider, for example, the case(

∂L
∂x

)
t,y,z

= 0 (46)

The calculation closely matches the one for energy. By starting from (36) we obtain(
∂L
∂x

)
t,y,z

=
∂L
∂φ

∂xφ+
∂L
∂u

∂xu+
∂L
∂v
· (∂xv) (47)

By now using the Euler-Lagrange equation to replace ∂L/∂φ and also noting ∂xu = ∂t∂xφ we find(
∂L
∂x

)
t,y,z

=

(
∇ · ∂L

∂v
+ ∂t

∂L
∂u

)
∂xφ+

∂L
∂u

∂t∂xφ+
∂L
∂v
· (∂x∇φ)

= ∂t

(
∂L
∂u

∂xφ

)
+ ∇ ·

(
∂L
∂v

∂xφ

)
(48)

Hence when ∂xL = 0 then there is a conserved quantity whose density is

∂L
∂u

∂xφ (49)

and whose flux is

∂L
∂v

∂xφ (50)

The conserved quantity is called the momentum in the x direction. Similar arguments for ∂L/∂y and
∂L/∂z give two further components, so the complete momentum density is

∂L
∂u

∇φ =
∂L

∂(∂tφ)
∇φ. (51)

The volume integral of this quantity is the complete momentum in the field.

5 Postscript

These notes have merely introduced some of the ideas and methods of field theory. We have mostly
restricted attention to a single scalar field. The conservation of energy and momentum is an important
concept, even for a single field, but it does not have much physical impact unless we are discussing
two or more fields which can interact with one another. In that case one may have a Lagrangian for
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all the fields together, and then energy and momentum may move between one field and another. For
example, classical electrodynamics can be treated using the Lagrangian density

L = −Aµjµ −
1

4µ0
FµνFµν (52)

where jµ is the charge four-current, Aµ the four-potential, Fab = ∂aAb − ∂bAa the field tensor. It is
not obvious, simply from looking at this Lagrangian, whether or not it has a symmetry with respect
to spatial or temporal translations. But if one assumes that it does (or if one insists that it must) then
one will arrive at equations relating the divergence of a tensor associated with the electromagnetic field
to a quantity which can be interpreted as the rate of doing work (per unit volume) on the charges.
This expresses the conservation of energy and momentum in classical electrodynamics. However a
presentation of this derivation is beyond the scope of these notes.
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