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Abstract

We present the simple theory of Bose Einstein condensation, suitable for an introductory
undergraduate physics course. In the interests of clarity, we include an estimate of the chemical
potential µ at low temperature in a finite gas, avoiding self-contradictory claims of “µ = 0”.
We also treat the two-dimensional gas, and a gas in a harmonic potential well. Some widely
misunderstood features, such as the ground state occupation at the transition temperature, are
clarified. The pressure and heat capacity are also discussed.
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1 Preliminaries

The starting-point of our discussion is the notion of motional states described by their wave vectors
k, and the mean occupation number of a single-particle quantum state i, given by the Bose-Einstein
distribution function,

⟨ni⟩ =
1

exp(β(ϵi − µ)− 1)
. (1)

The label i here refers to a quantum state |i⟩ available to particles in a gas. There are many particles,
and ni is the number of them which are in the state i at any given time. The average, ⟨ni⟩, is a
time-average of the expectation value of this number in conditions of thermal equilibrium. We will
treat the case where the total number of particles in the gas, N , is constant, and large.

First let us note that there is are two natural energy scales associated with any quantum gas: the
energy gap ∆E and the quantum energy ϵQ. The former (∆E) is the gap between the ground state
and first excited state of the gas. The latter (ϵQ) is a characteristic energy scale, which in the case of
Fermions is the Fermi energy, and in the case of Bosons is the transition temperature (times kB) up
to a numerical constant which we will obtain.

First let us obtain ∆E.

Consider a gas in a cubic box of side L. The states of motion available to any single particle are
described by wavefunctions sin(kxx) sin(kyy) sin(kzz) (unnormalized). The lowest-lying state has kx =
ky = kz = π/L and hence an energy (h̄k)2/(2m) = (h̄2/2m)3(π/L)2 where m is the mass of one
particle. One of the first excited states (there are 3 of them) has kx = 2π/L, ky = kz = π/L, leading
to energy (h̄2/2m)6(π/L)2. Hence the energy gap is

∆E =
h̄2

2m

3π2

L2
. (2)

A similar calculation for a square box in 2 dimensions gives the same result. For example, ∆E ≃
2.5×10−37 joule for helium gas in a 1 centimetre box; the equivalent temperature is ∆E/kB ∼ 10−14 K.

Next let us find the characteristic quantum energy ϵQ. For this purpose it is convenient to adopt
periodic boundary conditions, such that the available motional states are distributed throughout k-
space as shown in Fig. 1. The energy we want is ϵQ ≡ (h̄kQ)

2/2m where kQ has a size such that the
number of states in the sphere (in 3d) or the circle (in 2d) or line (in 1d) is equal to the number of
particles:

k3Q =
N

V
6π2, k2Q =

N

A
4π, kQ =

N

L
π, (3d, 2d, 1d.) (3)
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Figure 1: Obtaining the characteristic k-vector, in 3, 2 and 1 dimensions. kQ takes a value such that
the number of states in the sphere or circle or line, respectively, is equal to the number of particles,
N .

Hence in the 3d case one finds

ϵQ =
h̄2

2m

(
6π2n

)2/3
(4)

where n = N/V is the number density. It will be useful to note that

ϵQ = 0.513 N2/3∆E. (5)

Thus, for large N the characteristic energy is large compared to the energy gap (just as kQ ≫ ∆k
when N ≫ 1, as a glance at Fig. 1 makes clear).

We now introduce a related energy which will be important in the following. It is useful to define it
in terms of a temperature T0:

kBT0 ≡ h̄2

2m
4π

(
n/ζ(3/2)

)2/3
= 0.436066 ϵQ (6)

where ζ(s) is the Riemann zeta function. A more precise statement of the numerical factor in the
relationship to ϵQ is provided in table 1.

Choosing the zero of energy. The physics of a gas at low temperature depends on the gaps between the
energy levels, but not on the value of the ground state energy itself. This is illustrated by the fact that
the energy levels ϵi do not appear on their own in the distribution function (1), but in company with
the chemical potential, in the term β(µ− ϵi). If we shift the zero of energy, both µ and ϵ0 will move
and ⟨ni⟩ is unaffected. It is customary, and convenient, to choose as zero energy the single-particle
ground state energy. Thus if single-particle state number 1 is the ground state then ϵ1 = 0. With this
choice of zero energy, the first excited single-particle state has energy ϵ2 = ∆E and this is the choice
we shall make from now on (c.f. Fig 4).
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2/(6π2)1/3 ≃ 0.513112975

ζ(3/2) ≃ 2.612375348685488343348567567924

ζ(5/2) ≃ 1.341487257250917179756769693348

(1/2)
√
π ζ(3/2) ≃ 2.315157373394117000425819469118(

(3/4)
√
π ζ(3/2)

)−2/3 ≃ 0.436065922441332967553717470315

Table 1: Some numerical values that crop up in the study of BEC. ζ(s) is the Riemann zeta function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

ϵ/kBT0

⟨n
⟩

Figure 2: The Bose-Einstein distribution function at two example temperatures. We plot the mean
occupation of a state of energy ϵ, as a function of ϵ/kBT0 where T0 is the BEC transition temperature
(see text). The curve for T = 0 would be a delta-function spike at ϵ = 0. Gray dashed: T = 0.5T0;
red dash-dot: kBT = 2T0. The former case (T below T0) has µ very close to zero, with the result
that the ground state occupation is of order N , a large number. The latter case (T above T0) has
µ ≃ −0.82kBT0 with the result that none of the quantum states has a macroscopic population.
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/
k
B
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0

Figure 3: Behaviour of the chemical potential as a function of temperature, for a Bose gas in a 3d
box. T0 is the BEC transition temperature. For bosons in the limit N → ∞ one has µ = 0 for T ≤ T0.
At high temperatures µ has a −T lnT dependence on temperature.

2 Bose-Einstein condensation

The Bose gas shows an interesting behaviour at low temperature: a special type of phase transition
occurs in the three-dimensional case, but not in the two-dimensional case (in the limit of a large box
and a large number of particles). In order to understand this, we need first to consider the behaviour
of the chemical potential as a function of temperature. For fixed V and N we have µ = µ(T );
its behaviour is shown in Fig. 3. Much of the work of understanding BEC consists in the task of
understanding µ(T ).

The term ‘phase transition’ here refers to a situation where there is a discontinuity in either µ(T ) or
one of its derivatives. We will (eventually) show that there is a discontinuity in d2µ/dT2 at T = T0
in the limit N,V → ∞ at constant n = N/V .

At high temperature µ is large and negative. One can see this by arguing that at high enough
temperature all the occupation numbers will be small, and in particular ⟨n1⟩ ≪ 1 where 1 labels the
ground state. Hence

1

eβ(ϵ1−µ) − 1
≪ 1, at high T (7)

therefore

β(ϵ1 − µ) ≫ 0 (8)

⇒ µ− ϵ1 ≪ 0 at high T . (9)
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dimensions D q
1 L(2m)1/2 /(2πh̄) −1/2

g(ϵ) = Dϵq 2 A(2m) / (4πh̄2) 0

3 V (2m)3/2/(4π2h̄3) 1/2

(14)

Table 2: Density of states for free particles in a box (without spin).

If we take the zero of energy at ϵ1 (as stated in the opening remarks) then we have that µ is negative at
high temperature. (In more detail, one may show that |µ| has a (−T lnT ) dependence on temperature
at high T , which can be derived straightforwardly from µ = (∂F/∂N)T,V where F is the Helmholtz
function).

Now let’s consider the low temperature behaviour. For bosons it is easy to see that µ must always be
negative (i.e. below the ground state energy level), for we have ⟨ni⟩ ≥ 0 so exp(β(ϵi − µ)) > 1 which
gives

µ < ϵi for all i, at any T (10)

and therefore when ϵ1 = 0 we have

µ < 0. (11)

The equation for ⟨ni⟩ can be solved for µ, giving

βµ = − ln(1 + 1/⟨n1⟩) (12)

which is valid at all temperatures. We can estimate µ at the lowest temperatures by noting that when
T is low enough most of the particles will be in the ground state, so we must have ⟨n1⟩ ∼ N which
gives

µ ≃ − 1

Nβ
= −kBT

N
. (13)

This shows that for N ≫ 1 (the case we are usually interested in), µ approaches very closely to the
ground state energy at low temperature. In particular µ is very small compared to the thermal energy
kBT .

We can now proceed to a calculation of the ground state population as a function of temperature. We
have

N =
∑
i

⟨ni⟩ =
∞∑
i=1

1

exp(β(ϵi − µ)− 1

=
1

e−βµ − 1
+

∞∑
i=2

1

eβ(ϵi−µ) − 1
(15)

6



µϵ1

ϵ2, ϵ3, ϵ4

ϵ5, · · · ϵ6ϵ5, · · · ϵ8

ϵ9, · · ·

kBT

Figure 4: Illustrating the three main energy scales involved in a calculation of properties of a Bose
gas at low temperature: (ϵ1 − µ) ≪ (ϵ2 − ϵ1) ≪ kBT . The numbers of quantum states at each energy
are not important, except that we assume the ground state to be non-degenerate.

where so far the expression is exact, and we have taken ϵ1 = 0. We would like to approximate the sum.
We shall do so by converting it into an integral, but since we are concerned with low temperatures we
need to check that this is legitimate. We observe from (5) and (6) that ∆E ∼ N−2/3kBT0. It follows
that for temperatures of order T0 the sum will extend over many terms (before the terms become
negligible), therefore it can be well approximated by an integral. Furthermore this approximation
remains fairly good down to temperatures of order N−2/3T0 (for a mole that’s about 10−16T0). Hence
we obtain

N ≃ 1

e−βµ − 1
+

∫ ∞

∆E

g(ϵ)

eβ(ϵ−µ) − 1
dϵ, (16)

where, though not exact, the expression is very precise in practice for a gas in a chamber of ordinary
dimensions, and in the rest of the paper we will treat this expression as if it is exact. The function
g(ϵ) is the density of states function, which takes the form

g(ϵ) = Dϵq (17)

where D and q are given in table 2.

Introducing now

x ≡ βϵ, y ≡ −βµ (18)

we have

N =
1

ey − 1
+D(kBT )

q+1

∫ ∞

x2

xq

ex+y − 1
dx (19)

7



where x2 = ∆E/kBT and we have substituted an equals sign, signifying that the precision is high
(explained above).

As written, (19) has the form of an equation for N in terms of T and y (since D and q are given).
But the typical situation is that we already know N and we would like to find y. What happens is
that at any given N and T there is just one value of y for which (19) is satisfied. We would like to
find that value.

As it stands the integral in (19) is hard to do, because it contains y(T ). But by using (13) we can
argue that for N ≫ 1, one has |µ| ≪ ϵ for all values of ϵ appearing in the integral when T ≪ T0.
Small though ϵ2 may be, |µ| is even smaller! Furthermore, we will show later that at T = T0 one has

∆E

µ(T0)
≃ 5.48; µ(T0) ≃ 0.82N−2/3kBT0. (20)

It follows that y ≪ 1 for T ≤ T0. The situation is as illustrated in Fig. 4. By this argument we find
that for T ≤ T0, (19) can be well approximated as

N ≃ 1

ey − 1
+D(kBT )

q+1

∫ ∞

x2

xq

ex − 1
dx. (21)

It is now apparent why we separated off the ground state (i = 1) term in (15): the approximation of
neglecting µ does not apply to that term. (If we tried it, we would get ⟨n1⟩ ≃ ∞ which is not a good
approximation!).

The step from (19) to (21) is often presented as if we are ‘setting the chemical potential to zero’, but
it is not so. We are merely arguing that |µ| is small enough that it can be safely neglected in the
integral without affecting the value of the integral, for 0 < T ≤ T0.

A useful way to write (21) is

N = n̄1 +Ne

where n̄1 = ⟨n1⟩, Ne ≃ D(kBT )
q+1

∫ ∞

x2

xq

ex − 1
dx. (22)

In this notation the subscript ‘e’ stands for ‘all the excited states’. Our strategy now is to evaluate
Ne and use it to obtain n̄1.

From now on we need to consider carefully the value of q, because it has a large effect on the integral
giving Ne. We shall focus attention on two values: q = 0, which occurs in the case of a gas in a
2-dimensional box, and q = 1/2, which occurs in the case of a gas in a 3-dimensional box.

Ne =


D2kBT

∫ ∞

x2

1

ex − 1
dx 2d

D3(kBT )
3/2

∫ ∞

x2

x1/2

ex − 1
dx 3d

(23)

The first integral (2d case) is dominated by the low-x region, which one can see by noting that for
x ≪ 1 the integrand tends to 1/x so the integral will diverge as x2 → 0. The second integrand (3d

8



case), on the other hand, tends to x−1/2 at x≪ 1 so the second integral does not diverge in the limit
x2 → 0. We estimate the integrals as follows∫ ∞

x2

1

ex − 1
dx ≃ − ln(x2) (24)∫ ∞

x2

x1/2

ex − 1
dx ≃

∫ ∞

0

x1/2

ex − 1
dx ≃ 2.315157 (25)

The numerical value (3d case) is given more fully in table 1.

Let’s check the degree of approximation involved in setting the lower limit of the integral to zero in
the 3d case. This amounts to adding to the integral an extra contribution of∫ x2

0

x1/2

ex − 1
dx ≃ 2

√
x2 (x2 ≪ 1). (26)

The fractional error introduced is therefore (2/2.315)
√
x2 which is small when ∆E ≪ kBT .

Under the approximations which have been made, which include a low (but not vanishing) tempera-
ture1, we have

Ne =

{
D2 kBT ln(kBT/∆E) 2d

2.315D3 (kBT )
3/2 3d

(27)

and therefore

n̄1
N

= 1− Ne

N
=

{
1− (m/2πh̄2n) kBT ln(kBT/∆E) 2d

1− (T/T0)
3/2 3d

(28)

where in the 3d case all the constants in (27) have been gathered into T0. This is how (6) is obtained.
The number density n ≡ N/A, n ≡ N/V in the 2d, 3d case respectively.

Now let’s look at the two cases.

In both cases the expression for Ne goes above N at high temperature, which means the approximation
of setting µ = 0 in the integral is no longer valid. But it is clear that if the expression for Ne exceeds
N for µ = 0 then there is some µ < 0 for which Ne is equal to N . Therefore the prediction at higher
temperatures is Ne ≃ N and n̄1/N is very small. (Indeed it is obvious from the distribution function
that once µ falls below the value −kBT ln 2 the ground state population falls below 1 so then the
ground state population is obviously not macroscopic.)

For lower temperatures, such that Ne < N , the important point is that in 2d the significant energy
scale is set by ∆E whereas in 3d it is set by kBT0, which can be very much larger than ∆E. Indeed,
in the limit of a container of infinite dimensions, ∆E → 0 but T0 remains finite if the number density

1A low temperature approximation was invoked when we took |µ| to be small; nonetheless T is not small compared
to ∆E/kB or the sum (15) cannot be approximated by an integral.
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0.5

1

1.5

T/T0

n̄
1
/N

Figure 5: The fraction of particles in the ground state, as a function of temperature, for a Bose gas.
T0 is the condensation temperature, for N ≫ 1.

is held constant. In both cases the population accumulates in the ground state as the temperature
falls, but in the limit ∆E → 0 in the 2d case there is no particular temperature (above zero) at which
the ground state population starts to rise abruptly as T falls. In the 3d case, on the other hand, the
prediction for n̄1/N is shown in Fig. 5. Once T falls below T0 the ground state fraction suddenly
starts to rise towards 1. This indicates that the particles are ‘plunging’ into the ground state in large
numbers, like lemmings, at a temperature well above ∆E/kB. This is a special property of bosons,
expressed loosely by the idea that they ‘like’ to crowd together2.

The central result for BEC of a gas in a 3d box is expressed by (28) and (6) which we state again here
for emphasis:

n̄1
N

= 1−
(
T

T0

)3/2

, kBT0 =
h̄2

2m
4π

(
n

ζ(3/2)

)2/3

(29)

2.1 Establishing the argument more fully

We shall now focus purely on the BEC case, i.e. 3d.

We have given an argument to expect the behaviour shown in Fig. 5 but the reader should be
concerned about three issues:

1. The prediction appears to be that n̄1 goes to zero at T = T0, but according to the distribution
function, the ground state population is larger than any other, so we cannot have n̄1 = 0. This
puzzle will be answered by showing that n̄1(T0) is in fact large, but n̄1(T0)/N → 0 in the limit

2More precisely, the probability for a boson to make a transition to a given state is magnified by the occupation
number of that state.

10



0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

y

n̄
1

0 0.01 0.02 0.03 0.04 0.05
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Figure 6: The functions n̄1(y) and f(y). At large y, n̄1 → e−y and f → e−y/ζ(3/2).

N → ∞.

2. So far we have not obtained µ(T ) except for the limiting case where n̄1 approaches N , leading
to (13). It is important also to find the value of µ at temperatures of order T0 because we need
to justify the statement (20) which was invoked in order to justify dropping y from the integral
when we obtained Ne.

3. Is there a genuine discontinuity at T = T0 and therefore a phase transition? To answer this we
need to discover how µ behaves both at and near T0.

All these questions will be answered by keeping y in the integral, i.e. we return to the ‘exact’ (or
rather, highly accurate) eqn (19) and proceed from there.

In the 3d case, (19) can be written

n1(y)

N
+

(
T

T0

)3/2

f(y) = 1 (30)

where

n1(y) = (exp(y)− 1)−1, (31)

f(y) ≡ 1

2.315157 . . .

∫ ∞

0

x1/2

ex+y − 1
dx (32)

where the prefactor is chosen such that f(0) = 1. These functions are plotted in Fig. 6. Here are a
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Bose function; polylogarithm function
The function

Lin(z) ≡
1

Γ(n)

∫ ∞

0

dx
xn−1

z−1ex − 1
(35)

is called both the Bose function and the polylogarithm function. One sometimes sees the
notation gn(z) ≡ Lin(z) (not to be confused with the density of states). The polylogarithm
is related to the zeta function by Lis(1) = ζ(s). Our f(y) can be written

f(y) = Li3/2
(
e−y

)
/ζ(3/2). (36)

For some algebraic manipulations it is useful to introduce the fugacity z ≡ exp(βµ) =
exp(−y). One can show that

Lin(z) =

∞∑
p=1

zp

pn
= z +

z2

2n
+
z3

3n
+ · · · . (37)

This sum can be a useful way to evaluate the function numerically when z < 1. At z = 1, on
the other hand, the sum converges very slowly and then it is better to evaluate the integral
by a suitable numerical method.

few values:

y f(y) n1(y)
0 1 ∞

ln(3/2) 0.356166863 2
ln(2) 0.239183478 1

(33)

In the limit y → 0 one finds3

f ≃ 1− 1.3569672
√
y + 0.559014 y + · · · (34)

where the coefficient of the
√
y term is 2

√
π/ζ(3/2).

The value of y(T ), and hence µ(T ), is found by solving (30) numerically. Results are shown in Fig. 7
for three values of T/T0. Having obtained y(T ) one may obtain all other information, such as n1(T ).
The result is shown in Fig. 8 for several values of N in the range 10 to 106. This study enables one
to see how the continuous behaviour at finite N goes over to a discontinuity as N → ∞. Some other
features are also noteworthy:

1. n̄1/N goes to the same value (namely, 1) as T → 0 at all N . This is what we expected.

3This expression may be found either by a fiddly analysis or by evaluating f(y) at a set of y values in the range 0 to
0.01 by numerical integration, then fitting a quartic curve to 1 − f as a function of

√
y and extracting the coefficients

of the lowest few terms.
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Figure 7: The behaviour of y as a function of N at three values of T . Full curve: T = T0; blue
dash-dotted curve: T = T0/2; red dashed curve: T = 2T0. The important point is that in the limit
N → ∞, one has y → 0 for T ≤ T0, and y is non-zero for T > T0.
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Figure 8: The ground state population n1 (left) and the ground state fraction n1/N (right), as a
function of temperature, for the values N = 101,2,···5. The first is independent of N at large T , the
second is independent of N at small T .
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2. n̄1 itself (as opposed to n̄1/N) is independent of N at high T . This is what one expects when
the particles behave independently.

3. n̄1 ≃ 2 at T = 2T0. More precisely, for N ≫ 1:

n̄1 1 2 3
T/T0 2.595 1.99 1.756

(38)

4. At T = T0, one finds (see below)

n̄1 ≃ (1.35697N)2/3 (39)

and therefore 1 ≪ n̄1 ≪ N . Hence it is not true to say that the occupation of the ground state
only becomes macroscopic at T < T0, but it is true to say that, in the limit N → ∞, the ground
state fraction (n̄1/N) only rises above zero for T < T0.

To deduce (39) observe that at T = T0, y is small and therefore (34) can be used. The equation for y
is then (n̄1/N) + f = 1, or

(exp(y)− 1)−1 ≃ 1.35697N
√
y (40)

and by substituting exp(y) ≃ 1− y, eqn (39) follows.

3 The two phases; energy, heat capacity, pressure, entropy

We have now established that there is a discontinuity in the quantity

d

dT

( n̄1
N

)
(41)

at T = T0 in the limit N → ∞. We have

d

dT

( n̄1
N

)
=

{
−3/(2T0) at T = T0 − |δ|

0 at T = T0 + |δ| in the limit δ → 0. (42)

It follows that there is also a discontinuity in other quantities. In the subsequent section we will show
that d2µ/dT2 is discontinuous, and also that U and CV = dU/dT are continuous, but dCV/dT =
d2U/dT2 is not. The change of behaviour as T falls below T0, for the 3d Bose gas, is a phase transition.
It is called Bose-Einstein condensation or BEC. The two ‘phases’ are the two groups of particles: one
is the group in the ground state, the other is spread over the excited states. The ground state part is
called the condensate, the remaining part has no special name but may be loosely referred to as the
‘normal’ part. At the transition temperature (T0) it is not the case that all of the system immediately
changes phase, but rather the condensate starts to be a substantial fraction of the total, and grows as
T is lowered further. This type of phase transition is called a continuous phase transition.
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Figure 9: The heat capacity of a Bose gas at low temperature.

We can calculate the low-temperature heat capacity as follows:

U =

∫ ∞

0

ϵg(ϵ)

eβϵ − 1
dϵ for T ≤ T0

= D

∫ ∞

0

ϵ3/2

eβϵ − 1
dϵ

= D(kBT )
5/2

∫ ∞

0

x3/2

ex − 1
dx

=
3 ζ(5/2)

2 ζ(3/2)
NkBT0

(
T

T0

)5/2

≃ 0.77027NkBT0 (T/T0)
5/2 (43)

hence

CV = 1.92567NkB(T/T0)
3/2. (44)

This is accurate all the way up to T = T0 because the approximation |µ| ≪ kBT holds throughout
this range. At T = T0 we note that CV reaches a value a little higher than the high-temperature value
of 1.5NkB; the overall behaviour is as shown in Fig. 9. The discontinuity in dCV/dT will be derived
in the next section. This cusp is an observable signature of the BEC phase transition (though not
necessarily the first thing one notices in the laboratory).

Next let’s examine the pressure and hence the equation of state. For this purpose we invoke (without
derivation here) the grand partition function Z and its relation to the grand potential Ω. For any
‘pV ’ system we have

Ω = U − TS − µN = −kBT lnZ (45)
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and for a Bose gas

Z =
∏
i

1

1− eβ(µ−ϵi)
. (46)

General thermodynamic arguments lead to the Euler relation which gives G = µN where the Gibbs
function G = U −TS− pV . But from the definitions we have Ω = G−µN − pV and thus one obtains

pV = −Ω = kBT lnZ. (47)

Hence

pV = −kBT
∑
i

ln
(
1− eβ(µ−ϵi)

)
≃ kBT

∫ ∞

0

dϵ g(ϵ) ln
(
1− eβ(µ−ϵi)

)
(48)

where the approximation requires only the modest assumption kBT ≫ ∆E. (We have not assumed
small µ here: the result is valid at all temperatures above ∆E/kB). Carrying out an integration by
parts, using g(ϵ) = Dϵ1/2, one obtains

∫
g(ϵ)dϵ = (2/3)ϵg(ϵ) and hence

pV =
2

3
kBT

∫
dϵ

ϵg(ϵ)

1− eβ(µ−ϵ)
βeβ(µ−ϵ)

=
2

3

∫
dϵ

ϵg(ϵ)

eβ(ϵ−µ) − 1

=
2

3
U. (49)

This remarkably simple formula announces that the pressure is simply equal to the two-thirds of the
energy density, whether or not the gas is in the condensation regime.

By using (43) we find that for T ≤ T0

p = =
ζ(5/2)

ζ(3/2)
nkBT0

(
T

T0

)5/2

. (50)

Recalling now that T0 ∝ n2/3 (eqn (6)), a useful way to write this result is

p =

(
2m

4πh̄2

)3/2

ζ(5/2) (kBT )
5/2. (51)

Hence the pressure depends on temperature alone (independent of the density) in the condensation
regime. The situation is as shown in Fig. 10. On an indicator diagram, the isotherms have a
behaviour qualitatively similar to those of any ordinary fluid such as water in the liquid/vapour
mixed-phase regime: above the phase transition, the pressure increases as the volume falls (at any
given temperature) and then after the transition point the pressure stays constant as the volume falls;
the condensate fraction is then growing.
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Figure 10: Indicator diagram for a Bose gas. Two isotherms are shown, with T1 < T2. The dashed line
shows the boundary of the mixed-phase region. It is described by p ∝ T 5/2 with T0 ∝ n2/3 therefore
p ∝ V −5/3 at fixed N .

Next we find the entropy, which can conveniently be obtained from G = U − TS + pV = µN so

S =
1

T
(U + pV − µN) any T

=
5

3

U

T
T ≤ T0 (52)

using (49).

Observe now that in the condensation regime S ∝ T 3/2 ∝ Ne. This suggests that the entropy is
entirely owing to the normal part of the gas, and the condensate has no entropy at all. Each normal
particle contributes an entropy (5/2)kB ζ(5/2)/ζ(3/2) ≃ 1.28 kB. (This is reminiscent of the entropy
of about 3.6 kB per photon in thermal radiation).

For a monatomic gas in the classical limit one has U = (3/2)NkBT and p = (N/V )kBT , so one may
say there is an energy (3/2)kBT per particle and a pressure kBT/V per particle. In the condensation
regime we have that both U/T and p/T are proportional to Ne. It follows that we can interpret the
overall situation by saying the condensate has neither entropy nor energy nor pressure, and the normal
component has an amount of all three quantities similar to what one might expect. These conclusions
are legitimate in the limit V → ∞. (At finite volume one has that the ground state energy is a function
of volume so the condensate will exert a little pressure, but this is usually negligible compared to that
of the normal component).
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4 The approach to T0 from above

In order to study the situation T > T0 we need to evaluate functions such as f(y) and U(T ) for y ̸= 0.
For this purpose it will be useful to have y(T ) (which then immediately gives µ(T )). For given N and
T , one finds y(T ) by solving (30). Above the transition temperature we can neglect the n1/N term
in the limit N ≫ 1 and then we have

f(y) = (T/T0)
−3/2 (T ≥ T0) (53)

For small y (i.e. close to the transition) (34) gives f = 1−a√y+O(y) where a = 2
√
π/ζ(3/2) ≃ 1.357

so we have

1− a
√
y +O(y) = (T/T0)

−3/2 (54)

and therefore

y +O(y3/2) =
1

a2

(
1− t−3/2

)2

(55)

where we introduced t ≡ T/T0 in order to reduce clutter. We now drop the O(y3/2) term in order to
find the following results which are valid when y ≪ 1:

dy

dT
=

3

a2T0

(
1− t−3/2

)
t−5/2, (56)

d2y

dT 2
=

3

a2T 2
0

(
−5

2
t−7/2 + 4t−5

)
. (57)

At the transition (where t = 1) we therefore find y = 0, dy/dT = 0 and

d2y

dT 2
=

9

2a2T 2
0

. (58)

By a similar analysis for µ = −kBT y one finds, at the transition (approached from above)

dµ

dT
= 0,

d2µ

dT 2
= − 9kB

2a2T0
. (59)

We therefore deduce that the non-analytic behaviour in the chemical potential appears in its second
derivative (since for temperatures approaching T0 from below one has µ = 0 with all derivatives zero).

Next we consider energy. For any temperature we have

U = D(kBT )
5/2

∫ ∞

0

x3/2

ex+y − 1
dx. (60)

To reduce clutter let’s introduce D̃ ≡ k
5/2
B D and

I(y) =

∫ ∞

0

x3/2

ex+y − 1
dx, (61)
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then we have

U = D̃T 5/2I(y). (62)

In conditions of constant V and N the heat capacity is

CV =
dU

dT
=

5

2
D̃T 3/2I(y) + D̃T 5/2 dy

dT

dI

dy
. (63)

When T ≤ T0 we have y = 0 and dy/dT = 0 so just the first term in (63) contributes, and it gives
(44). We can now observe that the second term tends to zero in the limit y → 0 (we will prove
this shortly) and therefore we have the same CV at T = T+

0 as at T = T−
0 : the heat capacity is a

continuous function of T .

Next we proceed to the gradient of the heat capacity:

dCV

dT
=

d2U

dT 2
=

15

4
D̃T 1/2I(y) + D̃

[
5

2
T 3/2 dy

dT
+ T 5/2 d

2y

dT 2

]
dI

dy
+ D̃T 5/2

(
dy

dT

)2
d2I

dy2
(64)

This is exact. We now take an interest in the limit y → 0 (with y always positive). We showed above
that in this limit dy/dT → 0 and furthermore we will show in a moment that it does so fast enough to
suppress a divergence in d2I/dy2, hence we find that the abrupt change in dCV/dT at the transition
is given by the d2y/dT2 term. Therefore

∆(dCv/dT)

dCV/dT
=

6

5a2
dI/dy

I
(65)

where we used (58) and the integrals should be evaluated at y = 0. We have I(y) = Γ(5/2)Li5/2(z)
where z = e−y. By using the series expression (37) one obtains

dLin(z)

dz
=

1

z
Lin−1(z) (66)

and therefore dI/dy = −Γ(5/2)Li3/2(z). Hence

∆(dCv/dT)

dCV/dT
= −3(ζ(3/2))3

10πζ(5/2)
≃ −1.269087 (67)

(The slope changes from 2.8885NkB/T0 at T−
0 to −0.77726NkB/T0 at T+

0 ).

4.1 Mathematical detail

It remains to confirm that the final term in (64) is indeed zero in the limit y → 0. This is a little
fiddly; the reader may skip this section if they wish simply to trust the claim. Using (66) and that y
is quadratic in T , the final term in (64) is proportional to

y2
∫ ∞

0

x−1/2

ex+y − 1
dx. (68)
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The integrand is divergent at (x+ y) = 0 so let’s examine

y2
∫ ϵ

0

x−1/2

ex+y − 1
dx (69)

for some small ϵ. The rest of the integral is finite so it obviously gives zero contribution when y → 0.
We just need to check this portion near x = 0. Since both x and y are small we have

y2
∫ ϵ

0

x−1/2

x+ y +O((x+ y)2)
dx. (70)

As we take the limit y → 0 we can take, for example, ϵ = y2 and therefore ϵ≪ y. In this case y ≫ x
in the integrand and we have

y2
∫ ϵ

0

x−1/2

y +O(y2)
dx. (71)

This form of the integral is finite. We deduce that there exists a way to take the limit y → 0 such
that the expression (68) tends to zero in the limit.

5 Gas in a harmonic well

So far we discussed a gas confined in a box, meaning a confining potential with hard walls, and particles
moving freely away from the walls. Another way to study low-temperature gases is to confine them
in some other potential, such as a harmonic potential well, with potential energy V = (1/2)mω2r2

where r is the distance from the centre of the well and ω (the natural frequency) is a constant. Study
of the quantum harmonic oscillator gives the energy levels and degeneracies

dim ϵn gn q
1d (n+ 1/2)h̄ω 1 0
2d (n+ 1)h̄ω n+ 1 1
3d (n+ 3/2)h̄ω 1 + n(n+ 3)/2 2

(72)

It follows that, for energies ϵ ≫ h̄ω the density of states has the form Dϵq with the values of q as
shown in the table. With this information one can revisit the arguments of the previous sections and
discover the main facts about BEC in a harmonic well. One finds now that there is a phase transition
in both the 2D and 3D cases, because q > 0. Below the transition temperature the condensate fraction
is n1/N = 1− (T/T0)

q+1.

When one studies low-temperature gases many parameters can in principle act as a signature of the
BEC transition. For a gas in a harmonic well, notable properties include the density and velocity
distributions. The ground state of the well has a gaussian wavefunction ψ(r), giving a probability
distribution |ψ(r)|2. The standard deviation in any one direction is then ∆x1 = (h̄/2mω)1/2. For a
cloud in a well at high temperature, on the other hand, the mean potential energy has a contribution
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Figure 11: Data from the laboratory of Eric Cornell and Carl Wieman, revealing the appearance
of a condensate of rubidium atoms. The plot shows the measured velocity distribution at three
temperatures attained in different stages of cooling. The cooling method involves some loss of atoms
by a process akin to evaporation.
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(1/2)kBT for each direction of motion, so we find ∆xT = (kBT/mω
2)1/2. Hence

∆x1
∆xT

=

√
h̄ω

kBT
. (73)

The transition temperature T0 will satisfy kBT0 ≫ h̄ω when N ≫ 1 so ∆x1 ≪ ∆xT . When the
temperature T reaches the transition temperature and falls below it, one therefore expects to find a
density distribution made of a sum of two gaussians with different widths. The narrow part appears
as a peak which grows rapidly in height, but not in width, as the temperature falls, and this is what
is seen experimentally.

In practice it may be easier to probe the velocity distribution in the first instance. This is done, for
example, by switching off the trapping potential. The cloud then falls under gravity and expands
as it falls. One takes a snapshot of the cloud (using laser fluorescence) after it has expanded for
about 0.1 seconds. The observed spatial distribution in the horizontal plane now maps the velocity
distribution of the cloud when it was released. The condensate appears in momentum space as a peak
of width h̄/2∆x1. Therefore in the condensation regime one expects a velocity distribution in the
form of a narrow peak superimposed on a broader (also gaussian) background. The narrow peak is
owing to the condensate. Its appearance and growth as T falls is a clear signature of BEC—c.f. Fig.
11.

6 Liquid Helium; ultracold atomic vapours

There are two example physical systems where Bose Einstein condensation, or a process closely related
to it, have been studied. The first is liquid helium, the second is ultracold atomic vapours trapped in
a harmonic potential well.

The case of liquid helium is important because the helium-4 atoms are bosons and they have two
further relevant properties: the interactions between the atoms are weak and the atoms are light, which
results in a high kinetic energy (compared with heavier particles) when the particles are confined. In
consequence helium does not solidify at ordinary pressures when it is cooled, and furthermore one can
regard the liquid as, to a rough approximation, quite like a cold gas. It is observed that liquid helium
undergoes a transition at 2.17K. This transition is called the lambda point, a reference to the fact that
the graph of CV as a function of temperature has a spike at the transition which resembles a greek
letter λ. Above the lambda point helium it is a normal liquid, called helium I. Below the transition
it is another form called helium II, and the latter is well modelled as a mixture of two liquids, one of
which is normal and the other is superfluid (having zero viscosity). The superfluid fraction grows as
the temperature is further reduced below the lambda point.

These observations led London to suggest that the transition in liquid helium is, or is like, a Bose-
Einstein condensation. The transition temperature predicted from the observed density is 3.13K which
is quite close to the observed value at the lambda point. The superfluid fraction can be modelled, to
first approximation, as the ground state fraction in the BEC picture.
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In fact liquid helium is not a gas; the atomic interactions cannot be neglected in an accurate model.
This results in differences between BEC and the lambda point in liquid helium, but it is clear that the
lambda point is owing to the quantum nature of the helium atoms, especially their indistinguishability
and bosonic nature.

A transition which can be called a true BEC occurs in experiments with ultracold (nanokelvin) atomic
vapours at low density. The vapour in these experiments is typically of modest size (say some millions
of atoms) but the low density makes it a very good approximation to ignore the particle interactions
in the first instance, and the BEC theory can be tested precisely. A series of largely experimental de-
velopments led to these remarkable results, including laser cooling to milliKelvin temperatures (1978),
followed after some years to an experimental breakthrough attaining microKelvin temperatures (1997
Nobel prize) and then a further insight called evaporative cooling leading to nanoKelvin temperatures
and BEC which was first observed in 1995. The 2001 Nobel prize was awarded for this and related
work.
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