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A new type of uncertainty relation is presented, concerning the information-bearing properti
a discrete quantum system. A natural link is then revealed between basic quantum theory a
linear error correcting codes of classical information theory. A subset of the known codes is desc
having properties which are important for error correction in quantum communication. It is shown
a pair of states which are, in a certain sense, “macroscopically different,” can form a superposit
which the interference phase between the two parts is measurable. This provides a highly sta
“Schrödinger cat” state. [S0031-9007(96)00779-X]

PACS numbers: 03.65.Bz, 03.75.Dg, 89.70.+c
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This Letter discusses fundamental questions concer
quantum interference among many particles in a gro
It will be shown that such questions are linked with t
properties of the error correcting codes arising in class
information theory [1]. The possibility of error correctio
in quantum systems has been considered recently bec
of its importance in the theory of quantum computati
[2] and quantum cryptography [3]. The present work p
vides the answers to fundamental questions in this a
First, a new way of expressing the Heisenberg uncerta
principle is presented. Here it describes a limit on t
degree of robustness with which information can be
coded in a quantum state which is to be analyzed in ei
of two mutually rotated bases. In brief, if multiple erro
correction is possible in one basis, then it is ruled out
the other. The precise meaning of this sentence will
elucidated below. This gives a simple way of understa
ing the well-known instability of the phase relationsh
between quantum states expressing macroscopically
ferent physical situations. Next, thelinear codesof clas-
sical information theory are shown to have a remarka
property (Theorem 3 below) in the quantum mechani
context. This establishes a previously unremarked l
between these two mathematical edifices. The new
sights gained enable one to construct states which are
macroscopically distinguishable, in a technical sense to
described, and which also can be observed to show st
quantum mechanical interference. This has important
0031-9007y96y77(5)y793(5)$10.00
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plications for the possibility of quantum computation an
is a new development in the understanding of the famo
“Schrödinger’s cat” experiment [4].

Consider a quantum system having a Hilbert space
2n dimensions (with positive integern). For example,
this could be a set ofn two-state systems, such asn spin
one-half particles, orn two-level atoms. Such system
can model the behavior of any other quantum system
including macroscopic objects such as measuring devic

The two orthogonal states of each particle are writt
j0l and j1l, and a product state such asj0l ≠ j0l ≠ j1l
is written j001l, where it is understood that the firs
binary digit (0 or 1) refers to the state of the firs
particle, the second digit the second particle, and so
A general state ofn particles can be written as a sum
(entanglement) of product states. The singlet state
two particles, for example, issj10l 2 j01ldy

p
2. In what

follows, the notation will be simplified by omitting the
overall normalization factor in such expressions. Th
will not affect the argument, and the factor can b
reintroduced easily if necessary.

The statesj0l and j1l form a basis, hereafter called
“basis 1.” We will be concerned with the state of th
system as expressed using the states of basis 1, and
those of a rotated basis, “basis 2.” For example, t
two bases could be those corresponding to a vertica
horizontal choice of quantization axis, in the case of t
spin state of spin-half particles. The basis states of ba
© 1996 The American Physical Society 793
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1 will be written using a plainj0l and j1l; those of basis
2 will be written using bold fondj0l and j1l. Thus
ignoring normalization as already remarked,j0l ; j0l 1

j1l, j1l ; j0l 2 j1l, j00l ; j00l 1 j01l 1 j10l 1 j11l,
and so on. It will be convenient to have a shorthan
for referring to the individual product states making u
a superposition. Since a product state is identified by
unique string of bits, it will be referred to as aword.

A state which is equal to a superposition of words
basis 1 is equal to some other superposition in basis
Some basic relationships between the two bases will n
be stated.

Theorem 1.The wordj000 · · · 0l consisting of all zeros
in basis 1 is equal to a superposition of all2n possible
words in basis 2, with equal coefficients.

Theorem 2.If the jth bit of each word is complemented
s0 $ 1d in basis 1, then all words in basis 2 in which th
jth bit is set (is a1) change sign.For example,

j000l 1 j111l ; j000l 1 j011l 1 j101l 1 j110l ,

j001l 1 j110l ; j000l 2 j011l 2 j101l 1 j110l .

Corollary. If all the words are complemented in basi
1, then all words of odd parity change sign in basis
and vice versa.(Odd parity means having an odd numbe
of 1’s.)

These theorems are easy to prove by writing each w
in basis 1 as a product of bits, converting each bit to t
form sj0l 6 j1ld, and multiplying out the products.

Next some of the standard results and notation
coding theory will be described. This is very bas
material but is necessary in order to make the argum
widely accessible.

In coding theory, information takes the form of a strin
of bits, or “words.” A code is a set of words, all of the
samelength(number of bits). Words in the code arecode
words. The Hammingdistancebetween two words (of the
same length) is the number of places where they diff
i.e., the number of positions where one has a 0 and
other a 1. Theminimum distanceof a code is the smallest
Hamming distance between any two code words in t
code. A single error is the erroneous complementi
of a single bit of a word, for example, when the wor
is transmitted or stored.A code of minimum distance
d allows bsd 2 1dy2c errors to be corrected. This is
because if less thandy2 errors occur, then the correc
original code word, which gave rise to the erroneo
received word, can be identified as the only code wo
at a distance less thandy2 from the received word. The
price of this error correction is that only code words (i.e.,
subset of the2n possiblen-bit words) may be transmitted.

The fundamental problem of coding theory is to fin
codes having the maximum number of code words f
given lengthn and minimum distanced. Let Asn, dd be
defined as this maximum number of words. The proble
is notoriously difficult and has no general solution.
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The notationfn, k, dg refers to a set of2k code words,
each of lengthn, with minimum distanced, and having
the property of being alinear code. This means that if the
EXCLUSIVE-OR operation is carried out bitwise betwee
any two code words, then the resulting word is also
member of the code. (Not all codes are linear.) IfC is a
code, then thedual codeC' is the set of all wordsu for
which u ? y has even parity for ally [ C, where the dot
signifies the bitwiseAND operation. The dual of a linea
fn, k, dg code is a linearfn, n 2 k, d'g code. In general,
there is no simple precise relationship betweend andd',
though they are related indirectly through a theorem d
to MacWilliams [1]. If d is large, thend' is small.

A linear codeC is completely specified by itsn 3

sn 2 kd parity check matrixH, or equivalently by its
n 3 k generator matrixG. The rows of these matrice
aren-bit words. The codeC is the set of all wordsu for
which Hi ? u has even parity, for all rowsHi of H. Also
the codeC is the set of all linear combinations (by bitwis
EXCLUSIVE-OR) of the rows ofG. It can be shown thatthe
parity check matrix of a codeC is the generator matrix of
the dual codeC'. This property will be used below an
ends the present list of standard results.

In the context of the set ofn quantum bits (two-state
systems), the sets of words which express a given s
in bases 1 and 2 are related through the basis rota
operation, which is a Hadamard transform. Just as
properties of the continuous Fourier transform lead to
Heisenberg uncertainty principleDxDp $ h̄y2 wherex
andp are conjugate continuous variables, so also for
discrete case the basis rotation operation implies a limit
the way a given state can be expressed in two mutu
rotated bases.

Suppose a state can be written as a superposition om1
of the product states of basis 1 and as a superpositio
m2 of the product states of basis 2. Then

m1m2 $ 2n. (1)

Proof. Inequality (1) is subsumed by the “entrop
uncertainty relation” introduced by Bialynicki-Birula an
Mycielski [6] and by Deutsch [7], as improved b
Maassen and Uffink [8].

Now suppose we wish to find a state which is e
pressed in basis 1 by a set of words of minimum Ha
ming distanced1, and simultaneously in basis 2 by a s
of words of minimum Hamming distanced2. By defini-
tion, m1 # Asn, d1d and m2 # Asn, d2d; therefore, using
inequality (1), we have

Asn, d1dAsn, d2d $ 2n. (2)

This “error correction uncertainty relation” places a lim
on the highest minimum distance simultaneously achi
able in bases 1 and 2. Ifd1 is large, thenAsn, d1d is
necessarily small, which means, by (2), thatAsn, d2d must
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be large, which in turn means thatd2 must be small. Thus
we have a complementarity betweend1 andd2. Its impli-
cations will be described below.

For odd d, Hamming [9] derived the Hamming o
“sphere-packing bound” Asn, dd # 2ny

Psd21dy2
i­0 s n

i d,
where s n

i d is the binomial coefficientn! yi! sn 2 id!.
Substituting in (2), one obtains, for oddd1 andd2,

sd121dy2X
i­0

µ
n
i

∂ sd221dy2X
i­0

µ
n
i

∂
# 2n. (3)

It is not generally possible to find codes which satisfy t
upper limit of the Hamming bound, but it can be show
that for large enoughn, codes exist which allowd2 to
exceed any value for any givend1.

We will now consider the state

jcl ­ j000 · · · 0l 1 eifj111 · · · 1l , (4)

where the two words are those of all zeros or all ones
basis 1. Such a state can be shown to violate a Bell-t
inequality by an amount that grows exponentially with t
number of bitsn [10]. If n is large, then we have a supe
position of two states representing macroscopically diff
ent situations (somewhat like a cat alive or dead [11
However, the presence of both parts of the superposit
rather than simply of one partor the other, can be reveale
only in experiments whose outcome depends on the va
of f. In practice, technological difficulties makef ex-
tremely difficult to measure with an experimental u
certainty less than6p. In other words, experimenta
observation of the quantum interference is prevented
the sensitivity off to random errors.

A simple way to understand the statejcl is revealed
by Theorem 1 and the corollary to Theorem 2. Wh
f ­ 0, it is easy to see that in basis 2,jcl is equal to a
superposition of all words having even parity (even nu
ber of1’s), while if f ­ p, the state is a superposition o
all words having odd parity. Therefore to distinguish t
casesf ­ 0 and f ­ p experimentally one must find
out whether the state in basis 2 has even or odd pa
However, a single error (complementing of a bit) in ba
2 is sufficient to destroy this information. If the probab
ity of an error in any one bit isp, then the probability that
no errors occur, enablingf to be deduced, iss1 2 pdn,
which falls off exponentially withn [12]. For example, if
n ­ 1001, p ­ 0.02, thens1 2 pdn , 1029.

In the state just discussed, the code obtained in bas
(that consisting of all words of even parity) is the dual
the code appearing in basis 1 [Eq. (4)]. This is an exam
of a more general property which will now be stated.

Theorem 3. When the quantum state of the syste
forms a linear codeC in basis 1, in a superposition with
equal coefficients, then in basis 2 the words appearing
the superposition are those of the dual codeC'.

Proof. We will construct a code in basis 1 havin
generator matrixG and show that in basis 2 the code
which G is the parity check matrix appears.
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Consider first the statejh0jl ­ j000 · · · 0l consisting of
all zeros in basis 1. In basis 2, all2n possible words
are superposed (Theorem 1), each with positive sign.
G be a generator matrix, that is, a matrix ofk1 rows,
each row being a wordn bits long. Take the first row
G1 of G and form the corresponding wordjG1l in basis
1 by starting fromjh0jl and applying Theorem 2 once fo
each nonzero bit inG1. These successive applications
Theorem 2 show that the statejG1l is one for which all2n

possible words appear in basis 2, and all those, and o
those, words in basis 2 change sign which do not sat
the parity checkG1.

Now form the statejh0jl 1 jG1l. By the argument
just given, when the sum is formed, all words in bas
2 which do not satisfy the parity checkG1 disappear.
Therefore at this stage of the argument,G1 is the (single-
row) generator matrix of the code in basis 1 and also
parity check matrix of the code in basis 2.

Now take the next rowG2 of G, and form the pair
of words jG2l 1 jG1 © G2l by applying Theorem 2 the
necessary number of times to the statejh0jl 1 jG1l. Here
© signifies the bitwise addition modulo 2 (EXCLUSIVE-

OR) operation. By Theorem 2 again, all those and on
those words in basis 2 change sign which do not sat
the parity checkG2. Therefore the statejh0jl 1 jG1l 1

jG2l 1 jG1 © G2l has the property that the first two row
of G form the generator matrix of the code in basis 1 a
also the parity check matrix of the code in basis 2.

The above process is continued for the rest of the ro
of G, and the theorem is proved.

Since the dual of anfn, k, dg code is anfn, n 2 k, d'g
code, Theorem 3 shows that the linear codes satisfy
lower bound of inequality (1). However, it seems unlike
that nonlinear codes should do so; therefore we may c
jecture that the linear codes approach the lower bound
the error correction uncertainty relation (2) more close
In this case the MacWilliams theorem also yields a lim
on d1 andd2, though often one must use tables of know
codes to find the smallest lengthn which permits the dis-
tancesd1 andd2 to attain given sizes simultaneously [1]

Error correction in quantum computation might be su
gested through the use of the simple repetition code.
bit value 0 is represented byj000l, and a value 1 by
j111l, for example. This allows single error correctio
in basis 1. However, the possibility of superpositio
such asj000l 6 j111l is fundamentally important to quan
tum computation, and as we have just seen, the sign
such superpositions is highly sensitive to errors in b
sis 2. It will now be shown how to find statejal and
jbl such that error correction is possible in both bas
in the following sense. In basis 1, the Hamming d
tance betweenjal and jbl will be greater than 2, while
in basis 2 the Hamming distance betweenjcl ­ jal 1 jbl
and jdl ­ jal 2 jbl will be greater than 2. The Ham
ming distance between two states, in a given basis
here defined to be the smallest distance between any w
795
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appearing in the first state and any word appearing in
second.

Let jal be expressed by the [7, 3, 4] simplex code
basis 1:

jal ­ j0000000l 1 j1010101l 1 j0110011l

1 j1100110l 1 j0001111l 1 j1011010l

1 j0111100l 1 j1101001l .

This code has the following properties: It can b
augmented to produce a code of minimum distance 3,
its dual code (the [7, 4, 3] Hamming code) has minimu
distance 3. The process of augmentation consists
adding to the code the complement of each of its wo
(equivalent to adding a row of 1’s to the generator matri
Therefore if we let jbl be the complement ofjal in
basis 1,

jbl ­ j1111111l 1 j0101010l 1 j1001100l

1 j0011001l 1 j1110000l 1 j0100101l

1 j1000011l 1 j0010110l ,

then the desired properties are obtained. For in basi
jal and jbl are nonoverlapping subsets of a distance
code, which means the distance between them is at l
3, and in basis 2,jcl ­ jal 1 jbl contains just the even
parity words of a [7, 4, 3] code, whilejdl ­ jal 2 jbl
contains just the odd parity words of the same code. Si
these are nonoverlapping subsets of a distance 3 code
distance in basis 2 betweenjcl andjdl is at least 3.

Thus a method for error correction of quantum b
has been found, which enables both the bits themse
to be encoded robustly in basis 1 and the values of
signs appearing in superpositions in basis 1 to be enco
robustly.

The above argument can be extended to hig
Hamming distances, which leads to the possibility
macroscopic—or at least mesoscopic—superpositi
with measurable interference phase. For example,
case was considered of the Schrödinger cat statejcl
of Eq. (4) involving n ­ 1001 two-state systems. The
two parts of the superposition were “macroscopica
different” in the sense that any property proportion
to the sum of the bits in basis 1 would have a me
value in the statej000 · · · 0l very different from its mean
value in the statej111 · · · 1l. However, the spirit of
Schrödinger’s thought experiment can also be retain
by arguing that two states are macroscopically differe
if a macroscopic number of errors would have to occ
in order to make it possible to mistake one state for
other. Now suppose we usen ­ 5000 and seek two states
jal and jbl separated by Hamming distanced1 ­ 1001
in basis 1. The uncertainty relation (3) then impli
d2 # 1213, and it should be possible to find a dual pa
of linear codes of which one is capable of augmentat
and d1 ­ 1002, d2 $ 241. If so, then subcodes of the
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augmented code are used to producejal andjbl as before,
and we consider the superpositionjal 1 jbl. Quantum
interference betweenjal and jbl can be demonstrated
if it can be shown experimentally that the sign in th
superposition state is positive and not negative. To
this, measurements are carried out in basis 2. This m
surement is the experimental method by which quant
interference betweenjal and jbl is observed. Now, by
construction, the statejal 1 jbl will be mistaken for only
jal 2 jbl if at least sd2 2 1dy2 $ 120 errors occur. If
these errors are independent, then the probability that
sign is revealed correctly in each experimental run
which all the bits are measured) is

120X
i­0

µ
n
i

∂
pis1 2 pdn2i . 0.98 , (5)

where the error per bitp ­ 0.02 as before. This is to be
compared with the result of order1029 obtained for the
Schrödinger cat state of the type given in Eq. (4), hav
the same Hamming distance between its two parts in b
1. In fact, the error per bit in a real experiment is likely
increase somewhat withn, but as long asp , 0.055, then a
numbern can always be found with makes the interferen
observable between states separated by a given dist
d1; this is proved in [13,14]. Also it is not always
true that errors in different quantum bits are independe
However, situations can be found in which the erro
are independent, and in such cases the above argu
applies.

In conclusion, a new type of uncertainty relation h
been presented in which a discrete quantum system is
garded as an information-bearing entity, with limitatio
on the degree to which it can store information robust
The interference phase between two product states s
rated by a large Hamming distance in one basis is a p
ticularly fragile piece of information because it is ex
pressed by the value of a parity check covering a la
number of bits in the rotated basis.

A method has been presented for finding codes wh
enable error correction in both of two mutually rotate
bases. This type of correction does not arise in the cla
cal context, but is important for quantum bits. The arg
ment enables states to be identified in which interferen
involving a macroscopic number of particles may be o
servable. The experimental production of such states
however, a demanding task which remains to be addres

The author is supported by the Royal Society.
Note Added.—During resubmission of this Letter, re

lated work [15] on quantum coding has become kno
to me. In addition, the coding method introduced in th
letter has now been generalized and shown to be fully
plicable to quantum communication in that general err
affecting general states of many information qubits can
corrected [13,14].
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