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A new type of uncertainty relation is presented, concerning the information-bearing properties of
a discrete quantum system. A natural link is then revealed between basic quantum theory and the
linear error correcting codes of classical information theory. A subset of the known codes is described,
having properties which are important for error correction in quantum communication. It is shown that
a pair of states which are, in a certain sense, “macroscopically different,” can form a superposition in
which the interference phase between the two parts is measurable. This provides a highly stabilized
“Schrodinger cat” state. [S0031-9007(96)00779-X]

PACS numbers: 03.65.Bz, 03.75.Dg, 89.70.+c

This Letter discusses fundamental questions concerninglications for the possibility of quantum computation and
guantum interference among many particles in a grougs a new development in the understanding of the famous
It will be shown that such questions are linked with the“Schrédinger’s cat” experiment [4].
properties of the error correcting codes arising in classical Consider a quantum system having a Hilbert space of
information theory [1]. The possibility of error correction 2" dimensions (with positive integet). For example,
in quantum systems has been considered recently becaubés could be a set ot two-state systems, such asspin
of its importance in the theory of quantum computationone-half particles, on two-level atoms. Such systems
[2] and quantum cryptography [3]. The present work pro-can model the behavior of any other quantum system [5],
vides the answers to fundamental questions in this are@cluding macroscopic objects such as measuring devices.
First, a new way of expressing the Heisenberg uncertainty The two orthogonal states of each particle are written
principle is presented. Here it describes a limit on the0) and |1), and a product state such # ® |0) ® |1)
degree of robustness with which information can be enis written |001), where it is understood that the first
coded in a quantum state which is to be analyzed in eithdsinary digit (0 or 1) refers to the state of the first
of two mutually rotated bases. In brief, if multiple error particle, the second digit the second particle, and so on.
correction is possible in one basis, then it is ruled out inA general state ok particles can be written as a sum
the other. The precise meaning of this sentence will béentanglement) of product states. The singlet state of
elucidated below. This gives a simple way of understandtwo particles, for example, i§10) — [01))/+/2. In what
ing the well-known instability of the phase relationship follows, the notation will be simplified by omitting the
between quantum states expressing macroscopically dibverall normalization factor in such expressions. This
ferent physical situations. Next, ttieear codesof clas-  will not affect the argument, and the factor can be
sical information theory are shown to have a remarkableeintroduced easily if necessary.
property (Theorem 3 below) in the quantum mechanical The states|0) and |1) form a basis, hereafter called
context. This establishes a previously unremarked linkbasis 1.” We will be concerned with the state of the
between these two mathematical edifices. The new insystem as expressed using the states of basis 1, and also
sights gained enable one to construct states which are bothose of a rotated basis, “basis 2.” For example, the
macroscopically distinguishable, in a technical sense to bevo bases could be those corresponding to a vertical or
described, and which also can be observed to show stabl®rizontal choice of quantization axis, in the case of the
guantum mechanical interference. This has important imspin state of spin-half particles. The basis states of basis
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1 will be written using a plairf0) and|1); those of basis The notation[n, k, d] refers to a set o2 code words,
2 will be written using bold fond|0) and [1). Thus each of lengths, with minimum distance?, and having
ignoring normalization as already remarké@), = |0) +  the property of being Bnear code. This means that if the
1), |1) = [0) — |1), |00) = |00) + |01) + |10) + |11),  EXCLUSIVE-OR operation is carried out bitwise between
and so on. It will be convenient to have a shorthandany two code words, then the resulting word is also a
for referring to the individual product states making upmember of the code. (Not all codes are linear.)Clfs a
a superposition. Since a product state is identified by &ode, then thelual codeC* is the set of all words: for
unique string of bits, it will be referred to asveord. which u - v has even parity for alk € C, where the dot
A state which is equal to a superposition of words insignifies the bitwiseAND operation. The dual of a linear
basis 1 is equal to some other superposition in basis 2u, k,d] code is a lineafn,n — k,d*] code. In general,
Some basic relationships between the two bases will nowhere is no simple precise relationship betweeandd*,

be stated. though they are related indirectly through a theorem due
Theorem 1. The word|000 - - - 0) consisting of all zeros to MacWilliams [1]. Ifd is large, theni* is small.

in basis 1 is equal to a superposition of &l possible A linear codeC is completely specified by ita X

words in basis 2, with equal coefficients. (n — k) parity check matrixH, or equivalently by its

Theorem 2.If the jth bit of each word is complemented n X k generator matrixG. The rows of these matrices
(0 < 1) in basis 1, then all words in basis 2 in which the aren-bit words. The code& is the set of all words for

jth bit is set (is al) change sign.For example, which H; - u has even parity, for all rowH; of H. Also
the codeC is the set of all linear combinations (by bitwise
[000) + |111) = |000) + |011) + |101) + |110), EXCLUSIVE-OR) of the rows ofG. It can be shown thahe

_ parity check matrix of a cod€ is the generator matrix of
1001) + [110) = 1000) — [011) — [101) + [110). the dual codeC . This property will be used below and
Corollary. If all the words are complemented in basis ends the present list of standard results.
1, then all words of odd parity change sign in basis 2, In the context of the set of quantum bits (two-state
and vice versa.(Odd parity means having an odd numbersystems), the sets of words which express a given state
of 1's.) in bases 1 and 2 are related through the basis rotation
These theorems are easy to prove by writing each wordperation, which is a Hadamard transform. Just as the
in basis 1 as a product of bits, converting each bit to theroperties of the continuous Fourier transform lead to the
form (]0) = [1)), and multiplying out the products. Heisenberg uncertainty principléxAp = /2 where x
Next some of the standard results and notation ofnd p are conjugate continuous variables, so also for the
coding theory will be described. This is very basicdiscrete case the basis rotation operation implies a limit on
material but is necessary in order to make the argumerthe way a given state can be expressed in two mutually
widely accessible. rotated bases.
In coding theory, information takes the form of a string Suppose a state can be written as a superpositien of
of bits, or “words.” A codeis a set of words, all of the of the product states of basis 1 and as a superposition of
samelength(number of bits). Words in the code azede  m, of the product states of basis 2. Then
words. The Hamminglistancebetween two words (of the
same length) is the number of places where they differ, mymy = 2", @
i.e., the number of positions where one has a 0 and the
other a 1. Theminimum distancef a code is the smallest Proof. Inequality (1) is subsumed by the “entropic
Hamming distance between any two code words in thaincertainty relation” introduced by Bialynicki-Birula and
code. A single error is the erroneous complementingMycielski [6] and by Deutsch [7], as improved by
of a single bit of a word, for example, when the word Maassen and Uffink [8].
is transmitted or stored.A code of minimum distance  Now suppose we wish to find a state which is ex-
d allows [(d — 1)/2] errors to be corrected. This is pressed in basis 1 by a set of words of minimum Ham-
because if less thad/2 errors occur, then the correct ming distanced;, and simultaneously in basis 2 by a set
original code word, which gave rise to the erroneousof words of minimum Hamming distana®. By defini-
received word, can be identified as the only code wordion, m; = A(n,d;) andm, = A(n, d>); therefore, using
at a distance less thafy2 from the received word. The inequality (1), we have
price of this error correction is that only code words (i.e., a
subset of th@" possiblen-bit words) may be transmitted. A(n,d\)A(n, dp) = 2". 2
The fundamental problem of coding theory is to find
codes having the maximum number of code words fofThis “error correction uncertainty relation” places a limit
given lengthn and minimum distance. Let A(n,d) be  on the highest minimum distance simultaneously achiev-
defined as this maximum number of words. The problenable in bases 1 and 2. H, is large, thenA(n,d,) is
is notoriously difficult and has no general solution. necessarily small, which means, by (2), tAét, d,) must
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be large, which in turn means th&t must be small. Thus Consider first the statg0}) = |000- - -0) consisting of
we have a complementarity betweénandd,. Itsimpli- all zeros in basis 1. In basis 2, d@l possible words
cations will be described below. are superposed (Theorem 1), each with positive sign. Let
For odd d, Hamming [9] derived the Hamming or G be a generator matrix, that is, a matrix bf rows,
“sphere-packing bound” A(n,d) = 27/ 3" ("),  each row being a word: bits long. Take the first row
where (") is the binomial coefficientn!/i!(n — i)!. ~ Gi of G and form the corresponding wold:;) in basis
Substituting in (2), one obtains, for odl andd,, 1 by starting from|{0}) and applying Theorem 2 once for
-1/ (d-1))2 each nonzero bit i;,. These successive applications of
<n> < > — o 3) Theorem 2 show that the stdt&, ) is one for which alR”
=\ = \i/) 77 possible words appear in basis 2, and all those, and only

It is not generally possible to find codes which satisfy thel10S€; words in basis 2 change sign which do not satisfy

upper limit of the Hamming bound, but it can be shownt€ parity checiG;.

that for large enoughi, codes exist which allows, to . Now form the statel{0}) + [G,). By the argument
exceed any value for any giveh. just given, when the sum is formed, all words in basis

We will now consider the state 2 which do not satisfy the parity cheo&l disappear.
B it Therefore at this stage of the argumedit, is the (single-
l¢) =1000---0) + e**|111---1), (4) row) generator matrix of the code in basis 1 and also the
where the two words are those of all zeros or all ones, iparity check matrix of the code in basis 2.
basis 1. Such a state can be shown to violate a Bell-type Now take the next rowG, of G, and form the pair
inequality by an amount that grows exponentially with theof words |G,) + |G| & G») by applying Theorem 2 the
number of bits: [10]. If n is large, then we have a super- necessary number of times to the stid@) + |G,). Here
position of two states representing macroscopically differ@ signifies the bitwise addition modulo ZXCLUSIVE-
ent situations (somewhat like a cat alive or dead [11])OR) operation. By Theorem 2 again, all those and only
However, the presence of both parts of the superpositionhose words in basis 2 change sign which do not satisfy
rather than simply of one paot the other, can be revealed the parity checkG,. Therefore the statf0}) + |G;) +
only in experiments whose outcome depends on the valu&,) + |G; ® G,) has the property that the first two rows
of ¢. In practice, technological difficulties makg ex-  of G form the generator matrix of the code in basis 1 and
tremely difficult to measure with an experimental un-also the parity check matrix of the code in basis 2.
certainty less thantz. In other words, experimental  The above process is continued for the rest of the rows
observation of the quantum interference is prevented bgf G, and the theorem is proved.
the sensitivity of¢ to random errors. Since the dual of afw, k,d] code is af{n,n — k,d*]

A simple way to understand the stdig) is revealed code, Theorem 3 shows that the linear codes satisfy the
by Theorem 1 and the corollary to Theorem 2. Whenlower bound of inequality (1). However, it seems unlikely
¢ =0, it is easy to see that in basis [2) is equal to a that nonlinear codes should do so; therefore we may con-
superposition of all words having even parity (even num{ecture that the linear codes approach the lower bound of
ber of1's), while if ¢ = 7, the state is a superposition of the error correction uncertainty relation (2) more closely.
all words having odd parity. Therefore to distinguish theln this case the MacWilliams theorem also yields a limit
cases¢ = 0 and ¢ = 7 experimentally one must find ond; andd,, though often one must use tables of known
out whether the state in basis 2 has even or odd pariti}codes to find the smallest lengthwhich permits the dis-
However, a single error (complementing of a bit) in basistancesd; andd, to attain given sizes simultaneously [1].

2 is sufficient to destroy this information. If the probabil-  Error correction in quantum computation might be sug-
ity of an error in any one bit ip, then the probability that gested through the use of the simple repetition code. A
no errors occur, enabling to be deduced, i§l — p)",  bit value 0 is represented bj)00), and a value 1 by
which falls off exponentially withn [12]. For example, if [111), for example. This allows single error correction
n = 1001, p = 0.02, then(l — p)* ~ 107°, in basis 1. However, the possibility of superpositions

In the state just discussed, the code obtained in basis<ch ag000) + [111) is fundamentally important to quan-
(that consisting of all words of even parity) is the dual oftum computation, and as we have just seen, the sign in
the code appearing in basis 1 [Eq. (4)]. This is an exampleuch superpositions is highly sensitive to errors in ba-
of a more general property which will now be stated. sis 2. It will now be shown how to find state) and

Theorem 3. When the quantum state of the systemb) such that error correction is possible in both bases,
forms a linear code” in basis 1, in a superposition with in the following sense. In basis 1, the Hamming dis-
equal coefficients, then in basis 2 the words appearing inance betweera) and |b) will be greater than 2, while
the superposition are those of the dual catie. in basis 2 the Hamming distance betwegen= |a) + |b)

Proof. We will construct a code in basis 1 having and|d) = |a) — |b) will be greater than 2. The Ham-
generator matridxG and show that in basis 2 the code of ming distance between two states, in a given basis, is
which G is the parity check matrix appears. here defined to be the smallest distance between any word
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appearing in the first state and any word appearing in thaugmented code are used to prodligeand|b) as before,

second. and we consider the superpositigg) + [p). Quantum
Let |a) be expressed by the [7, 3, 4] simplex code ininterference betweeta) and |b) can be demonstrated
basis 1: if it can be shown experimentally that the sign in this

. superposition state is positive and not negative. To do
la) = 10000000) + [1010101) + [0110011) this, measurements are carried out in basis 2. This mea-
+ [1100110) + |0001111) + |1011010) surement is the experimental method by which quantum
interference betweefu) and |b) is observed. Now, by
+ [0111100) + [1101001). construction, the stafe) + |b) will be mistaken for only
This code has the following properties: It can bela) — |b) if at least(d, — 1)/2 = 120 errors occur. |If
augmented to produce a code of minimum distance 3, anithese errors are independent, then the probability that the
its dual code (the [7, 4, 3] Hamming code) has minimumsign is revealed correctly in each experimental run (in
distance 3. The process of augmentation consists ofhich all the bits are measured) is
adding to the code the complement of each of its words
(equivalent to adding a row of 1's to the generator matrix). 120
Therefore if we let|b) be the complement ofa) in Z(’f)pi(l — py i =098, 5)
basis 1, i=o N

Ib) = [1111111) + ]0101010) + [1001100) where the error per bip = 0.02 as before. This is to be
+ |0011001) + |1110000) + |0100101) compared with the result of ordéd—° obtained for the
+ [1000011) + [0010110). Schrddinger cat state of the type giver_1 in Eq. (4), having_
the same Hamming distance between its two parts in basis
then the desired properties are obtained. For in basis 1. In fact, the error per bit in a real experiment is likely to
la) and |b) are nonoverlapping subsets of a distance 3ncrease somewhat with but aslongag < 0.055, thena
code, which means the distance between them is at leasumberm can always be found with makes the interference
3, and in basis 2|c) = |a) + |b) contains just the even observable between states separated by a given distance
parity words of a [7, 4, 3] code, whil&l) = |a) — |b)  d,; this is proved in [13,14]. Also it is not always
contains just the odd parity words of the same code. Sinci&ue that errors in different quantum bits are independent.
these are nonoverlapping subsets of a distance 3 code, thiwever, situations can be found in which the errors
distance in basis 2 betweér) and|d) is at least 3. are independent, and in such cases the above argument
Thus a method for error correction of quantum bitsapplies.
has been found, which enables both the bits themselves In conclusion, a new type of uncertainty relation has
to be encoded robustly in basis 1 and the values of thbeen presented in which a discrete quantum system is re-
signs appearing in superpositions in basis 1 to be encodegarded as an information-bearing entity, with limitations
robustly. on the degree to which it can store information robustly.
The above argument can be extended to highefhe interference phase between two product states sepa-
Hamming distances, which leads to the possibility ofrated by a large Hamming distance in one basis is a par-
macroscopic—or at least mesoscopic—superpositionscularly fragile piece of information because it is ex-
with measurable interference phase. For example, theressed by the value of a parity check covering a large
case was considered of the Schrodinger cat sfgde number of bits in the rotated basis.
of Eg. (4) involvingn = 1001 two-state systems. The A method has been presented for finding codes which
two parts of the superposition were “macroscopicallyenable error correction in both of two mutually rotated
different” in the sense that any property proportionalbases. This type of correction does not arise in the classi-
to the sum of the bits in basis 1 would have a mearcal context, but is important for quantum bits. The argu-
value in the staté000---0) very different from its mean ment enables states to be identified in which interferences
value in the statg111---1). However, the spirit of involving a macroscopic number of particles may be ob-
Schrédinger’s thought experiment can also be retainedervable. The experimental production of such states is,
by arguing that two states are macroscopically differenhowever, a demanding task which remains to be addressed.
if a macroscopic number of errors would have to occur The author is supported by the Royal Society.
in order to make it possible to mistake one state for the Note Added—During resubmission of this Letter, re-
other. Now suppose we uge= 5000 and seek two states lated work [15] on quantum coding has become known
la) and |b) separated by Hamming distandg = 1001  to me. In addition, the coding method introduced in this
in basis 1. The uncertainty relation (3) then impliesletter has now been generalized and shown to be fully ap-
d, = 1213, and it should be possible to find a dual pair plicable to quantum communication in that general errors
of linear codes of which one is capable of augmentatioraffecting general states of many information qubits can be
and d; = 1002, d, = 241. If so, then subcodes of the corrected [13,14].
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