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Fault-tolerant quantum error correcti¢g@EC) networks are studied by a combination of numerical and
approximate analytical treatments. The probability of failure of the recovery operation is calculated for a
variety of Calderbank-Shor-Steane codes, including large block codes and concatenated codes. Recent insights
into the syndrome extraction process, which render the whole process more efficient and more noise tolerant,
are incorporated. The average number of recoveries that can be completed without failure is thus estimated as
a function of various parameters. The main parameters are theygatd memorye failure rates, the physical
scale-up of the computer size, and the tityerequired for measurements and classical processing. The
achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well
as other information. It is found that concatenated codes based di2B¢l,7]] Golay code give higher
thresholds than those based on fh@,1,3]] Hamming code under most conditions. The threshold gate noise
Yo is a function of e/y and t,,; example values arge/vy,tm,yol=1{1,1,103%, {0.01,1,3x10 3},
{1,100,10%, {0.01,100,2 10 3}, assuming zero cost for information transport. This represents an order of
magnitude increase in tolerated memory noise, compared with previous calculations, which is made possible
by recent insights into the fault-tolerant QEC process.
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The possibility of robust storage and manipulation offinding scaling laws that describe how the tolerated noise
guantum information has profound practical and theoreticalevel varies with the length of the computation. In this paper
implications. It would allow highly complex quantum inter- | address the problem of estimating the amount of noise that
ference and entanglement phenomena, including quantucan be tolerated, and quantifying the cost of the stability in
computing, to be realized in the laboratory, and it also unterms of the required increase in the number of physical qu-
derlies a new and as yet little understood area of physicbits in the computer.
concerning the thermodynamics of complex entangled quan- Some previous efforts to answer these questions have
tum systems. concentrated on the idea of tilereshold This is the result

The challenge of achieving precise manipulation of quanthat arbitrarily long quantum computations can be robust,
tum information has inspired much ingenuity, and many esunder various reasonable assumptions, once the noise per
tablished methods of experimental physics, such as adiabatiuiantum gate and per qubit during the duration of a gate is
passage, geometric phases, spin echo, and their generalizeelow a threshold value which does not depend on the size
tions can be useful. These provide an improvement in th&Q of the computatior}7,10,11,15,17,1B Estimates of the
precision of some driven evolution by a given factor at a coswalue of this threshold have varied between 4@nd 103,
in speed, for example, a slowdown of the evolution by thein the case that gates can act between any pair of qubits in
same factor. Such methods may play a useful role in a quarnthe computer. In view of this wide range, a new calculation
tum computer, but they cannot provide all the stability re-of the threshold is valuable, and is one of the aims of this
quired, for two reasons. First the slowdown is unacceptabl@aper. The discussion will include various issues such as the
when large quantum algorithms are contemplated, and sespeed of measurements and classical processing and the best
ond it is doubtful whether they will in practice achieve the choice of encoding, which have not been addressed up till
relative precision of order K/Q which is needed to allow a now.
successful computation involvinQ elementary steps oK However, the threshold result is of limited practical sig-
logical qubits, whenKQ reaches values>10° which are nificance, because the encoding it requirreamely, multiply
needed for computations large enough that a quantum conezoncatenated codindails to take advantage of a fundamen-
puter could out perform the best available classical computetal property of error correction theory, which is the existence

Quantum error correctiofQEC) [1-4] may allow a pre- of goodcodes. These have rdtén and relative distancé/n
cision<10"© per logical operation to be attained in quantumboth bounded from below as the block sizécreases; they
computers. In order for this to be possible, QEC must ballow error-free transmission of information at a rate close to
applied in a fault tolerant manner, that is, the QEC process ithe channel capacity. Once the noise is brought moderately
constructed so that it removes more noise than it generatdselow the highest threshold offered by multiply concatenated
when it is itself imperfect. The main concepts of fault toler- codes, good encoding@hich do not have a threshold regult
ance were introduced by Shs], and further insights have allow very large quantum algorithms to be stabilized at a
been discovered by several auth¢6s-16]. Most of these much lower cost in scale-up of the physical resoufcesbits
studies have been concerned with the discovery of methodand operationsof the computer. The only existing estimate
that achieve fault tolerance in a quantum computer, and with12] of what these good codes can achieve used a simple
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analysis which is only valid in the limit of low noise rate, = The main results are as follows. First the threshold for
and which does not take advantage of recent insights into thguantum computing using multiply concatenated coding is
syndrome extraction procegd4]. It remains difficult to  higher when the code is based on {§€3,1,7]] quantum
compare this estimate with the threshold calculations, beGolay code rather than thg7,1,3]] Hamming code. The
cause each depends on the noise model and the way the nofégmer also requires a lower scale-up at giveQ than the
rate is parametrized, and different authors make differenkatter, so is advantageous for both reasons. It is found that the
choices. The present paper treats both unconcatenated afi@ie taken to complete measurements and classical process-
concatenated codes together, and so permits a comparisBl9 On qubits is also a significant factor which has mostly
between them. been overlooked in previous treatments. When the neise

A central concept that emerges from this uniform treat-P€r memory qubit per gate time is the same as the npise
ment is to regard the maximum computation 2@ which associated with a gate, and the measurement of a qubit takes

can be stabilized as itself a function of various parametersti]i Osiagm;af :Ln;ema:asu?;rigmr?aggéeig)getim;is?gr:goei? iﬂan a
These parameters are divided into two types. The first type : : )
P yp yp ate, the threshold igp=e€,=10"%. When the noise per

guantifies the noise and imprecision that can be tolerated; the . .0 .
o . memory qubit per gate time is 100 times smaller than that of
second type quantifies the demands on the physical hard- C "3
. ) a quantum gate, the threshold y§=100e;=2X 10" (see
ware, such as the degree of parallelism and especially thlgi 7 f inf fi
. . X g. 7 for more information
redupdancy or scak_a-u()ncrease in the number of qu_b)|ts The completeKQ surface, plotted on logarithmic axes, is
required. HenceKQ is best understood as a surface, i.€., 8qnd to have the shape approximately of a set of inclined
function of tvyo main parameters: the tolerateq noise 'eveblanes separated by steep cliffs, revealing quasithreshold be-
_and the phys_lcal scalt_a-up. Th_e thresholpl result is an interesgrayior in scale-up as well as noiggigs. 8—10. The jumps
ing asymptotic behavior of this surface in the region of highj, KQ as a function of scale-up occur when new types of
noise and scale-up, but what we would like to know, andencoding become possible. When the noise is an order of
what is also here discussed, is the form of the surface elsgnagnitude below threshold, and memory is much less noisy
where in parameter space. than gates, a scale-up of order 10 perr® up to ~10%°
These questions are here addressed by numerical simulby using good codes such as Bose-Chaudhuri-Hocquenghem
tions of quantum error correcting networks and by a detailedBCH) codes. At a scale-up of order 1000Q up to ~10%*°
approximate analysis. is available by using a good code concatenated once with the
The paper is laid out as follows. The basic concepts of[23,1,7]] Golay code. If the memory is as noisy as the gate
fault-tolerant quantum computing are briefly sketched in Secoperations(which could be the case, for example, when in-
I, and the noise model adopted in the rest of the paper iformation is moved around using swaps between neighbor-
described. Section Il gives the complete protocol for QECjng bits), a larger scale-up or smaller gate noise is required.
explaining various choices about the way the networks are
constructed. Section Il presents the results of numerical
simulations of these networks for the case of fh&,1,3]] I. BASIC CONCEPTS
Hamming code and thg 23,1,7]] Golay code. Section IV
gives an analysis of the noise and error propagation in the A quantum computer stabilized by QEC methods has
QEC protocol. The numerical results are used to providdghree stages in its operation. First there is a preparation stage,
values of two fitted parameters and to confirm the correctwhich places the computer in a close approximation to the
ness of the general trends predicted by the analysis. Thﬂate|0(K)>,_ which is the logical zero state of th¢€ logical
results of the analysis are then presented for 18 differenqubits of the computer. Then there is a sequend@ lofgical
guantum codes, correcting between 1 and 9 errors, and epnperations, interspersed with error correctiaiso calledre-
coding between 1 and 43 qubits per block. Section V adaptsovery of the whole computer. Then the individual physical
the analysis to the case of concatenated coding. The resultéts of the computer are measured in the computational basis,
of concatenating once are presented, and the threshold assod a final error correction is applied by classical computa-
ciated with multiple concatenations is calculated. Section VIion to the classical data thus acquired. The overall probabil-
then describes and discusses K@ surface. ity of success is the probability that the classical bit string
Fault-tolerant computation and fault-tolerant data storagebtained at the end of this final recovery represents a correct
are largely similar in that the recovery operations dominatesolution to the computational problem being addressed.
the dynamics. Nevertheless there is a distinction between For the initial preparation stage, a sufficient approxima-
them. The present treatment is thorough for the case of dation to |0%¥)), can be obtained by a fault-tolerant measure-
storage, and it is argued in Sec. Il that a judicious placementent of the logical state of all the logical qubits, combined
of logic gates in between recoveries allows the case of faultwith an error correctiof12], followed by fault-tolerant gates
tolerant computation to be like data storage with simplyto flip logical bits which were found to be in the logical 1
some additional noise from those gates. Therefore thstate.
present results apply to computatigmot just data storage The final classical correction can be represented in an
However a more thorough treatment of the error propagatiombstract way as an operati@ on the density matrix(Q)
directly between data blocks is needed in order to clarify thioof the computer after th€th computational step. Then a
point. suitable measure of success of stabilization by QEC is the
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fidelity Fo=(#(Q)|R(p(Q))|¥(Q)), where [¢(Q)) the failure probability of individual elementary operations on

=Uq|0®)), is the ideal(i.e., noise and imperfection-free the physical qubits.

state of the computer after a sequenceQoperfectly ex- The noise model that | will adopt for the purpose of esti-

ecuted elementary steps. mating Fq is as follows. At each time step, every freely
An exact calculation oF  is extremely difficult, and can-  €volving physical qubit has no change in its state with prob-

not be attained for a system of even just a few logical bits2Pility 1— € or undergoes rotation by the operaiqfY, or Z

and operations, owing to the complexities of the encodec}!‘”th equal probabilitiese/3. Such failures are termed

states and of the interactions of the physical qubits with eachfemory failures” ande is the memory failure probability.
other and the rest of the world. In this papeg will be Every gate is modeled by a failure followed by a perfect

estimated by adopting a very simple noise model and Ioer(_)peration of the gate. The failure for a single-qubit gate is the

forming a numerical and combinatorial analysis of the QEC.Same as amemory failure except that It occurs with probabil-
networks ity y,. The failure of a two-qubit gate is modeled as a pro-

The computer will be encoded using a quantum error cor—CeSS where with probability 1y, no change takes place

: : before the gate, and with equal probabilitigg15 one of the
recting code of parametefn,k,d]], wherenis the number 15 possiblg single- or two(-}qubi? failures'%:kes pldteese
of physical qubits per block is the number of logical qubits are IX1Y.1Z X1 XX.XY.XZ YIYXYYYZ
per block (which N.B. can be greater than) andd is the | 7y ZY’ZZ’). ' o T
minimum distance of the code. The codé-esror correcting Every preparation of a single physical bit @) will be

wheret=(d—1)/2. The networks to perform recovery will mqodeled as a perfect preparation followed by a single-bit
be built according the recipe put forward in Refs2,14,19,  fajlure of probability ¥p- Every measurement of a single
which I will outline in Sec. Il. physical qubit will be modeled as a single-qubit failure of
probability y,,,, followed by a perfect measurement. Such a
model accounts satisfactorily for the main ways in which
measurements can fail, with this exception: a qubit measure-
“Noise” in the context of QEC is taken to mean any ment might give a certain eigenvalue as measured out-
process that causes the state of the physical qubits of theme, but the qubit is not projected into the corresponding
computer to be different from what it should ideally be eigenstatg\). In the present context, however, the latter
[4,20-23. Thus we include undesired interactions betweercase is equivalent in its effects to the case that is modeled
the qubits and terms in their internal Hamiltonian and in their(i.e., failure followed by perfect measuremgriecause the
coupling to the environment which are known to be presentmeasurements are always used to acquire syndrome informa-
but which cause undesired effects, as well as further termgon. All that matters is that the measured eigenvalue either
whose details may be unknown us, all under the umbrellaloes or does not correctly indicate the error in the computer:
concept of noise. It is an established feature of QEC that théhis is accounted for by the model. The case where the syn-
overall effect of noise can be understood in terms of the sedrome bit was projected onto a state other thendoes not
of Pauli operators and the identity acting on the physicahave any further impact on the computer because we never
qubits. | will label these operatoisX,Z, andY=XZ. Itis  reuse measured bits without repreparing therfOin(a pro-
convenient to define th¥ operator so that it is real; it then cess that has its own failure probabilify).
differs from the Pauli operatar, by a factor ofi which does “Leakage” failures, which occur when the physical com-
not affect the argument. puter moves out of the Hilbert space spanned by the physical
It is important to distinguish between the processes thatjubits, are assumed to be suppressed by techniques such as
cause imperfection in the computer state, which | will calloptical pumping or small leakage measuring netwdrkks
“failures,” and the resulting imperfections in the state, which and hence converted into failures of the type already consid-
I will call “errors.” For example, a single failure of a two- ered. The leakage probability is absorbed into the gate and
gubit gate can result in two errors, meaning the state after theemory failure probabilities.
failure involves errors in two of the physical qubithat is, a The model is defined so that qubits participating in a gate
tensor product of Pauli operators on both qubits is requiredh a given time step undergo gate noise but not memory
to restore the stateIn general, after the action of some noise. In other words, the gate noise parameferare de-
guantum network, a single failure somewhere in the networKined in such a way that they include all the noise acting on
can result in multiple errors. The main feature of “fault- the qubits participating in the gate during the time of action
tolerant” networks is that a single failure anywhere in theof the gate. It is necessary to be explicit about this distinction
network leads to only one errdor an acceptable number of for the calculation of thresholds in Sec. V B.
errorg per encoded block. A set oh single-bit errors orm The QEC networks | will analyze are composed only of
qubits will also be referred to as an errorwéight m the single-qubit Hadamard transform and two-qubit
When the noise produces an effect large enough that theontrolledNoOT or controlled-phase gates and state prepara-
computer state cannot be corrected by QEC, the whole quation and measurement of single qubits in the computational
tum computation must be assumed to fail, since it is close tbasis.
certain that it will not produce a useful resuk=0). This An implicit assumption of this noise model is that failures
situation will be called arash QEC and fault-tolerant gate are uncorrelated and stochastic. The first assumgtiooor-
methods allow the crash probability to be much smaller thamelated failures can be relaxed without significantly chang-

Noise model
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ing the overall results as long as correlated failures hav&uch codes have the property that transversal contralbed-
probability sufficiently smaller than uncorrelated ones. In aand controlled-phase operations act as blockwise controlled-
single time step, uncorrelated memory failuresnimubits  NOT and controlled-phase operations, respectively, and trans-
give m-bit errors with probability versal Hadamard acts as blockwise Hadanj&rd2]. A fur-
ther property is useful for constructing fault-tolerant logical
(1) operations, though it is not needed for fault-tolerant QEC.
This is the property that the underlying classical code is dou-
bly even(i.e., the codewords have weights of a multiple pf 4
If correlated failures(for example, due tanbody interac- [5,8,12. I will restrict attention here to such codes.
tions between the physical qubitsave a probability small If the algorithm to be accomplished requirés qubits on
compared to this, then they can be neglected in a calculatiodn ideal(noise-fre¢ machine, then the real computer has
of the crash probability without significantly affecting the logical qubits encoded ii/k blocks, each block consisting
result. Unwanted systematic effects in a computing devic®f n physical qubits, wher& is larger thanK, by a fixed
will also cause a finite correlation between the failures inamount which can be<10k. The few extra blocks are nec-
nominally independent gate operations, but if the probabilityessary as workspace to allow fault-tolerant logical operations
for a weightm error to be produced by correlated gate fail- on the logical qubits using methods such as teleportation.
ure is small compared to the probability that the same erroris For each such “data block” the computer contains in ad-
produced by uncorrelated gate failures, then it is sufficient tdlition 2n,¢, ancilla blocks ofn physical qubits each, and
analyze the latter. 2n., sets of verification bits, each set containingH(k)/2
Similar statements can be made about nonstochastic cophysical qubits. The total number of physical qubits in the
tributions to the noise. An example is rotation errors: if acomputer is thus
given qubit is erroneously rotated times by a small angle
0, then if the angles are all in the same direction they add
coherently to give a net anglmd and error probability
~m?6?, whereas if the direction of rotation is random, a
random walk is produced resulting in a mean net rotatiom,e, is the number of pairs of ancilla blocks per data block
Jmé and overall error probability- m#?. The model treated Which can be prepared in parallel, in order to speed up syn-
here assumes the latter case; this will cover the main featuregfome extraction; it will have a value typically in the range
as long as the coherent contribution gives a net error similat—10.
to or less than the incoherent one for each application of the The verification bits are used to verify prepared ancilla
recovery network. states. The stabilizer of the zero stfa€)), of a single block
Recently Alickiet al.[23] have drawn attention to another (i.e., k logical bitg is generated by a set oflinearly inde-
implicit assumption, namely, that the noise is independent opendent operators. This set can be expressed such that it
the dynamics of the recovery network, which they show isdivides into a subset ofn(—k)/2 which consist of tensor
false for quantum reservoirs with long-range “memory” products ofX operators andr(+ k)/2 which consist of tensor
(such as electromagnetic vacuunfihis implies the noise is products ofZ operators. The ancilla state is verified once
both correlated and nonstochastic. The argument is subtiggainstX errors only by measuring the eigenvalues of the
and it remains an open question whether the structure of thiatter subsetthe one composed df operatory using the
correlations is of a type that defeats fault-tolerant QEC or hagerification bits. It was proved in Ref14] that this single
an influence small compared to the stochastic uncorrelatederification is sufficient to produce the correct fault-tolerant
part which | will estimate here. behavior when the detailed form of the set of stabilizers is
properly chosen.
A single complete recovery consists X{error correction
and Z-error correction. These two halves of the correction
A fault-tolerant error correction can be accomplished withproceed in parallel. While th&-error correction machinery
a variety of choices of exactly how the syndrome extractions preparing ancilla states, tt#error correction machinery
network is constructed. Here | will make choices which 1is coupling its ancillas to the data blocks, and vice versa. A
have previously argued to be close to optimal, when considsingle completeX-error correction of a single data block pro-
erations of noise tolerance and the overall required scale-ugeeds as follows, and théerror correction is identical ex-
are both taken into account. cept where indicate¢for diagrams se¢12,13,19). Correc-
Transversaloperation of a gate means the gate is appliedion of different data blocks proceeds in parallel.
once to each physical qubit in a block or once to each cor- (1) Preparen,e, ancilla blocks in|0(™).
responding pair of physical qubits in a pair of blocks for the (2) Operate a networks in parallel on each of these an-
case of a 2-qubit gat@lockwiseaction of an operator means cilla blocks. G consists of Hadamards and controlieds
the operator is applied once to each logical qubit in a bloclgates, and, if perfect, would produce the transformation
or once to each corresponding pair of logical qubits in a paif0(™)—|0®), .
of blocks for the case of a 2-qubit gate. (3) Using verification bits prepared in|@)+|1))//2,
The QEC code will be a Calderbank-Shor-Steé88S  verify the ancilla blocks by operating a netwdvkconsisting
code obtained from a classical code that contains its duabf controlled-phase gates between each ancilla block and its

n!

B(n,m,e)= eM(1—e)" ™

m!(n—m)!

N=[Nn+nef3n+k)IK/k. )

Il. CORRECTION PROTOCOL
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verification bits, followed by Hadamard transformation of corrections, so is valuable when the memory noise accumu-
the verification bits and their measurement in the computakating directly in the data contributes a significant part of the
tional basis. total data errors. However, much of the error in the data

(4) Ancilla blocks that pass the verificatidne., all veri-  arises by propagation from the ancillas or from the gates
fication bits were found in the stat8) when measurgdare  coupling data and ancillas, and these contributions are unaf-
deemed “good” and are used in the rest of the protocolfected byn,,.

Those that do not are left alone until they are reprepared at We will mostly be interested in the case of large quantum
the beginning of the next round of QEC. Letbe the frac-  algorithms, for which the failure rates must be small®o
tion that are good, so that we now hawe,., good ancillas. and g are close to 1, and the number of corrections in par-

(5) Couple 1 good ancilla to the data block by blockwiseallel is close ton,e,. The exception is when a concatenated
controlled-phasefor X-error correction or controlledNOT  code is being used, with error rates close to the threshold. In
(for Z-error correction, with the ancilla acting as control, the this casex andB can be of order 0.5 for the innermost levels
data as target. Hadamard transform this ancilla block andf the concatenated coding hierarchy, therefogg must be
then measure each of its physical qubits in the computationahcreased to allow sufficient ancillas for rapid correction.
basis. Use a classical computer to decode the classical bit The protocol can be refined primarily in two ways. First,
string thus obtained, and hence derive the error syndromene can operate a different and possibly more sophisticated
[13,16. scheme to prepare and verify ancillas in st8p and second

(6) If this syndrome is zero, no further action is taken. Theone can adopt a more sophisticated response to the syndrome
data block rests until recovery has been completed on all thgyformation in stepg7a) and (8a).
data blocks in the computer whose first syndrome was not For example, in stef8) one could verify the ancilla twice
zero. LetB be the fraction of blocks that give a zero syn- and accept if it passed at least once, or one could prepare two
drome. ancillas and then compare them by a transversal controlled-

(7a) Otherwise, couple —1 further good ancillas to the NoT followed by measurement of one. The former case re-
data block by blockwise controlled-phageontrolledNoT),  quires more time, which can be compensated by an increase
for X correction ¢ correction, wherer is a parameter to be in n,,, and the second case requires more ancillas. However,
optimized. Hadamard transform and measure these ancillagy attempt to improve the ancilla preparation can only re-
in parallel, as in stey5). sult in a modest reduction of the crash probabily given

(88 We now have a total of syndromes extracted for noise rate because the gates connecting ancilla and data
each data block whose first syndrome was non-zero. We agause much of the noise in the data, and these cannot be
cept any group of " syndromes which all agree, wheréis  avoided. This is discussed after E¢s0) and (11) below.

a parameter to be optimized. When a syndrome is accepted, An example of a more sophisticated procedure in step 8a
the data block is corrected accordingly by application of ones to extract more syndromes immediately if insufficient syn-
or more X gates(or Z gate$. If no acceptable syndrome is dromes agree. In his calculation, Zallz#] employed refine-
found, no further action is taken, so the data block goesnents of this kind. However, such a response is only valu-
uncorrected foiX errors ¢ errorg in this round of QEC. able if it can be made quickly, and this requires fast

Steps(7a) and(8a) will be modified below, but to under- measurements. It is physically reasonable to suppose that
stand the modification it helps to begin with the statementsneasurement of a qubit may be slow compared to one time
as given. step, where a time step is the duration of a two-qubit gate.

The syndrome repetition factorsandr’=<r will be cho-  When measurement is slow, it is better to couple syndrome
sen so as to maximize the probability of success. Increasingformation into ancillas as many times as will be required
r' reduces the probability of accepting a wrong syndromeall at once, and then measure the ancillas in parallel. There-
but increasing increases the noise accumulating in the datgore if one wishes to extract one further syndrome in step
block. Thean,—1 good ancillas per data block which were (8a) when insufficient syndromes agree, it is advantageous to
not used in step(5) are sufficient to allowr=<r,,=1  extract further syndromes as well and one has in the end a
+(ane—1)/(1-B). protocol close to the one being considered.

In the protocol described above we have,, good an- There is a modification to sted§a and (8a) which is
cillas per data block during each round of QEC, and weworth making since it requires only a slight change in the
require on averag@+r(1—B) for one correction. Hence classical part of the processing so has negligible cost. This is
we have enough ancillas to complei@.,/[3+r(1—pB)] to improve the case where no acceptable syndrome was
independent corrections almost in paraliefhe sequential found for a given block. In this case, at the next recovery
part is the gates that couple data and ancilla. Increasigg rather than extracting a furthersyndromes, we extraet’

reduces the time during which the data is left alone betweef= Wherer” is another parameter to be optimized, and then
make the best use of thie-r” syndromes available from the

most recent extractions. Typical values férare in the range
They cannot be completely in parallel because the data block caf2 tor. o
only be coupled to one ancilla block at a time. This is the most (7b) In the case in which at the last recovery sufficient
reasonable assumption, because it must be arranged that succesgy&dromes were found in agreement for the block to be cor-
syndromes have independent noise, so it is not sensible to try teected for the error-type under consideration proceed as in
couple one data block to many ancillas by a single operation.  step(7a. Otherwise, now extraat’—1 syndromes.
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(8b) In the case in which at the last recovery sufficientand transversal controlled gates between ancilla and data
syndromes were found in agreement for the block to be corblocks. The precise set of operations@andV is mostly
rected for the error-type under consideration proceed as idictated by the structure of the code, with some moderate
step (8a). Otherwise, now examine the+r” most recent room for flexibility in the time ordering of gates and in
syndromes obtained from this and previous recovery atwhich set of linearly independent parity checks is chosen.
tempts. Accept any group of syndromes which all agree, The total time taken by the operations, by contrast, and
giving preference to more recently extracted syndromes ifience the memory noise, is dictated not only by the logic of
there is more than one acceptable group. If there is an athe network but also by the physical capabilities of the com-
ceptable set of syndromes, correct the data block accorgputing device. It will be assumed here ththe computing
ingly, otherwise do nothing. device is capable of all the parallelism that is logically avail-

This reduces the noise in the data by making better use aible in the QEC protocolParallel operation of two or more
the syndrome information. Further refinements are possibleggates is logically available when the gates commute, so that
for example to adjust the case where three successive extrdteir effect is the same when they are applied all at once or
tions were necessary; but in any case this is already a smadequentially. For example, the assumption implies that a
adjustment so there is not much further improvement availtransversal gate operation takes a single time step, and that
able. parallel operation is physically available for sets of gates

within the G andV networks, which is useful for speeding up
A. Number of recoveries per computational step the ancilla preparation.
) , The G andV networks are related to the generator matrix

It might be thought that when the recovery time>1, 44 parity check matrix of the classical co@evhose code-
which is typ|c§1IIy the case, it would be advantageous to aly,, qsy give the state
low many logical gates to operate per recovery, as was ar-
gued by Zalkd 24]. However, if the logical gates are not on
independent bits, then it is dangerous to allow many of them |00, = E |u). €
between recoveries or the error propagation will start to ava- uee
lanche. Also, it might be argued that sometimes it is only
necessary to recover some of the blocks. However, typicallj.et H be the check matrix o€, then the parallelism avail-
the recovery time is long enough that noise accumulating ible in theG and V networks was shown in Ref14] to
all blocks is such that they all need correcting. Therefore thellow the controlled gates in these networks to be completed
choice adopted here is that the whole computer must be réa w andw+ 1 time steps, respectively, wheneis the maxi-
covered after any simple logical gate such as controlied- mum weight of a column or row of the matrik given by
or Hadamard is applied. On those occasions in a given algdd = (IA) wherel is the (0+k)/2X (n+k)/2 identity matrix.
rithm where many logical gates can act simultaneously, they further time interval is required for the Hadamard opera-
are implemented in parallel, followed by one complete re-tions and single-bit measurements and state preparations.
covery. Consider the case in which 2-bit gates such as controlled-

The logical gates are accomplished in a fault-toleranNOT are only available in the physical computer between
manner by sequences of appropriately chosen gates and measeighboring physical bits. In this case we have to allow some
surementg$8,9,14. To quantify the algorithm siz&Q pre-  time, and associated noise, for the transport of the physical
cisely, we must be specific about what type of gate we argubit information from one place to another in the computer.
counting, because some are easier to accomplish than othefsteasonable rough model of this is to suppose that the speed
For example, a fault-tolerant network for a Toffoli gate may and precision of a gate between qubits initially separated by
require eight recoveries, while a controllsdT gate may distancesscales as +s/D, where 1 accounts for the cost of
only require one or two. Since the main quantity to be calthe nearest-neighbor gate, asi accounts for the cost of
culated is the crash probability per recovery of a singlebringing the bits together from distanseln this model,D
block, the “computation size” will be taken to be the number =1 is a reasonable estimate for a computer that transports
of such recoveries when a code witl=1 (one logical bit information by repeated swap operations between fixed
per blocK is used. Codes witk>1 require more recoveries physical qubits, andD>1 describes a computer that can
because the fault-tolerant constructions are slightly morenove information around at little cost. In the QEC network,
complicated. It can be shown that for standard logical gatephysical gates are mostly between qubits that can be fairly
such as controlledtoT and Toffoli, networks folk>1 exist  close together, such as within part of one block, so a value
which involve approximately twice as many recoveries asD~ 100 is sufficient to allonD to be large compared to the

similar networks fork=1. Therefore, to make a fair com- mean distance spanned by 2-qubit gates involved in the
parison, it will be assumed here that for a given algorithm,QEC network 19]. In the estimates to follow, | will make the
on average twice as many recoveries are needed \khen simplifying assumption of ignoring the cost of the physical

>1 than wherk=1. separation between physical qubits. The results for the noise
o . . tolerance will therefore be valid only whes<D. | can use
B. Timing and non-nearest-neighbor coupling the results to roughly estimate what will happen for a com-

The correction protocol involves networlkd and V for ~ puter having smalleD by dividing the tolerated error rates
preparing and verifying ancillas, measurement of sets of bitspy 1+s/D. Calculations of for two quantum error correct-
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ing codes were described in RELI]. distributed randomly amongst all the bits, with probabilities
Another timing consideration is involved in the measure-set so that the mean number of failures was correct. This
ments and the classical processing of the syndromes. It is athange is not likely to affect the precision of the final result,
important assumption that the verification bits and the erroivhich in any case can only be compared to physical ex-
syndromes are in fact measured, and not treated by purelimples in an approximate way owing to the simple noise
unitary networks. This allows a substantial part of the pro-model.
cessing of this information to be done classically, which I The noise caused by logical operations on the data was
assume is both fast and precise. The time involved in meaartially modeled by adding a further gate failure to each
suring a physical qubit and completing classical processingubit in the data between each round of QEC. This com-
on the measured eigenvalue will be assumed td,pme  pletely accounts for single-block gates but not the error
steps, where one time step is the time required for gropagation between data blocks caused by logic gates be-
controlledNOT (or controlled-phaseoperation. Typical val-  tween data blocks. However, at any stage typically only a
ues fort,, are in the range %£t,,<100, which may be asso- few logical qubits are involved in 2-bit gates, and these can
ciated mostly with the measurement time, making the aspe timed so as to keep error propagation to a minimum, as
sumption that the classical processor has a clock rate mugBllows. If a controlled-phase logic gate is to be imple-

faster than that of the quantum processor. mented, it should be placed just aftérerror correction on
both blocks involved, since at this stage in their evolution the
[1l. NUMERICAL CALCULATIONS blocks temporarily have a minimal number Xferrors, and

only this type of error is propagatehto Z on the other

The effects of noise and error propagation in the protocoblock) by the gate. Similarly, if a controlledoT gate is to be
described in Sec. Il were numerically calculated. It is posimplemented, it should be placed just after the control bits
sible to do this in an efficient way because it is sufficient tohave hadX-error correction, and the target bifserror cor-
keep track of the propagation of the errors rather than theection. The cost of this is that sometimes one or a few
evolution of the complete computer state. blocks have to wait a little longer before being corrected, so

The C"* program keeps an array oh2- (n+k)/2 binary ~ that memory noise occurring directly in the data block accu-
digits representin errors in the physical qubits of one data mulates for longer. However, since this noise is not the main
block and one ancilla with its verification bits, and a similar source of data errors, the omission of this detail from the
array representing errors. Failures are generated randomlynumerical simulation is not expected to affect the final result
in every gate and time step, according to the model describegignificantly.
in Sec. | A, by adding 1 to members of teand/orZ error A single logical step consists of a single transversal gate
arrays at the locations of those qubits experiencingXan acting on the data block, followed by the complete QEC
and/orZ failure, respectively. The ancilla bits are reused forprotocol. The program repeats thistimes to represent an
the repeated ancilla preparations and for ¥nrand Z syn-  algorithm of Q steps. After each step, theandZ bit-error
drome extraction, but memory noise is added to the datarrays are examined to see if the accumulated noise repre-
block appropriate to the amount of time passing whep,2 ~ sents an uncorrectable error. If an uncorrectable error has
ancillas are available in parallel. occurred, the run is stopped and a record is kept of how

The action of each quantum gate in the networks is modmany steps were completed successfully. This is repeated a
eled by first producing random failure, using the model dedarge number £10°) of times and the relative frequencies of
scribed in Sec. | A, and then accounting for error propagasuccess or a crash are used to obtain estimates of the fidelity
tion. The error propagation part is as follows: a Hadamardf a quantum computer stabilized by QEC, see below. This is
gate on a single qubit swaps tXeandZ error values for that a type of Monte Carlo simulation.
qubit; a controlledNyoT gate adds th& error of the control The numerical calculations were carried out for two ex-
bit to the target bit, and th& error of the target bit to the ample codes, thg[7,1,3]] single-error correcting code ob-
control bit; a controlled-phase gate adds ¥error value of tained from a classical Hamming code and {i&3,1,7]]
the control bit to theZ error value of the target bit, and tie  three-error correcting code obtained from a classical Golay
error value of the target bit to théerror value of the control code. The classical codes in both these examples are perfect,
bit. so their quantum versions perform especially well.

It was found that a good pseudorandom number generator In order to interpret theX and Z bit-error arrays to dis-
was needed in order to get reliable results at low crash prolsover whether they represent an uncorrectable error, it is nec-
ability. For example, the generator “ran0” in Rd25] was  essary to recall the properties of quantum codes. The combi-
inadequate; “ran3” was used instead. nation of theX and Z errors represents an error operaor

The network of gates is obtained directly from the checkwhich has acted on the data qubits. However, the weight of
and generator matrices of the relevant classical codes, se@es not in itself determine whethé& is correctable. For
appendixes for details. The gate failures were added at thexample, ifE is in the stabilizer then it constitutes no error at
locations in space and time of the relevant gates. Thall. It is necessary to determine rather whetBéy), would
memory failures were not modeled exactly in the right waybe decoded tfy/), by a perfect recovery of the computer. To
however. To save program time, during t@eandV net-  do this | calculate the syndromésEy andHE; where Ey
works, rather than adding memory failures only to those bitandE; are the bit strings representing tieandZ parts ofE,
not involved in a gate at a given time, memory failures wererespectively, andl is the parity check matrix of the classical
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FIG. 1. Results of numerical calculations pf(symbol$ com- FIG. 2. Same as Fig. 1, but for highey,,, herean =103
pared with the analytical estimateurves at an,=g+r(1-pg).  tr(1-p8)].
The symbols indicate= vy (O), e= y/10(+), e=y/100 (X). The
calculation used=r'=r"=2 for the[[7,1,3]] code;r=4, r’ FQ:(l_H)Q_ (5)
=r"=3 for the [[23,1,7]] code. () [[7,1,3]], t,=25; (b)
[[7.1.3]], tn=1; (0) [[23,1,7]], t,=25; (d) [[23,1,7]], t,=1. The estimation method to be presented in Sec. IV was

used to predict the best choice of parameters,r” in the
codeC [Eq. (3)]. Each syndrome has a coset leader, which idast two steps of the protocol, and the choice was confirmed
the minimal weight error vector which can cause that synby repeated runs of the Monte Carlo calculations. One ex-
drome. If the weight of the coset leader for either syndromeyectsr’ >1 to be necessary so that the probability of accept-
is greater than the number of errors correctable by the quanng a wrong syndrome is not linear in the noise rates. It was
tum code, then an uncorrectable error has occtfrred. found that for the[[7,1,3]] code,r’=2 was optimal, and
The success and crash frequencies provided by the preery similar results were found for=2 or 3,r”=1 or 2. For
gram are interpreted as follows. Le(Q) andng(Q) be the  the[[23,1,7]] code,r=4, r’'=r"=3 gave the best results
number of runs in which the quantum computer crashed aor low noise rates and=3, r’ =r"=2 for high noise rates.
stepQ, and the number of runs in which the computer re-  Figures 1-3 show example results of these calculations.
mained successful at ste, respectively. The probability |n each case the points indicate the results of the numerical
that the computer crashes during s@pgiven that it has not  calculations and the lines show the prediction of the model to

crashed in steps 1 Q—1, is then be described in Sec. IV. The parameters associated with the
choice of the code are listed in Table I. The noise parameters

n{(Q) were chosen to bey,=vyi=vym=7v,=7, and results for

p(Q)= m (4)  three values ot/ y are shown. Changing, and/orvy,, by an

order of magnitude while leaving, fixed does not have a
With stochastic noise, this probability is expected to be in_large effect on the _results, because the networks are domi-
dependent of) once initial transient effects have died away, nated by the Z'qu't gates. The valuergf, can be freely
and this was found to be the case. The transient behavior Wg?osen, produc_mg one route for the trade—c_)ff between
found to last a few logical steps, with the general formscale-up and noise-tolerangg,, is accounted for in the nu-
p(Q)=p[1—(5/4)expQ/2)] for Q=1 wherep is the av- 10°
eragep(Q) for large Q. Hence it was sufficient to continue
each run to ten logical steps, and tage=[p(7)+p(8)
+p(9)+p(10)]/4. For each case, the simulation was re- _
peated untih;(Q=10) reached 100, so the statistical uncer-
tainty in p is expected to be=5%. The random part of the
variation inp which is visible in Figs. 1-3 is consistent with 1074 - » -
this expectation. FoQ>10, the value ofF, can be esti- 10 1‘; 10 10
mated as

N ' m

(a)

5

FIG. 3. Same as Fig. 2, but with reducegarametersy =3,
r'=r"=2 for the [[23,1,7]] code. The dotted lines show the

°Note, H can detect more errors than the quantum code can corbreak-even” condition5= v to facilitate a rough estimate of the
rect; the quantum code stabilizer is formed fréft not H. noise threshold from these results.
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TABLE I. Parameters of codes considered in the text. The cod&trategy for code concatenation, to be considered in
constructions are outlines in Appendix A. The parameteasidN Sec. VB.
are the maximum weight of a row or column of the latin rectangle  The main route by which the quantum computer crashes
for A, and the number of 1's iA, respectively. The number of gates s that too many errors accumulate in the data block between
that act in parallel in most time steps of the generation or verificagne round of correction and the next. These errors are either
tion network of a given ancilla itl, /w. The final column gives the  caysed directly there by noise in the data qubits and the gates
value ofr which was fO‘f/“d to be optimal whep=100¢=10""  \yhich act on them, or they are the result of error propagation
tm=25, withr—1=r"=r"+1. from the noisy ancillas. The fault-tolerant design of the QEC
network ensures that each failure can only cause one error in

Number Code type n k d W ™ ' any given data block, and more generally each sen &dil-

0 None 1 1 1 ures can only cause total error of weightin a data block.

1 Hamming 7 1 3 3 12 3 Let g be the number of independent gate failure locations
2 Golay 23 1 7 11 77 4  Which can result in 1 error in the data block, asde the

3 Golay a1 3 5 7 63 4 number of independent memory failure locations which can
4 BCH 31 11 5 15 122 4 resultinone errorin the data block, during a single recovery.
5 OR 47 1 11 15 281 5 The probability that an unspecified error of weightippears

6 OR 45 3 9 15 255 4 in the data is given to good approximation by

7 QR 43 5 7 15 229 4 m

8 BCH 63 27 7 27 350 4 ' — : ;

9 BCH 63 39 5 27 328 4 B(g.5.m.7.€) ,Zo B(@.J.7)Blsm=].e), (6

10 QR 79 1 15 27 801 5

11 QR 77 3 13 27 759 5 whereBis the binomial function defined in E@L). The sum

12 QR 75 5 11 27 713 5 gives the probability of no gate failures andmemory fail-

13 OR 103 1 19 31 1265 6 ures, plus the probability of one gate failure and-1

14 OR 101 3 17 31 1215 5 memory failures, and so on up to gate failures and no
15 QR 99 5 15 31 1165 5 mMemory failures. It involves a slight misscounting since
16 QR 97 7 13 31 1119 5 Ssometimes different failures have the same effect, so some
17 BCH 127 29 15 47 1939 5 Setsofmfailures produce an error of weightm. However,

18 BCH 127 43 13 47 1802 5 this misscounting is not expected to give the main limitation

on the accuracy of the whole calculation for the networks
under consideration.

merical calculations simply by adjusting the amount of AN error is uncorrectable if it has a weight larger than
memory noise in the data bits occurring during each round ofn the limit of small v, €, the expressiomp=2B’(g,s,t
QEC. It was convenient to treat the case whgggvaries so  +1,2y/3,2¢/3) is a rough estimate for the crash probability
that the number of parallel corrections is the same for alper block per recovery, and hence it is only necessary to
values ofy ande in a given set of calculations. estimateg and s for the QEC network in order to roughly

The results in Fig. 1 are fagn,,/[B+r(1—B)]=1 (i.e.  estimatep for a given code. The factors of 2/3 account for
Nep=1) and those in Fig. 2 are fon.,/[B+1(1-pB)]  the fact that of all the errors affecting any given qubit, on
=10 (i.e.,ne;=10). Figure 3 shows the effect of reducing  average 2/3 requiné correction and 2/3 requirg correction.
this is expected to make matters worse at very lpwbut  This is true for errors of any weight because they are caused
better at highery. Comparison of Fig. 3 with Fig. 2 shows by uncorrelated failures. For example, of the 9 possible
that a well-chosen reduction in makes possible a useful 2-qubit errors, 2 requirX correction of the first qubit alone,
increase in the noise threshdlsee Sec. V B 2 of the second qubit alone, and 4 of both qubits: these

The comparison between the numerical results in Figsnumbers are correctly given by the model as (@/3)x (1

1-3 and the analytical prediction will be discussed in Sec._ 2/3) (twice) and 9x (2/3)x 2/3. The overall factor 2 ip
IV B after the analytical estimation method is described. g hecause both the error and theZ error must be correct-

able.

For a more precise estimate pf the protocol must be
analyzed more fully. A more complete analysis is indicated in

The numerical method permits the crash probability to berig. 4, which gives a probability tree for the full protocol. |
calculated for small codes and high noise rate. A quantunassume the guantum computer crashes not only when an un-

computer performing a large computation will require lower correctable error occurs but also when a sufficiently bad syn-
noise rate and larger codes which are able to correct more

errors. The Monte Carlo simulation is too slow to be useful
in that regime. In this section | present a general analysis of *There are correctable errors of higher weight, such as members
the QEC protocol which permits an estimate of the crashf the stabilizer, but these have negligible probability compared to

probability to be made for any code and noise rate. Theaincorrectable errors when the noise is uncorrelated and good mini-
analysis will also be useful in order to understand the bestum distance codes are used.

IV. ESTIMATE OF CRASH PROBABILITY
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andV networks, that is, the number of locations in space and
time where a qubit is resting and so experiences memory, but
not gate failure:

Np={wn—2N,+3(n—k)/2}
+{w(n+(n+k)/2)—2Na+(n—k)/2}.

The parametew was discussed after E(); the first term is
the number of holes i, the second is the number of holes
inV.
The factors of 2/3 and 1/2 in E¢8) account for the fact
FIG. 4. Probability tree to aid the calculationpf The branches ~ that of all the failures occurring, some cause pubebrror in
are labeled as followsa) First syndrome extracted is zer) the ~ the ancilla which does not cause a wrong syndrome, and
single syndrome extraction left a correctable eri@j;r’ of the = most of those that causéerror result in the ancilla failing
most recently extracted syndromes are found to agethe ac-  the verification, so they do not affect good ancillas. The
cepted syndrome is righte) the multiple syndrome extraction lefta terms involvingy; andy,, are the contributions from failure
correctable error. The crash probability is the sum of the probabili-of the final Hadamard gates and measurements of the ancilla
ties of the branches terminated by filled circles. bits. The further term involvingy, is from the controlled
gates connecting ancilla to data. Failures of the preparation
drome is accepte(the latter is discussed further in Appendix of ancilla bits in|0) do not contribute td®,, becausd0) is
B). I take into account the fact that the valueggainds will ~ an eigenstate dZ. The term involvingt,, is the contribution
depend on how many syndromes have been extracted befofiggm memory failure in the ancilla during the time taken for
an acceptable one is found allowing a correction to takehe verification bits to be measurekEquation (8) is dis-
place. I will use the wordecoveryto mean one attempt to cyssed further in Appendix B.
get a consistent syndrome for each type of efvdrich will The fractione defined in stefi4) of the protocol is given
involve either 1 or orr” syndrome extractions for each type approximately by
of error followed by the corrections that take place if suffi-
cient agreement among syndromes is found in &¢pf the
protocol. The woratorrectionwill now refer to the last stage
of recovery only. Thus for any given data block sometimes_, . . . . .
several regover)i/es have to talzegplace before a correction car#"S IS oné minus the probablhty that a failure of tymar_ Y
be applied. occurs in theG andV net\{vprks, since almost all such failures
Consider the recovery of a single data block. | will con- &€ detected by the ve_rlflcatlon. . -
sider just theX errors in the data block, and tixesyndrome, In what follows, | \.N'” be calculating probabilities fax
bearing in mind thaX errors in the data are produced partly errors to b_e present in the data block when lheyndr(_)n_we ]
by the network that extractZ syndromes. The complete extraction s per_formed._ These errors have t_hree origins:
crash probability of the computer per recovery per data bloclEhe gates associated with the logical operation that evolves

is assumed to be twice the crash probability associated witﬂ‘e _Iog|cal quantum computation; tHeZ gates that link an
the X-error recovery of this single block. ancilla or ancillas to the data block fatsyndrome extrac-

Let P, be the probability a verified ancilla, i.e., one that 10" and the network for the precediagsyndrome extrac-

was deemed good in steg®) and (4) of the protocol, has tion (including error propagation from those ancil!as to the
one or moreZ errors, so that it will produce an incorrect 92ta- In @ given recovery either 1 aror r” extractions of
syndrome for the data block: each type take place, | calculate the probability of each case

and deduce the average effect.

a=1—5(Ngyy2tny,+Npe). 9

n 1 1 Let g(ry,rz) be the number of independent gate failures
PZazZ B’(ENG\A— N1+ vy /y,+ ym/yz),ENh re.sullting in anX error in the da_lta when a network accom-
=1 plishing ry X-syndrome extractions ang, Z-syndrome ex-
2 2 tractions is applied. For the same network, 3ét,) be the
+tan,j 3 72,§6) (7) number of independent space-time locations of memory fail-

ures that result in a error in the datas does not depend on
ry because propagation from the ancillas used for

1 2 1 2 ; :
=3 7’2NGV+§(7’2+ Y1+ ymn+ 3 eNp+ Fetan, (8)  X-syndrome extraction produc@snot X errors in the data.

whereNgy= 2N+ (n+Kk)/2 is the total number of gates in 9(rx.rz)=nlL+rx+(1+pt)rzl, (10
the combineds andV networks; it is dominated by theNgy
term, whereN, is the number of 1's in the\ part of the s(rz)=nltg+ (vt+tyrz], (11)
check matrixH=(1A) from which both theG and theV

networks are obtainedyy, is the number of “holes” in th&c  where
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B+r(1l—p) tiplied by the probability (1 P5,) that this fact is indicated
tr=(2w+1+2tp) ey (12 correctly by the first syndrome extracted. | estimate
and u,v are constants of order 1 to be determined. The frac-
tion B was defined in stef®) of the protocoliy is the time
the data bits “rest” between successive recoveries. The esti- s
mates ofg ands are the most important to get right, because +(1— B’( 11) S(r).0= v, = ) 13
they lead directly to the probability of uncorrectable errors in (1=A)B’| 9(Lr),s(r), 3Y2:3€) (13
the data. In expressiofl0) for g the first term is caused by
then elementary gates of a single transversally applied logic B=Po(1-Pz,). (14)

gate which may be present between recoveries in the proJ[lehe reasoning is that since the lasterror correction, the

col adopted, the second term accounts for failure of the trans

versal ©Z gates connecting ancillas to the data block to eX_Z-syndrome extraction network required either 1rosyn-

tract X syndromes, and the third term the effect of thedromes,. with probabilitiess and .(1_'3)’ respectively, and
Z-syndrome extractions. In the last case only, error propag nly a singleX-syndrome extraction has been undertaken so

tion from the ancilla causes errors in the data. These errors /& because we are at ste@) of the protocol. Note that for
are caused by failure of the last gates in theetwork; their ~ Ed- (13) | have assumed that whenever the first syndrome is

effect is estimated by the termutr in g by the following nonzero,r are extracted, which results in a slight underesti-
reasoning. The last gate &fto act on each ancilla bit can mate of/3 since in fact sometimes’<r are extracted. Also,

leave anX error there, which is not detected by the verifica- | 19n0re the variation of from one recovery to another. The
tion bits; most pairs of gate failures from the last or thelMmprecision associated with these simplifications is small

penultimate set to act on each ancilla bit can leave undete€°MPared to the imprecision of the whole calculation. Equa-

ted single or doublé errors; triples of gate failures from a 1ons (11)—(14) are circular, but enablg to be found by
still larger set can go undetected, and so on. This means thijgration, starting from a value in the range<@<1.

the distribution of undetected ancilla errors caused by fail- 8t P1(rx) be the probability that an uncorrectable error
ures inV is not binomial: the number of failure locations that @ccumulates in the data whep X syndromes, and either 1

can contribute to an orden-failure is not independent s~ O Z syndromes, are ex’Fracted in a single recovery attempt.
but increases approximately linearly with | can neverthe- | take an error of any weight abovdo be uncorrectable, so

less use a binomial as an approximation to the true distribu- n

2 2
PO:BB,(g(l,l),S(l),o,g’)/z,gf)

: A - 2 2

tion, as long as | make the approximation sufficiently accu- ~ / Y

rate for the most important probability | wish to calculate, Par) m:EH—l AB (g(rx,l),s(l),m, 3 7’2’5-*’»6)
which is the probability of uncorrectable error in the data

block. For at-error correcting code, this is the probability of +(1_ﬂ)5’(9(fx r),s(r),m EYz Ee)
order-¢+1) failures. The terrmutr, in g, and a similar AR

term ins, approximately counts the relevant locations, where (15)

the constantg. and v were found by fitting the theory to the
numerical results, see Figs. 1-3 and Sec. IV B. The valueg js found that for a viable computéi.e., p<1) this is the
©=0.35, v=1 were found to give the best fit. o

Note that, as remarked in Sec. Il, improving the fidelity of
the ancillas can only slightly reduag because it can only
reduceu to a minimum of 0, and it can only allow a slight
reduction in the syndrome repetition parameters,r”.

The first term in the expression faf{Eg. (11)] accounts
for the memory noise in the data block during the titge
which has to pass between successive recovegesan be
reduced by increasin@e,. If tg<<(t+r), then the syn-
dromes for the next recovery are extracted before the mea- r
surement of the current ones can be completed. However, as Pagreé1)= 2 B(r,m,1-Pg,) (16)
long as the classical processing of the syndrome information m=r
takes this into account, it need not be a problem. The rest of
Eq. (11) accounts for the memory noise in the ancillas which?

largest contribution to the overall crash probability

Let Pogedj) be the probability that in steg8) of the
protocol sufficient syndromes are found to agree for correc-
tion to be completed, whergis the number of successive
recoveries since the last time ahsyndrome was accepted
for the block in question, so that afrerror correction took
place. | argue that agreement is found wheneveor more
good syndromes have been prepared wittbatror, hence

nd, using the protocol as in stefi®), (8b),

is not detected by the verification and can propagate to the rr
data. The terrmwtr, follows from an argument similar to ; "
>1)= + - .
that just given forg, and the other term accounts for the Pagied] = 1) Er B(rr",m,1=Pz) (7

period of waiting while the verification bits are measured,
which has to be completed before the ancilla is coupled tdThis estimate breaks down at=0, but | always require
the data(if it is found to be good r'=1.)

The fractiong defined in stefg6) of the protocol is equal Let P, be the probability of a crash caused by a group of
to the probabilityP, that the data block has n¢errors, mul- r’ syndromes conspiring to agree on a syndrome, even
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though they are all wrong, which would result in the wrongand
“correction” being made to the data. | estimate

Pus=Nov(72/3)" +Np(e/3)". (18)

) j—]_
522 [ H [1- Pagreéi )]} Pagree(j)[Pws+ (1- Pws)Pj]/j-
. ’ =2 |i=1

P.s is much smaller thanK,,)" because to accept a wrong (22)
syndrome it is necessary that tesameerror in the ancilla

happens i’ independent ancilla preparations. Any single

failure will cause the ancilla to be in a state of nonzero syn-The final division byj accounts for the fact that | am calcu-
drome. Since there are many more possible syndromes thadating an average crash probability per attempt at recovery.
individual failure locations in the ancilla preparation net- The logical quantum computation continues whether or not
work, it is rare that two different failure locations give rise to any recovery attempt gave a consistent syndrome.

the same final error in the ancilla. Therefore the probability

of obtaining an ancilla state of the same nonzero syndrome

in r’ independent preparations is, to lowest ordey;s, the A. lllustrative example

probability that the same failure happens in all the prepara- To illustrate the main features of the calculation, consider,
tions. This is approximately;(/B)" multiplied by the num-  for example, thé¢[127,43,13] BCH code, for parameter val-
ber of different gate failure locations, plus a similar termues y=10 4, =109, Nrep= 2.5, t,=25, and we choose
accounting for memory failure. The factors 1/3 appear ber =5, r'=4, r"=3. The code hasv=47, Ny=1802 (see
cause almost all failures that produ¢errors are detected by Table ) giving Ngy=3689, N,=8893. In each time step
the verification, so do not affect good ancillas, and thosesN,/w=38 gates act in parallel on each ancilla during
which produceX errors do not produce a wrong syndrome. preparation and verification; the recovery timetjs=143
Note, Eq.(18) does not include terms for the noise in the time steps.
gates connecting ancilla to data, nor the memory noise while These parameter values give=0.74, 3=0.8. Suppose
the verification bits are measured, nor noise in the ancillahe computer consists of ten blocks. Of the 25 ancillas pre-
measurement. This is because noise at these locations caugesed forX recovery, on average 25=18 are found to pass
predominantly single-bit errors in the ancilla, and these arghe verification. When the first syndrome is extracted for
almost harmless—see Appendix B—the further contributioneach block, 18=8 are found to be zero, 2 nonzero. For
to P, is negligible when (€)%< y, and yﬁ1< Vo. =5, a further 4 syndromes are extracted from each of the
It is found that for small codes and/or high noise rate,two blocks needing further attention, this uses up the remain-
smaller values of ,r’,r” are better, in order to redu@® for  ing 8 ancillas that passed verification. The ancilla error prob-
large codes and/or low noise rate, higher values,of,r” ability is P,,~0.1 and the probability a data block has no
are better, in order to redude,s and to keepP,q.e Suffi-  errors isP4=0.9, therefore the typical situation is that one of
ciently large. Oncer’ is large enough, the value gf is  the two blocks being recovered is found in fact to be free of
insensitive toP,, because it is dominated by the other terms.errors (its first reported nonzero syndrome was wrong,

— o . caused by & error in the ancilla preparatigmvhile the other
Figl Zagsngvgﬁﬂce:ylat@, using the probability tree shown in has a correctable error. The probability that 4 of the 5 syn-

dromes agree i®,4.6=0.8 so the error is usually identified
- _ _ _ first time, but occasionally this must await the next recovery.
P(CAyih )=20BP1(1) (1= B)[ Pagred 1) In the latter case the subsequent recovery of the block in

X[Pust (1—=PuoPi(r)]+S]}, (19  question has +r”=8 syndromes available, the probability
that 4 of them are mutually consistent~s0.998.

where C refers to the set of parameters The probabilities of uncorrectable error in the data

{n. KW, Na T Tt Mgk @0A i} ={Y1,72.7p.Yml- S (pranches andd in Fig. 4) are

is the sum of the probabilities associated with the lower

branches of the tree when the first recovery attempt gave no  P;(1)=3x 10 3g+5x 107191 B)=3x 101,

consistent syndrome. To calculate these, rather than keeping

account of all the possibilities, | use an average for the num-

ber of Z-syndrome extractions that take place in each recov-  Py(r)=8x10 28+2x10 91— B)=4x10 %,

ery. This average is

r=p+(1-B)(Pagred 1)r +[1—Paged1))r"]. (20)  while the probability of accepting a wrong syndromePigs
3 =5x10 15 The overall result ip=3x10"1. It is seen
| then have for the probability of uncorrectateerror after  {hat the main contribution to the crash probability comes
a total ofj>1 recovery attempts since the last correction. from the occasions where repeated syndrome extractions are
required for bothX and Z recoveries, leading to too many
errors in the data. On these occasions the number of gate and
memory failure locations ig(r,r)=2540,s(r)=39 000, re-
(21 spectively, therefore gate failure dominates wlkeny/15.

- ’ f "o SN 2 2
Pi= > B'lgr+(—1)r"jr),s(jr),m=y, €
m=t+1 3 3
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B. Comparison of the analytical estimate 10% ——rr

L | v ! L | %19
and the Monte-Carlo simulation - (a) L4
The prediction made by Eq$8)—(22) is shown by the 10°F o o " <0 -
curves in Figs. 1-3. The main feature of both the numerical [ B "xu £
results and the analytical estimate is thmtvaries as § 10 CoL e . .
+const €)' in the limit of small y, e. This is seen, for & [ oA . x2 P ]
example, in Eq(15), where a useful pair of approximations ~ 10F ¢~ “# 7 % 5 o f ¥ -
* ot :
10’ | .
B,(gvs:m!‘)/! 6):B(glm!7+ SE/g) (23) L P :D‘@».v 8 9 G ]
Y I e R | e
_[gytse™ 10' 10° 10’
| mle (24) Scale—up N/K
10° r
The first approximation is quite accurate in the regime under o) '
consideratior(small y, €), while the second gives the right oF X
order of magnitudee is the base of natural logarithms and | 10 3 15 x“‘ Ao ]
Iuseg Stirling’s formula to simplifyn! (even thoughm s not 1015;_ xw..~-’€:7 e o k " ]
arge. TR, A ]
The values of the fitted parametersand v were adjusted S . . 7 T .
to get the best fit between the curves and the Monte Carlc 10°F i «*3:4 L o L .
“data.” This implies that the curves must match the data in at L G ]
least two places. The fact that the curves also correctly shov 10° | -4 +++ 3
all the major trends as a function ef y, Ny, t,, and the F o eoe o 8 ]
code parameters is evidence that the analysis is sufficienth ° L. L LI N .:‘.'12 St e .
i ; it} 10 10 10
complete to be useful. The analytical estimate predictsghat Scale—up N/K

falls slightly faster tham/!** in the region 10%<p<10~2
because the mean number of syndromes extracted is falling FIG. 5. AvailableKQ for a variety of codes, plotted against the
asf increases towards 1. The simulations are consistent withcale-upN/K of each code ah,=1, t,=25. () €= /100, (b)

— — — —5 — 4
this but in the absence of simulated point&paIlO*“ it was ;(}gég)) -erg((:eh Sc?)tdse ?1;; ZSUlit\;senarsiazt-:J lothéiz),delsoan(sﬁr:(’jicated
not possible to confirm it thoroughly. The Monte Carlo simu- . 9 P

. . . by an index number placed by each pointyat 10~ °, which refers
lation was too slow to explore the latter regi@ach point at to the list in Table I. The dotted lines joining the points at given

H: 10" * took many days to compute on a modern worksta-gre to guide the eye.
tion).
The agreement overall is good. The malnt still mod-  of the termsut and vt in Egs.(10) and(11). Simulations of

es) discrepancy is that in Figs. 1 and 2 the analysis undermore codes, especially codes correcting more errors, would
estimates the numerical results, while in Fig. 3 it overestifye necessary to give further information.

mates. In other words, the effect of changing the
parameters is greater in the numerical simulation than in the
analysis, in the region of large and smalle/ y. By adjusting

w andv it was possible to get a better fit either to Figs. 1 and The estimated crash probabili(9) was calculated for a
2 or to Fig. 3; the choice shownu(=0.35, v=1) represents Vvariety of codes with scale-u§/K in the range 7—400. The
the best compromise. gate and measurement noise parameters were 3gt=to/,

There is a small systematic disagreement in gradient foe 5, = Yo=Y, andawas calculated for several values pf
several of the sets of results, especi_ally in Fig. 1. This wouldyith e= /100 and withe= /10, att,,=25, Nrep=1. The
be enough to cause a disagreement iny an order of mag-  values ofr,r',r" were adjusted to minimizp for each case.
nitude if it persisted to lowery values of ordery=10" 14 naye a useful comparison, | then consider matirectly,
(where a direct comparison between numerical and analytic|,;; yather the number of qubit gaté€ which the stabilized
results is not availabje However, the analytical model al- ¢,y ter can achieve, allowing for the fact that codes with
ways produces the power-law behavipr y'** atlow y (&8s k=1 allow slightly more efficient fault-tolerant gates than
long asr’>t) so the disagreement in gradient will not per- codes withk>1, cf. Sec. Il A. Using the method of “propa-
sist to lowy, and in any case whem<10 8 even an order gating the gate through a teleportatiof@] only approxi-
of magnitude error irp will only be a relatively small effect Mately twice as many recoveries per gate are needed when
in the results to be obtained from the model in the rest of thé&c>1 than wherk=1 [12], soKQ=1/p(0.5/p) whenk=1
paper. (k>1). The resulting values d€Q are plotted in Fig. 5 as a

The part of the analysis which can only be confirmed to afunction of the scale-up for the code employed. The codes
limited extent by the simulations is the linear scaling with themselves are identified in Table I.

C. Performance of a selection of codes
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Clearly at given values of, ande one would choose the The second way to use a concatenated code is to make
code of smallest scale-up which allows a desikeggl to be  more use of its structure, by recovering the encoded level-1
attained. The main conclusion to be drawn from Fig. 5 is thagjubits inside the network that prepares level-2 ancillas. For
for y=<10%, the efficient codes such g$127,43,13], example, if after every gate in the level-2 network, a level-1
[[127,29,1%] perform well, but at higher noise level other recovery is applied to all level-1 qubits, then the overall be-
codes such as those numbered 1 to 9 in Table | should beavior is described by the analysis given in Sec. IV, i.e., Egs.

adopted, at a cost in scale-up. (8)—(22), applied to the blocks of level-1 qubits. The gate
and memory failure probabilitieg, ,e; of the level-1 qubits
V. CODE CONCATENATION are estimated as the crash probability per block per recovery

associated with the inner code, i.g,=€;=p(C',v,€), and
In order to get still smaller crash probabilities, and hencethen the crash probability of the supercode s
larger algorithms, we need codes that can correct more e[ia(co,n,el)-
rors. Such codes exist, for example[[$11,241,3]] BCH We can improve matters further by distributing the inner
code, but they necessarily involve more parity checks andecoveries more intelligently. The main point is that it is
therefore larger networks to extract syndromes. The increasgaiter not to recover resting qubits when this will make them

in g, s, andPz, trades off against the increasetirand as @ more noisy. To do better, after the initial preparation of the
result these codes only become useful at low values of thgye|-1 qubits at the beginning of the level@ network, a

failure rates,y<10"°. _ ~level-1 recovery is applied in parallel to all level-1 qubits,
Code concatenanon enables this trade-off to be avoided &t thereafter recover only nonresting level-1 qubits, just be-
the cost of increased scale-up. fore a gate acts on them, with one exception. The exception
is the qubits in the data block, which rest for a long time if
A. Crash probability of the concatenated code tk>1, so these qubits are given level-1 recoveries at the

same rate as the qubits in the ancilla. With this method, each

rrmi L A . level-1 qubit is recovered on average once everyl

=[[n',k',d"']] can be concatenated with any other cdzfe

:&no,ko,d%], but for quantum algorithms t);le task of con- T Nﬁ/Z_NgVZZ steps of. the level-2 ingtwork. The ef'fe?:ti can

structing logical gates is rendered much more simple if D€ estimated by replacing the terittg in Eq. (11) by 7n'tg

=1 and both codes are CSS, therefore | restrict attention t#n the calculation ofy;=e;=p(C',y,€), and then for the

this case. Withk'=1, n'n°® physical bits are used to stok&  calculation ofp=p(C°,v;,€;) use the fact that the memory

logical bits. C' is called the inner code, and® the outer noise in between gates of the ou)V networks has been

code, and their combination is called the supercode. Thabsorbed intoy,, therefore set

physical bits will be called “level-0" bits. Considen®

groups containing' physical qubits each. To build the logi- Np=0, th=1, (26)

cal zero state of the concatenated code, first prepare each

group ofn' level-0 bits in the logical zero of' (e.g., by ~and replace®ty by n°tg/». This more intelligent placement

using a fault-tolerant measuremgriEach such block is then of inner recoveries was found to redupefor all the cases

one level-1 bit. Next use transversal Hadamard andlotted in the figures.

controlledNOT operations to evolve the°® level-1 bits into A small saving on ancilla preparation can be obtained by

the logical zero state oE°. This network may or may not reusing then® level-1 qubits of any ancilla that failed its

involve a level-1 recoveryi.e., recovery of the level-1 qubits level-2 verification.

in parallel, using the inner cotlbefore each transversal gate. | show in Fig. 6 the effect of concatenating the codes of
A concatenated code can be regarded in two ways. First, ifable | with the 7-bit or 23-bit code once or with the 7-bit

can be regarded as a single CSS code of parametetdde twice, estimated by the method just describedyat

[[n'n°Kk°d]] whered=(d'd°+d'+d°—1)/2. The methods =1, t,,=25. The main conclusion is that the 23-bit code is a

described in previous sections apply directly, the only changéetter choice than the 7-bit code, since for given scale-up it

being in the way the classical processor interprets the syrpermits the higheKQ. It is clear that a great increaseKrQ

dromes. Owing to the code construction, to be uncorrectablg available from the concatenation of the 23-bit code with

an error must be composed of more thtr-(d'—1)/2  another code. In particular, the combinatiorC'

single-bit errors in each of more thaf=(d°-1)/2 sub- =[[23,1,7]], C°=[[127,29,1%] gives a very stable com-

For stabilizing quantum memory, any cod€'

blocks. The probability for this is approximately puter for scale-up around 1000.
0 +0 i4i
B(n°t°+1B(n',t'+1,p)), (25 B. Threshold
wherep is the single-physical-bit error probability. Eq45) So far | have calculated the size of computatiQ

and (21) for P have to be adjusted accordingly. This first Which can be achieved for a given scale-up and given values
approach produces useful behavior when the 7-bit and 23_bqf the failure prObab”itieS}/,G. Further use of concatenation
codes are combined once with themselves or each other, bl@ads to the “threshold result,” which is the result that the
for larger codes th& andV networks become too large to situationp—0 can be obtained for values of € below a
allow recovery unless the noise ratgsand e are very low.  thresholdy,, €, which does not depend dfandQ, assum-

042322-14



OVERHEAD AND NOISE THRESHOLD OF FAULT-. .. PHSICAL REVIEW A 68, 042322 (2003

1060_ — T —T—TrTr — T - o o
@
5 A T 107k ¥
of ’ s S 107 2
10 L x X . vé’o V‘: + ] e F 3
o . ,"n.. +
-5
10° Ll 1 10 " 3
10° 10° 10 10°
Scale—up N/K
60
10:(b). o o R 107° N C e
: ] 107 0™ 10°
F ] Y
401 p
10 : . X 1 FIG. 7. Threshold valueg, and ¢, for t,,=1, 25, and 100.
o F N PR ] Values in the range 0.84(e/y)<1 are plotted. Full curves, con-
S © EXSS R ] catenated[23,1,7]]; dashed curves, concatenaf¢d,1,3]]; dotted
10203_ p 3 curves, concatenaté¢fi47,1,11]. The highest value df,, produces
X & Lo ., 4] the lowest curve of each triplet.
o - o e 2]
F o o o og 0o O e L0 "-_+++ * 1 ) ]
oF o "°°I . ] level, and then higher levels are modeled by takiper 1
10 10% 10° 10° 10 without any adjustment td\,,. The adjustment ofy by 7
Scale—up N/K described just before E6) has negligible effect when,,

_ is large, so does not affect the maximum possible threshold.

FIG. 6. AvailableKQ vs overall scale-up for codes concatenated  The calculated threshold is shown in Fig. 7 for the codes
with an inner[[7,1,3]] Hamming (;ode Q) or [[?3,1,7]] Golay [[7,1,3]] Hamming,[[23,1,7]] Golay, and[[47,1,1] qua-
code (x) or concatenated twice with the Hamming code)( The gratic residue, for three values tf at the innermost level,
results are glve7n4for the same set of codes as in Fig. 5 and Table ind for 0.0% e/ y=<1. It is seen that if the measurements are
The casey=10 ", tm=25 is shown, for a computer with,=1 fast (t,,=1), the two smaller codes give a similar threshold
for both i d out d = /100, (b) e= y/10. m_ =) . . '
or both inner and outer code@) €= /100, (b) e= that of the Golay code being somewhat higher. For the more
physically realistic case of slow measuremerits1), the

ing that the noise per qubit and per gate is independent of tr;aolay code offers a threshold higher than that of the Ham-

size Qf the computer an_d IS StOCh.aSt'C gnd uncorrela_ted, a ing code by a factor 2—-5. The Golay threshold values are
sufficient parallel operation is available in the computing de-

: ; 3 - - : 104
vice. The threshold result may be proved by analyzing th In the region of 10~ whenty, =1 ore<y, falling to ~10

Swhent,>1 ande=
. m Y.
case of a particular cod_e such[49,1,3]], concatenated to It is instructive to compare this threshold calculation with

arbitrarily many levelsp—0 is obtained when the crash previous estimates. Previous calculations have all adopted
probability at each of the higher levels is less than that of thgne concatenate 7,1,3]] code rather than the Golay code,

level below. _ and typically no statement is made about the measurement
The protocol | have adopted is not guaranteed to be thgye t,, but a valuet,=1 is implied. Gottesman and

absolute optimal one, and in particular a protocol that has gyegkill [7,18 quoted as a “conservative estimateZ,
higher scale-up and allows a slightly higher threshold may_ 15-5 \yhen memory noise dominates, apg= 10" when
exist. However, the protocol has been optimized in Severa\lnemory noise is negligible; in subsequent work the same
ways, such as minimizing the number of gates that connect ,ihors derived approximate values 60~ for both param-

ancillas to data, and minimizing the time to verify ancillas. gters with the caveat that these were overestimates, but that
Therefore it is unlikely that another protocol will offer sig- o true value would exceed 16 [26]. Aharonov and

nificant increases in the thresholld, under the assumptions th@en-Or[lS] found 1076 in a model where measurement and
have been made about the noise and the timing. After thgjassical computing is avoided, where one expects a lower
first two levels,p is O( " 1)), i.e., varying quickly withy,  threshold. Zalkd24] found e,=10"* when memory noise
and therefore the threshold is insensitive to details of thgjominates, and,=10"2 when memory noise is negligible.
protocol at higher levels. In his calculation Zalka assumed many logical gates can take
An estimate of the threshold is immediately available byplace between recoveries without causing an avalanche of
using the analysis described in Se_c. V_A, eitendgd to mangrrors. My values for the case of, =1 and the[[7,1,3]]
levels. | use the analytical estimape=p(C,p._1,PL_1): code aree,=1.3x10"2 and y,=3x10"3, where recovery
employing the adjustment given by E@6) for the second takes place after every logical gate so that the avalanche is
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avoided. My values are significantly higher than previously
reported ones, especially which is two orders of magni- g,
tude larger than the early “conservative estimates,” and one
order of magnitude larger than the estimate by Zalka, despite40
the fact that | uphold a further constraint in the requirement
to recover every block after every logical gate. This is a real
improvement, not simply a lack of precision in the estimates, »
because | have taken advantage of the insights presented
Ref.[14] which speed the verification of ancillas and hence 10
increase the tolerance of memory noise. Furthermore, by rec

\\A
A\

il

)

.. . . 04 <\
ognizing the advantage of the Golay code, which is more_s N\ \ \ K\
important when measurements are sldy<¢1), the present > s“\\\:‘\x‘%%\‘&‘“\\‘k%‘ii%?“
study reveals an increase in the gate noise threspply an EEEIRIEEERREERERERES= 6

S
order of magnitude at,,=100, compared to what would be S

the case for methods previously studied, and an increase il
the memory noise threshokg, by between one and two or- v
ders of magnitude, representing the improvement offered by
the combination of faster verification combined with better FIG. 8. Surface of maximum algorithm sik& as a function of
coding. v and scale-uilN/K, at e= /100 andt,,=25. All the axes have

| estimate the uncertainty of my threshold estimates to béogarithmic scales, labeled in powers of 10. The surface has been
approximately a factor 1.5; this is simply a judgement basedruncated aK Q=10 to bring out the lower portions.
on the degree of change in the results which was observed as

N/K

refinements were added to the calculation. Comparing Fig. &) with Fig. 9(d), it is seen that increas-
ing /v from 0.01 to 1 at fixed,, has the effect approxi-
VI. KQ SURFACE AND DISCUSSION mately of shifting the surface in the direction of smaHleby

) , _an order of magnitude. Comparing Figd®with Fig. 10(d),

| now bring together all the methods discussed above i is seen that an increase ip from 25 to 100 ate= y has
order fo find the largest algorithm-si#6Q which can suc-  he effect approximately of shifting the surface in the direc-
ceed as a function of the noise rate and the scale-up maxXjjyn of smallery by almost another order of magnitude.
mized over all the codes and parameter choices. This is done |; should be reemphasized that all the noise rates quoted
by allowingni, to take on a range of values, and calculatingpply to nonlocal gates. They represent not the noise of a
KQ and Fhe sca_le-up for each codecludln_g concatgnated gate between neighboring qubits, or during the time for such
ones, using whichever values af,r’,r" give the highest 3 gate, but the noise associated with a gate on qubits sepa-
KQ. The values of log(N/K) are then binned at 5 bins per rated by some distance that depends on the code and on the

decade, and the maximum valuetoQ in each bin is noted.  strycture of the computer. This distance has been discussed
This leads to a surface &Q as a function of scale-up and

noise rate. The surface is plottéoh a logarithmic scajein

Fig. 8 for e= /100, t,,=25. The optimal values of the

parameters are listed in Table | for the cage 100e

=104, t,=25. Figure 9 shows lines of constantand

contours of constarQ, for the cases/y=0.01 and 1, at X

t,,=25. Figure 10 shows lines of constapand contours of

constantkQ, for the cases$,,=1 and 100, ak/y=1. .
The threshold result is indicated by the cliff at=2 10 e 0

% 103 on the surface shown in Fig. 8, but this cliff is not the N/K N/K

only important feature of the surface. Equally significant are  10* ; 1072

the cliffs at N/K=10 andN/K=1000. The first indicates ©

that large algorithmsKQ~10') are possible for a modest

scale-up once the gate noise ratesi$0™ * (at e= /100), by g

using a BCH code, and the second cliff indicates that at the

same noise rate a scale-up of a few thousands allows ver

large algorithms KQ~10"), using the Golay code concat- ¢ . 10"

enated once with a BCH code. 10° 10° 10° 10°
The really huge values ¢¢Q> 10?° should be interpreted NK NK

as an indication not that such large algorithms can necessar- |G, 9. (a),(c) Lines of constanty, for log,gy=—2,—3,—4,

ily succeed, but rather that their failure will be for some other—5_ (b),(d) contours of constark Q. (a),(b) for the case plotted in

reason not considered here, such as technical or environmepig. 8, which hase= /100, t,,= 25. (c),(d) for the casee=1y, t,,

tal problems causing correlated failure over méay., hun- =25, The contours are at 10 17°, 1%, etc.; every fifth contour

dreds of qubits. is shown with a thicker line.

10

(b)

(d
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10% : 1072 5 : method to suppress correlations is to use a low-level encod-
@ ing such as|0), =|0101)—|0110+|1002)—[1010, |1),
10 ) =|0101)+]0110 —|1001) —|1010; this is a decoherence-
- free subspace faZZIl, 11ZZ, and XXX X operators and so
10k is unaffected by joinZ rotation of adjacent pairs of bits and
joint X rotation of quadruplets of bits.
5 Further work in this area could address the following is-
10° 10° sues. Does the error propagation directly between data
N/K blocks contribute significantly to the crash probability, when
0 e ' recoveries are placed in an optimal way as described in Sec.
11?7 How well does the simple noise model capture the main
10 F features of noise and imprecision in particular physical ex-
> amples? To what degree are error processes present whose
107F effects add coherently rather than incoherently as assumed
here? How much correlation and nonstochastic behavior is
107 = found in practice? Further numerical simulations could be
NK 10 NK 10 carried out on larger codes, mainly to test Ed€) and(11).
The cost of moving information around, and the transport
FIG. 10. As Fig. 9, but for the case= y and(a); (b) t,,=1; (c),  distances required in QEC networks, could be further ana-
(d) t,=100. lyzed so that noise tolerance for nearest-neighbor interac-
tions can be calculated. The performance of further encoding
in Ref. [19], where it is found that for certain reasonable to suppress correlated noise could be studied.
choices of the layout of the computer, the tolerated noise for
a computer allowing only nearest-neighbor coupling is ex- ACKNOWLEDGMENTS
pected to be about an order of magnitude smaller than the
tolerated noise for nonlocal gates which has been given here. | would like to acknowledge helpful conversations with
Also, in the case of only nearest-neighbor couplings, at any. Gottesman. This work was supported by the EPSRC and
given time step in theG,V networks, most ancilla qubits the Research Training and Development and Human Poten-
which are said to be “resting” in the present discussion will tial Programs of the European Union.
be involved in one or more swap operations. A rough indi-
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cat_ion of the impa}ct of this is obta_ined b_y Iet_ting the memory APPENDIX A: CODE CONSTRUCTION
noise parametes¢ in the present discussion include a contri-
bution from the imprecision of swap gates. Table | lists the parameters of the codes considered in the

A further assumption underlying all the results quoted istext. The values of[ n,k,d]] are readily available from stan-
that the computing device allows as much parallelism in itsdard texts such as RdR7], but the values ofv andN, have
operation as is logically possible for the networks considto be obtained by examining the check matrices of the clas-
ered. A reduction in the available parallelism can be compensical codes. These were created using standard methods, see
sated to some extent by a reduction in the memory noise. Ref.[27], Chaps. 7, 9, 16. The parity check matrix of m
=2"-1k.,d] classical BCH code was created by lettihg
be equal to amth-order polynomial which is a factor of 1
+x" over GK2). Thecheck matrix consists of a matrix of

The main results of this paper are Figs. 7-10, the set opowers off, where each entry is replaced by a colummof
Egs. (8)—(26), the network details set out in Table I, and bits giving the coefficients in the polynomiél.
related insights such as the good performance of the 23-bit For a quadratic residue code havinga prime which is
Golay code, and the role of the measurement tige one less than a multiple of 4, the coefficierifs O<i<n

The fundamental reason why the crash probabilities fall to— 1, are defined to be(0) if i is a quadratic residu@on-
such low values is that uncorrelated and stochastic noise h&gsidu@ respectively, modula, and fo=1. The generator
the special property that the likelihood of a cluster of failuresmatrix is equal to the X n circulant matrixG;; =f; _; .
falls exponentially with the size of the cluster. There are two Further codes listed were obtained by deleting two col-
main reasons why in practice the noise will not be like this:umns from the generator matrix of the classical code, to go
qubit-qubit interactions and the technical details of the mafrom [[n,k,d]] to [[n—2k+2,d—2]], see Refs[28,29.
chinery used to supply the gate operations. The former are Once the check matrix or generator matrix was obtained,
probably not too big a problem, since the strength of manyit was converted into thelA) form, and thenw and Np
body Hamiltonians typically falls very rapidly with the num- could be obtained.
ber of bodies(see comments in Sec. )AThe latter can be
tackled by standard coding techniques such as random cod- AppenDIX B: ANCILLA PREPARATION STATISTICS
ing, interleaving, and concatenation. This implies that a
study such as the present one should be regarded merely as aThe ancilla preparation and verification was studied using
starting point for the complete structure of the computer. Oné¢he Monte Carlo method described in Sec. Ill. The method

VIl. CONCLUSION
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FIG. 12. The fitted coefficients of EqB1) for all the ancilla

FIG. 11. Distribution ofcs values giving the power-law depen- o s ghserved in a large number of runs of the Monte Carlo simu-
dence of the probability of obtaining errors in the prepared ancula1ation for the Golay code, at,=1. (a) e=1y, (b) e=/100. The

as a function of gate noise rate. The example giver_1 is for the G°|a¥.ymbols indicate the error weight 1(0), 2], or 3(x).
code att,,=1 and(a) €=y, (b) e=7/100. Three histograms are

plotted, showing the distribution for errors of weightfill line), 2 or double failures in roughly equal proportions. For weight 3,
(dashed ling and 3(dotted ling. mostc, values are close to 1, indicating that those weight-3
errors that can be produced by a single failure are the most
was to use the nois§, V and ancilla-data coupling networks |ikely ones to occur.
to extract a single syndrome from a data block that was pre- Figure 12 shows plots af vs c. There are two features
pared with no errors. This was repeated many tiséarting  that stand out. First, there is a correlation betwagandc,
from an error-free data block each timend the various for the syndromes of each error weight, such thatin-
syndromes obtained were counted for valuesyofn the  creases by a factor of order3@henc, increases by 1. This
range 10°<y<10 2. means that th®, having smallcg will be more likely than
Under the conditions of the numerical experiment, thethose having |argeS when y< 10_3' which is the regime of
obtained syndrome should be zero. The nonzero syndromesterest. Therefore erroréf whatever weight caused by
indicate the errors produced by the preparation/verificatioingle failures are the main ones | need to account for in
network which were not detected during verification, and th&attempting to model the behavior.
further errors produced by the coupling of ancilla to data, the The second feature is that each weight-1 error is much
final Hadamard gates on the ancilla, and the measurementgore likely to be produced than any individual weight-2 er-
Let the syndromes bgs}. The program gives the prob- ror. This is to be expected: there are several single-failure
abilities P¢(y, €,ty,) of obtaining eacls, for a range of values |ocations that can produce a given weight-1 error in the an-
of y at givene/y andt,. | fit each set of results to a power cilla, but only a smaller number of locations that can produce
law any given error of weight-1.
Note that ate= /100, Fig. 12 shows that most individual
Ps(y)=asy"s, (B1)  errors of weight 3 are more likely than individual errors of
weight 2, but Fig. 11 shows that there are fewer of them.
where the fitted parameteag andcg depend ore/y, t,, and  This suggests the weight-3 errors here are caused by gate
the code under consideration. Only valuesRaf less than failure in the preparation and verification networks, while
0.01 were included in the fit, in order to avoid the non- most of the weight-2 errors are caused by memory failure.
power-law dependence whePg approaches 1. | can thus A further statistic extracted from the calculations was the
examine the statistics of the ancilla preparation in some detotal probability P,, of obtaining any ancilla error of given
tail by examining the set of coefficients, c. weightw, for weights between 1 and 4. This probability was
Figure 11 shows histograms giving the distributioncgf  fitted to a power law(as a function ofy at fixed e/ y). The
values in the case of the Golay code, fge=1. The obtained powers obtained were close to(é.g., att,,=1 the powers
syndromes are first divided into sets, defined by the weightvere 0.97,1.6,1.4,1.1 for weights 1,2,3,4, respectively, when
of the coset leaders. | give the histogram for each set. Thig=+, and 0.93,1.2,1.1,1.1 when= /100, In view of this
shows the power-law dependence for preparing an ancilland of the fact noted above—that errors caused by single
with an error of each weight. For weight 1, | obtain=1, as  failures dominate the statistics whep<10 *—modeling
expected: the most likely cause of a single error is a singléhese probabilities by a linear dependenceyowill capture
failure. For weight 2¢, falls between 1 and 2, indicating that the main features. Table Il gives the fitted coefficiam the
the most likely weight-2 errors are caused by single failuresingle-parameter linear fiP,_;=ay, and a’ in the fit
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TABLE IlI. Linear fit coefficientsa, a’ for the probabilities of  rectable, the correction applied to the data will &ed,
ancilla error of weight 14, column 3 and weight>1 (a’, column  which leaves the erroe in the data. Ife has small weight,
4), obtained from the numerical calculations at two values/of this will not cause a crash, and furthermore las weight 1,
and oft,,. The final column gives the probability of any ancilla it will only add a further small contributioriscaling as the

error as estimated by E¢g). failure rates raised to the power) to the coefficient for
single-data errors, which is essentially harmlgk4. It fol-
ely tm a a' a+ta’ Pza lows thatP,. can be estimated as the probability théat

ancillas all have the same errerwhose weight is greater

L 1 196 36 214 243 than 1. Such errors are caused mostly by that part of2he
0.01 1 65 21 86 108 andV networks which takes place befoveis completed, in
1 25 509 54 563 609

which X andY errors are mostly detected. The probability for
0.01 25 65 16 81 10p any givene is therefore eithery/3 or /3, depending on
whether it was caused by a gate failure or a memory failure.
The number of differené of weight >1 that can be caused
Py—2+Py—3+Py—s=2a’vy, for two different values ok/y by a single failure is overestimated bis\ (N},) for thosee
and two different values df,,,. | expect the net probability caused by gate failuréenemory failure, hence | obtain the
P,.=2,P. for the ancilla to have some error, as given by approximate value foP,, given in Eq.(18). [For the Golay
Eq. (8). The table shows that the numerical results are fittedcode the numerical study indicated for that case the true
reasonably well by this model. numbers were=Ng\/4(=Ny/4).] If t,, is sufficiently large,
The other feature of the analysis presented in Sec. IMthen the memory noise while verification bits are measured
which | need to confirm is the value d?,s. This is the  will be such that a double failure in this part of the network
probability of a crash caused by several successive ancilldas as likely as a single failure elsewhere; such a contribution
conspiring to agree on a wrong syndrome. Suppose the aan be neglected as long as,€)2<vy,. If the measurement
cillas all suffer from the same error vecter When they failure probabilityy,, is sufficiently large, then double mea-
couple to the data, they pick up the error veaaf the data  surement failures will be significant; their contribution is
bits to give a net error vect@+d. Assuminge+d is cor-  small as long as/ﬁq< V.
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