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Overhead and noise threshold of fault-tolerant quantum error correction
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Fault-tolerant quantum error correction~QEC! networks are studied by a combination of numerical and
approximate analytical treatments. The probability of failure of the recovery operation is calculated for a
variety of Calderbank-Shor-Steane codes, including large block codes and concatenated codes. Recent insights
into the syndrome extraction process, which render the whole process more efficient and more noise tolerant,
are incorporated. The average number of recoveries that can be completed without failure is thus estimated as
a function of various parameters. The main parameters are the gateg and memorye failure rates, the physical
scale-up of the computer size, and the timetm required for measurements and classical processing. The
achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well
as other information. It is found that concatenated codes based on the@@23,1,7## Golay code give higher
thresholds than those based on the@@7,1,3## Hamming code under most conditions. The threshold gate noise
g0 is a function of e/g and tm ; example values are$e/g,tm ,g0%5$1,1,1023%, $0.01,1,331023%,
$1,100,1024%, $0.01,100,231023%, assuming zero cost for information transport. This represents an order of
magnitude increase in tolerated memory noise, compared with previous calculations, which is made possible
by recent insights into the fault-tolerant QEC process.
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The possibility of robust storage and manipulation
quantum information has profound practical and theoret
implications. It would allow highly complex quantum inte
ference and entanglement phenomena, including quan
computing, to be realized in the laboratory, and it also
derlies a new and as yet little understood area of phy
concerning the thermodynamics of complex entangled qu
tum systems.

The challenge of achieving precise manipulation of qu
tum information has inspired much ingenuity, and many
tablished methods of experimental physics, such as adiab
passage, geometric phases, spin echo, and their gener
tions can be useful. These provide an improvement in
precision of some driven evolution by a given factor at a c
in speed, for example, a slowdown of the evolution by
same factor. Such methods may play a useful role in a qu
tum computer, but they cannot provide all the stability
quired, for two reasons. First the slowdown is unaccepta
when large quantum algorithms are contemplated, and
ond it is doubtful whether they will in practice achieve th
relative precision of order 1/KQ which is needed to allow a
successful computation involvingQ elementary steps onK
logical qubits, whenKQ reaches values@106 which are
needed for computations large enough that a quantum c
puter could out perform the best available classical compu

Quantum error correction~QEC! @1–4# may allow a pre-
cision!1026 per logical operation to be attained in quantu
computers. In order for this to be possible, QEC must
applied in a fault tolerant manner, that is, the QEC proces
constructed so that it removes more noise than it gener
when it is itself imperfect. The main concepts of fault tole
ance were introduced by Shor@5#, and further insights have
been discovered by several authors@6–16#. Most of these
studies have been concerned with the discovery of meth
that achieve fault tolerance in a quantum computer, and w
1050-2947/2003/68~4!/042322~19!/$20.00 68 0423
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finding scaling laws that describe how the tolerated no
level varies with the length of the computation. In this pap
I address the problem of estimating the amount of noise
can be tolerated, and quantifying the cost of the stability
terms of the required increase in the number of physical
bits in the computer.

Some previous efforts to answer these questions h
concentrated on the idea of thethreshold. This is the result
that arbitrarily long quantum computations can be robu
under various reasonable assumptions, once the noise
quantum gate and per qubit during the duration of a gat
below a threshold value which does not depend on the
KQ of the computation@7,10,11,15,17,18#. Estimates of the
value of this threshold have varied between 1026 and 1023,
in the case that gates can act between any pair of qubit
the computer. In view of this wide range, a new calculati
of the threshold is valuable, and is one of the aims of t
paper. The discussion will include various issues such as
speed of measurements and classical processing and the
choice of encoding, which have not been addressed up
now.

However, the threshold result is of limited practical si
nificance, because the encoding it requires~namely, multiply
concatenated coding! fails to take advantage of a fundame
tal property of error correction theory, which is the existen
of goodcodes. These have ratek/n and relative distanced/n
both bounded from below as the block sizen increases; they
allow error-free transmission of information at a rate close
the channel capacity. Once the noise is brought modera
below the highest threshold offered by multiply concatena
codes, good encodings~which do not have a threshold resul!
allow very large quantum algorithms to be stabilized a
much lower cost in scale-up of the physical resources~qubits
and operations! of the computer. The only existing estima
@12# of what these good codes can achieve used a sim
©2003 The American Physical Society22-1
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
analysis which is only valid in the limit of low noise rate
and which does not take advantage of recent insights into
syndrome extraction process@14#. It remains difficult to
compare this estimate with the threshold calculations,
cause each depends on the noise model and the way the
rate is parametrized, and different authors make differ
choices. The present paper treats both unconcatenated
concatenated codes together, and so permits a compa
between them.

A central concept that emerges from this uniform tre
ment is to regard the maximum computation sizeKQ which
can be stabilized as itself a function of various paramet
These parameters are divided into two types. The first t
quantifies the noise and imprecision that can be tolerated
second type quantifies the demands on the physical h
ware, such as the degree of parallelism and especially
redundancy or scale-up~increase in the number of qubits!
required. HenceKQ is best understood as a surface, i.e.
function of two main parameters: the tolerated noise le
and the physical scale-up. The threshold result is an inter
ing asymptotic behavior of this surface in the region of hi
noise and scale-up, but what we would like to know, a
what is also here discussed, is the form of the surface e
where in parameter space.

These questions are here addressed by numerical sim
tions of quantum error correcting networks and by a deta
approximate analysis.

The paper is laid out as follows. The basic concepts
fault-tolerant quantum computing are briefly sketched in S
I, and the noise model adopted in the rest of the pape
described. Section II gives the complete protocol for QE
explaining various choices about the way the networks
constructed. Section III presents the results of numer
simulations of these networks for the case of the@@7,1,3##
Hamming code and the@@23,1,7## Golay code. Section IV
gives an analysis of the noise and error propagation in
QEC protocol. The numerical results are used to prov
values of two fitted parameters and to confirm the corre
ness of the general trends predicted by the analysis.
results of the analysis are then presented for 18 diffe
quantum codes, correcting between 1 and 9 errors, and
coding between 1 and 43 qubits per block. Section V ada
the analysis to the case of concatenated coding. The re
of concatenating once are presented, and the threshold
ciated with multiple concatenations is calculated. Section
then describes and discusses theKQ surface.

Fault-tolerant computation and fault-tolerant data stor
are largely similar in that the recovery operations domin
the dynamics. Nevertheless there is a distinction betw
them. The present treatment is thorough for the case of
storage, and it is argued in Sec. III that a judicious placem
of logic gates in between recoveries allows the case of fa
tolerant computation to be like data storage with sim
some additional noise from those gates. Therefore
present results apply to computation~not just data storage!.
However a more thorough treatment of the error propaga
directly between data blocks is needed in order to clarify t
point.
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The main results are as follows. First the threshold
quantum computing using multiply concatenated coding
higher when the code is based on the@@23,1,7## quantum
Golay code rather than the@@7,1,3## Hamming code. The
former also requires a lower scale-up at givenKQ than the
latter, so is advantageous for both reasons. It is found tha
time taken to complete measurements and classical proc
ing on qubits is also a significant factor which has mos
been overlooked in previous treatments. When the noise
per memory qubit per gate time is the same as the noisg
associated with a gate, and the measurement of a qubit t
the same time as a quantum gate, the threshold isg05e0
.1023. If the measurement takes 100 times longer tha
gate, the threshold isg05e0.1024. When the noise per
memory qubit per gate time is 100 times smaller than tha
a quantum gate, the threshold isg05100e0.231023 ~see
Fig. 7 for more information!.

The completeKQ surface, plotted on logarithmic axes,
found to have the shape approximately of a set of inclin
planes separated by steep cliffs, revealing quasithreshold
havior in scale-up as well as noise~Figs. 8–10!. The jumps
in KQ as a function of scale-up occur when new types
encoding become possible. When the noise is an orde
magnitude below threshold, and memory is much less no
than gates, a scale-up of order 10 permitsKQ up to ;1010

by using good codes such as Bose-Chaudhuri-Hocqueng
~BCH! codes. At a scale-up of order 1000,KQ up to ;1040

is available by using a good code concatenated once with
@@23,1,7## Golay code. If the memory is as noisy as the ga
operations~which could be the case, for example, when
formation is moved around using swaps between neighb
ing bits!, a larger scale-up or smaller gate noise is requir

I. BASIC CONCEPTS

A quantum computer stabilized by QEC methods h
three stages in its operation. First there is a preparation st
which places the computer in a close approximation to
stateu0(K)&L which is the logical zero state of theK logical
qubits of the computer. Then there is a sequence ofQ logical
operations, interspersed with error correction~also calledre-
covery! of the whole computer. Then the individual physic
bits of the computer are measured in the computational ba
and a final error correction is applied by classical compu
tion to the classical data thus acquired. The overall proba
ity of success is the probability that the classical bit stri
obtained at the end of this final recovery represents a cor
solution to the computational problem being addressed.

For the initial preparation stage, a sufficient approxim
tion to u0(K)&L can be obtained by a fault-tolerant measu
ment of the logical state of all the logical qubits, combin
with an error correction@12#, followed by fault-tolerant gates
to flip logical bits which were found to be in the logical
state.

The final classical correction can be represented in
abstract way as an operationR on the density matrixr(Q)
of the computer after theQth computational step. Then
suitable measure of success of stabilization by QEC is
2-2
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
fidelity FQ[^c(Q)uR„r(Q)…uc(Q)&, where uc(Q)&
5UQu0(K)&L is the ideal~i.e., noise and imperfection-free!
state of the computer after a sequence ofQ perfectly ex-
ecuted elementary steps.

An exact calculation ofFQ is extremely difficult, and can-
not be attained for a system of even just a few logical b
and operations, owing to the complexities of the encod
states and of the interactions of the physical qubits with e
other and the rest of the world. In this paperFQ will be
estimated by adopting a very simple noise model and p
forming a numerical and combinatorial analysis of the Q
networks.

The computer will be encoded using a quantum error c
recting code of parameters@@n,k,d##, wheren is the number
of physical qubits per block,k is the number of logical qubits
per block ~which N.B. can be greater than 1! and d is the
minimum distance of the code. The code ist-error correcting
where t5(d21)/2. The networks to perform recovery wi
be built according the recipe put forward in Refs.@12,14,19#,
which I will outline in Sec. II.

Noise model

‘‘Noise’’ in the context of QEC is taken to mean an
process that causes the state of the physical qubits of
computer to be different from what it should ideally b
@4,20–22#. Thus we include undesired interactions betwe
the qubits and terms in their internal Hamiltonian and in th
coupling to the environment which are known to be pres
but which cause undesired effects, as well as further te
whose details may be unknown us, all under the umbr
concept of noise. It is an established feature of QEC that
overall effect of noise can be understood in terms of the
of Pauli operators and the identity acting on the physi
qubits. I will label these operatorsI ,X,Z, andY5XZ. It is
convenient to define theY operator so that it is real; it the
differs from the Pauli operatorsy by a factor ofi which does
not affect the argument.

It is important to distinguish between the processes
cause imperfection in the computer state, which I will c
‘‘failures,’’ and the resulting imperfections in the state, whi
I will call ‘‘errors.’’ For example, a single failure of a two
qubit gate can result in two errors, meaning the state after
failure involves errors in two of the physical qubits~that is, a
tensor product of Pauli operators on both qubits is requ
to restore the state!. In general, after the action of som
quantum network, a single failure somewhere in the netw
can result in multiple errors. The main feature of ‘‘fau
tolerant’’ networks is that a single failure anywhere in t
network leads to only one error~or an acceptable number o
errors! per encoded block. A set ofm single-bit errors onm
qubits will also be referred to as an error ofweight m.

When the noise produces an effect large enough that
computer state cannot be corrected by QEC, the whole q
tum computation must be assumed to fail, since it is clos
certain that it will not produce a useful result (FQ.0). This
situation will be called acrash. QEC and fault-tolerant gate
methods allow the crash probability to be much smaller th
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the failure probability of individual elementary operations
the physical qubits.

The noise model that I will adopt for the purpose of es
mating FQ is as follows. At each time step, every free
evolving physical qubit has no change in its state with pro
ability 12e or undergoes rotation by the operatorX,Y, or Z
with equal probabilitiese/3. Such failures are terme
‘‘memory failures’’ ande is the memory failure probability.
Every gate is modeled by a failure followed by a perfe
operation of the gate. The failure for a single-qubit gate is
same as a memory failure except that it occurs with proba
ity g1. The failure of a two-qubit gate is modeled as a pr
cess where with probability 12g2 no change takes plac
before the gate, and with equal probabilitiesg2/15 one of the
15 possible single- or two-qubit failures takes place~these
are IX,IY,IZ, XI,XX,XY,XZ, YI,YX,YY,YZ,
ZI,ZX,ZY,ZZ).

Every preparation of a single physical bit inu0& will be
modeled as a perfect preparation followed by a single
failure of probability gp . Every measurement of a singl
physical qubit will be modeled as a single-qubit failure
probability gm , followed by a perfect measurement. Such
model accounts satisfactorily for the main ways in whi
measurements can fail, with this exception: a qubit meas
ment might give a certain eigenvaluel as measured out
come, but the qubit is not projected into the correspond
eigenstateul&. In the present context, however, the latt
case is equivalent in its effects to the case that is mode
~i.e., failure followed by perfect measurement!, because the
measurements are always used to acquire syndrome info
tion. All that matters is that the measured eigenvalue eit
does or does not correctly indicate the error in the compu
this is accounted for by the model. The case where the s
drome bit was projected onto a state other thanul& does not
have any further impact on the computer because we n
reuse measured bits without repreparing them inu0& ~a pro-
cess that has its own failure probabilitygp).

‘‘Leakage’’ failures, which occur when the physical com
puter moves out of the Hilbert space spanned by the phys
qubits, are assumed to be suppressed by techniques su
optical pumping or small leakage measuring networks@7#
and hence converted into failures of the type already con
ered. The leakage probability is absorbed into the gate
memory failure probabilities.

The model is defined so that qubits participating in a g
in a given time step undergo gate noise but not mem
noise. In other words, the gate noise parametersg i are de-
fined in such a way that they include all the noise acting
the qubits participating in the gate during the time of acti
of the gate. It is necessary to be explicit about this distinct
for the calculation of thresholds in Sec. V B.

The QEC networks I will analyze are composed only
the single-qubit Hadamard transform and two-qu
controlled-NOT or controlled-phase gates and state prepa
tion and measurement of single qubits in the computatio
basis.

An implicit assumption of this noise model is that failure
are uncorrelated and stochastic. The first assumption~uncor-
related failures! can be relaxed without significantly chang
2-3
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
ing the overall results as long as correlated failures h
probability sufficiently smaller than uncorrelated ones. In
single time step, uncorrelated memory failures inn qubits
give m-bit errors with probability

B~n,m,e![
n!

m! ~n2m!!
em~12e!n2m. ~1!

If correlated failures~for example, due tom-body interac-
tions between the physical qubits! have a probability smal
compared to this, then they can be neglected in a calcula
of the crash probability without significantly affecting th
result. Unwanted systematic effects in a computing dev
will also cause a finite correlation between the failures
nominally independent gate operations, but if the probabi
for a weight-m error to be produced by correlated gate fa
ure is small compared to the probability that the same erro
produced by uncorrelated gate failures, then it is sufficien
analyze the latter.

Similar statements can be made about nonstochastic
tributions to the noise. An example is rotation errors: if
given qubit is erroneously rotatedm times by a small angle
u, then if the angles are all in the same direction they a
coherently to give a net anglemu and error probability
;m2u2, whereas if the direction of rotation is random,
random walk is produced resulting in a mean net rotat
Amu and overall error probability;mu2. The model treated
here assumes the latter case; this will cover the main feat
as long as the coherent contribution gives a net error sim
to or less than the incoherent one for each application of
recovery network.

Recently Alickiet al. @23# have drawn attention to anothe
implicit assumption, namely, that the noise is independen
the dynamics of the recovery network, which they show
false for quantum reservoirs with long-range ‘‘memor
~such as electromagnetic vacuum!. This implies the noise is
both correlated and nonstochastic. The argument is su
and it remains an open question whether the structure of
correlations is of a type that defeats fault-tolerant QEC or
an influence small compared to the stochastic uncorrel
part which I will estimate here.

II. CORRECTION PROTOCOL

A fault-tolerant error correction can be accomplished w
a variety of choices of exactly how the syndrome extract
network is constructed. Here I will make choices which
have previously argued to be close to optimal, when con
erations of noise tolerance and the overall required scale
are both taken into account.

Transversaloperation of a gate means the gate is appl
once to each physical qubit in a block or once to each c
responding pair of physical qubits in a pair of blocks for t
case of a 2-qubit gate.Blockwiseaction of an operator mean
the operator is applied once to each logical qubit in a blo
or once to each corresponding pair of logical qubits in a p
of blocks for the case of a 2-qubit gate.

The QEC code will be a Calderbank-Shor-Steane~CSS!
code obtained from a classical code that contains its d
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Such codes have the property that transversal controlled-NOT

and controlled-phase operations act as blockwise control
NOT and controlled-phase operations, respectively, and tra
versal Hadamard acts as blockwise Hadamard@8,12#. A fur-
ther property is useful for constructing fault-tolerant logic
operations, though it is not needed for fault-tolerant QE
This is the property that the underlying classical code is d
bly even~i.e., the codewords have weights of a multiple of!
@5,8,12#. I will restrict attention here to such codes.

If the algorithm to be accomplished requiresKI qubits on
an ideal~noise-free! machine, then the real computer hasK
logical qubits encoded inK/k blocks, each block consisting
of n physical qubits, whereK is larger thanKI by a fixed
amount which can be,10k. The few extra blocks are nec
essary as workspace to allow fault-tolerant logical operati
on the logical qubits using methods such as teleportation

For each such ‘‘data block’’ the computer contains in a
dition 2nrep ancilla blocks ofn physical qubits each, and
2nrep sets of verification bits, each set containing (n1k)/2
physical qubits. The total number of physical qubits in t
computer is thus

N5@n1nrep~3n1k!#K/k. ~2!

nrep is the number of pairs of ancilla blocks per data blo
which can be prepared in parallel, in order to speed up s
drome extraction; it will have a value typically in the rang
1–10.

The verification bits are used to verify prepared anc
states. The stabilizer of the zero stateu0(k)&L of a single block
~i.e., k logical bits! is generated by a set ofn linearly inde-
pendent operators. This set can be expressed such th
divides into a subset of (n2k)/2 which consist of tensor
products ofX operators and (n1k)/2 which consist of tensor
products ofZ operators. The ancilla state is verified on
againstX errors only by measuring the eigenvalues of t
latter subset~the one composed ofZ operators! using the
verification bits. It was proved in Ref.@14# that this single
verification is sufficient to produce the correct fault-tolera
behavior when the detailed form of the set of stabilizers
properly chosen.

A single complete recovery consists ofX-error correction
and Z-error correction. These two halves of the correcti
proceed in parallel. While theX-error correction machinery
is preparing ancilla states, theZ-error correction machinery
is coupling its ancillas to the data blocks, and vice versa
single completeX-error correction of a single data block pro
ceeds as follows, and theZ-error correction is identical ex
cept where indicated~for diagrams see@12,13,19#!. Correc-
tion of different data blocks proceeds in parallel.

~1! Preparenrep ancilla blocks inu0(n)&.
~2! Operate a networkG in parallel on each of these an

cilla blocks. G consists of Hadamards and controlled-NOT

gates, and, if perfect, would produce the transformat
u0(n)&→u0(k)&L .

~3! Using verification bits prepared in (u0&1u1&)/A2,
verify the ancilla blocks by operating a networkV consisting
of controlled-phase gates between each ancilla block an
2-4
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
verification bits, followed by Hadamard transformation
the verification bits and their measurement in the compu
tional basis.

~4! Ancilla blocks that pass the verification~i.e., all veri-
fication bits were found in the stateu0& when measured! are
deemed ‘‘good’’ and are used in the rest of the protoc
Those that do not are left alone until they are reprepare
the beginning of the next round of QEC. Leta be the frac-
tion that are good, so that we now haveanrep good ancillas.

~5! Couple 1 good ancilla to the data block by blockwi
controlled-phase~for X-error correction! or controlled-NOT

~for Z-error correction!, with the ancilla acting as control, th
data as target. Hadamard transform this ancilla block
then measure each of its physical qubits in the computatio
basis. Use a classical computer to decode the classica
string thus obtained, and hence derive the error syndro
@13,16#.

~6! If this syndrome is zero, no further action is taken. T
data block rests until recovery has been completed on al
data blocks in the computer whose first syndrome was
zero. Letb be the fraction of blocks that give a zero sy
drome.

~7a! Otherwise, coupler 21 further good ancillas to the
data block by blockwise controlled-phase~controlled-NOT!,
for X correction (Z correction!, wherer is a parameter to be
optimized. Hadamard transform and measure these anc
in parallel, as in step~5!.

~8a! We now have a total ofr syndromes extracted fo
each data block whose first syndrome was non-zero. We
cept any group ofr 8 syndromes which all agree, wherer 8 is
a parameter to be optimized. When a syndrome is accep
the data block is corrected accordingly by application of o
or moreX gates~or Z gates!. If no acceptable syndrome i
found, no further action is taken, so the data block g
uncorrected forX errors (Z errors! in this round of QEC.

Steps~7a! and~8a! will be modified below, but to under
stand the modification it helps to begin with the stateme
as given.

The syndrome repetition factorsr and r 8<r will be cho-
sen so as to maximize the probability of success. Increa
r 8 reduces the probability of accepting a wrong syndrom
but increasingr increases the noise accumulating in the d
block. Theanrep21 good ancillas per data block which we
not used in step~5! are sufficient to allowr<r max51
1(anrep21)/(12b).

In the protocol described above we haveanrep good an-
cillas per data block during each round of QEC, and
require on averageb1r (12b) for one correction. Hence
we have enough ancillas to completeanrep/@b1r (12b)#

independent corrections almost in parallel.1 The sequential
part is the gates that couple data and ancilla. Increasingnrep
reduces the time during which the data is left alone betw

1They cannot be completely in parallel because the data block
only be coupled to one ancilla block at a time. This is the m
reasonable assumption, because it must be arranged that succ
syndromes have independent noise, so it is not sensible to tr
couple one data block to many ancillas by a single operation.
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corrections, so is valuable when the memory noise accu
lating directly in the data contributes a significant part of t
total data errors. However, much of the error in the d
arises by propagation from the ancillas or from the ga
coupling data and ancillas, and these contributions are u
fected bynrep.

We will mostly be interested in the case of large quant
algorithms, for which the failure rates must be small soa
andb are close to 1, and the number of corrections in p
allel is close tonrep. The exception is when a concatenat
code is being used, with error rates close to the threshold
this casea andb can be of order 0.5 for the innermost leve
of the concatenated coding hierarchy, thereforenrep must be
increased to allow sufficient ancillas for rapid correction.

The protocol can be refined primarily in two ways. Firs
one can operate a different and possibly more sophistic
scheme to prepare and verify ancillas in step~3!, and second
one can adopt a more sophisticated response to the synd
information in steps~7a! and ~8a!.

For example, in step~3! one could verify the ancilla twice
and accept if it passed at least once, or one could prepare
ancillas and then compare them by a transversal control
NOT followed by measurement of one. The former case
quires more time, which can be compensated by an incre
in nrep, and the second case requires more ancillas. Howe
any attempt to improve the ancilla preparation can only
sult in a modest reduction of the crash probability~at given
noise rate! because the gates connecting ancilla and d
cause much of the noise in the data, and these canno
avoided. This is discussed after Eqs.~10! and ~11! below.

An example of a more sophisticated procedure in step
is to extract more syndromes immediately if insufficient sy
dromes agree. In his calculation, Zalka@24# employed refine-
ments of this kind. However, such a response is only va
able if it can be made quickly, and this requires fa
measurements. It is physically reasonable to suppose
measurement of a qubit may be slow compared to one t
step, where a time step is the duration of a two-qubit ga
When measurement is slow, it is better to couple syndro
information into ancillas as many times as will be requir
all at once, and then measure the ancillas in parallel. Th
fore if one wishes to extract one further syndrome in s
~8a! when insufficient syndromes agree, it is advantageou
extract further syndromes as well and one has in the en
protocol close to the one being considered.

There is a modification to steps~7a! and ~8a! which is
worth making since it requires only a slight change in t
classical part of the processing so has negligible cost. Th
to improve the case where no acceptable syndrome
found for a given block. In this case, at the next recove
rather than extracting a furtherr syndromes, we extractr 9
<r wherer 9 is another parameter to be optimized, and th
make the best use of ther 1r 9 syndromes available from th
most recent extractions. Typical values forr 9 are in the range
r /2 to r.

~7b! In the case in which at the last recovery sufficie
syndromes were found in agreement for the block to be c
rected for the error-type under consideration proceed a
step~7a!. Otherwise, now extractr 921 syndromes.

an
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
~8b! In the case in which at the last recovery sufficie
syndromes were found in agreement for the block to be c
rected for the error-type under consideration proceed a
step ~8a!. Otherwise, now examine ther 1r 9 most recent
syndromes obtained from this and previous recovery
tempts. Accept any group ofr 8 syndromes which all agree
giving preference to more recently extracted syndrome
there is more than one acceptable group. If there is an
ceptable set of syndromes, correct the data block acc
ingly, otherwise do nothing.

This reduces the noise in the data by making better us
the syndrome information. Further refinements are poss
for example to adjust the case where three successive ex
tions were necessary; but in any case this is already a s
adjustment so there is not much further improvement av
able.

A. Number of recoveries per computational step

It might be thought that when the recovery timetR@1,
which is typically the case, it would be advantageous to
low many logical gates to operate per recovery, as was
gued by Zalka@24#. However, if the logical gates are not o
independent bits, then it is dangerous to allow many of th
between recoveries or the error propagation will start to a
lanche. Also, it might be argued that sometimes it is o
necessary to recover some of the blocks. However, typic
the recovery time is long enough that noise accumulating
all blocks is such that they all need correcting. Therefore
choice adopted here is that the whole computer must be
covered after any simple logical gate such as controlled-NOT

or Hadamard is applied. On those occasions in a given a
rithm where many logical gates can act simultaneously, t
are implemented in parallel, followed by one complete
covery.

The logical gates are accomplished in a fault-toler
manner by sequences of appropriately chosen gates and
surements@8,9,12#. To quantify the algorithm sizeKQ pre-
cisely, we must be specific about what type of gate we
counting, because some are easier to accomplish than ot
For example, a fault-tolerant network for a Toffoli gate m
require eight recoveries, while a controlled-NOT gate may
only require one or two. Since the main quantity to be c
culated is the crash probability per recovery of a sin
block, the ‘‘computation size’’ will be taken to be the numb
of such recoveries when a code withk51 ~one logical bit
per block! is used. Codes withk.1 require more recoverie
because the fault-tolerant constructions are slightly m
complicated. It can be shown that for standard logical ga
such as controlled-NOT and Toffoli, networks fork.1 exist
which involve approximately twice as many recoveries
similar networks fork51. Therefore, to make a fair com
parison, it will be assumed here that for a given algorith
on average twice as many recoveries are needed whk
.1 than whenk51.

B. Timing and non-nearest-neighbor coupling

The correction protocol involves networksG and V for
preparing and verifying ancillas, measurement of sets of b
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and transversal controlled gates between ancilla and
blocks. The precise set of operations inG and V is mostly
dictated by the structure of the code, with some moder
room for flexibility in the time ordering of gates and i
which set of linearly independent parity checks is chos
The total time taken by the operations, by contrast, a
hence the memory noise, is dictated not only by the logic
the network but also by the physical capabilities of the co
puting device. It will be assumed here thatthe computing
device is capable of all the parallelism that is logically ava
able in the QEC protocol. Parallel operation of two or more
gates is logically available when the gates commute, so
their effect is the same when they are applied all at once
sequentially. For example, the assumption implies tha
transversal gate operation takes a single time step, and
parallel operation is physically available for sets of ga
within theG andV networks, which is useful for speeding u
the ancilla preparation.

The G andV networks are related to the generator mat
and parity check matrix of the classical codeC whose code-
wordsu give the state

u0(k)&L5 (
uPC

uu&. ~3!

Let H be the check matrix ofC, then the parallelism avail-
able in theG and V networks was shown in Ref.@14# to
allow the controlled gates in these networks to be comple
in w andw11 time steps, respectively, wherew is the maxi-
mum weight of a column or row of the matrixA given by
H5(IA) whereI is the (n1k)/23(n1k)/2 identity matrix.
A further time interval is required for the Hadamard ope
tions and single-bit measurements and state preparation

Consider the case in which 2-bit gates such as control
NOT are only available in the physical computer betwe
neighboring physical bits. In this case we have to allow so
time, and associated noise, for the transport of the phys
qubit information from one place to another in the comput
A reasonable rough model of this is to suppose that the sp
and precision of a gate between qubits initially separated
distances scales as 11s/D, where 1 accounts for the cost o
the nearest-neighbor gate, ands/D accounts for the cost o
bringing the bits together from distances. In this model,D
.1 is a reasonable estimate for a computer that transp
information by repeated swap operations between fi
physical qubits, andD@1 describes a computer that ca
move information around at little cost. In the QEC netwo
physical gates are mostly between qubits that can be fa
close together, such as within part of one block, so a va
D;100 is sufficient to allowD to be large compared to th
mean distances̄ spanned by 2-qubit gates involved in th
QEC network@19#. In the estimates to follow, I will make the
simplifying assumption of ignoring the cost of the physic
separation between physical qubits. The results for the n
tolerance will therefore be valid only whens̄!D. I can use
the results to roughly estimate what will happen for a co
puter having smallerD by dividing the tolerated error rate
by 11 s̄/D. Calculations ofs̄ for two quantum error correct
2-6
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
ing codes were described in Ref.@19#.
Another timing consideration is involved in the measu

ments and the classical processing of the syndromes. It i
important assumption that the verification bits and the e
syndromes are in fact measured, and not treated by pu
unitary networks. This allows a substantial part of the p
cessing of this information to be done classically, which
assume is both fast and precise. The time involved in m
suring a physical qubit and completing classical process
on the measured eigenvalue will be assumed to betm time
steps, where one time step is the time required fo
controlled-NOT ~or controlled-phase! operation. Typical val-
ues fortm are in the range 1<tm<100, which may be asso
ciated mostly with the measurement time, making the
sumption that the classical processor has a clock rate m
faster than that of the quantum processor.

III. NUMERICAL CALCULATIONS

The effects of noise and error propagation in the proto
described in Sec. II were numerically calculated. It is p
sible to do this in an efficient way because it is sufficient
keep track of the propagation of the errors rather than
evolution of the complete computer state.

The C11 program keeps an array of 2n1(n1k)/2 binary
digits representingX errors in the physical qubits of one da
block and one ancilla with its verification bits, and a simil
array representingZ errors. Failures are generated random
in every gate and time step, according to the model descr
in Sec. I A, by adding 1 to members of theX and/orZ error
arrays at the locations of those qubits experiencing aX
and/orZ failure, respectively. The ancilla bits are reused
the repeated ancilla preparations and for theX and Z syn-
drome extraction, but memory noise is added to the d
block appropriate to the amount of time passing when 2nrep
ancillas are available in parallel.

The action of each quantum gate in the networks is m
eled by first producing random failure, using the model d
scribed in Sec. I A, and then accounting for error propa
tion. The error propagation part is as follows: a Hadam
gate on a single qubit swaps theX andZ error values for that
qubit; a controlled-NOT gate adds theX error of the control
bit to the target bit, and theZ error of the target bit to the
control bit; a controlled-phase gate adds theX error value of
the control bit to theZ error value of the target bit, and theX
error value of the target bit to theZ error value of the contro
bit.

It was found that a good pseudorandom number gener
was needed in order to get reliable results at low crash p
ability. For example, the generator ‘‘ran0’’ in Ref.@25# was
inadequate; ‘‘ran3’’ was used instead.

The network of gates is obtained directly from the che
and generator matrices of the relevant classical codes,
appendixes for details. The gate failures were added at
locations in space and time of the relevant gates. T
memory failures were not modeled exactly in the right w
however. To save program time, during theG and V net-
works, rather than adding memory failures only to those b
not involved in a gate at a given time, memory failures we
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distributed randomly amongst all the bits, with probabiliti
set so that the mean number of failures was correct. T
change is not likely to affect the precision of the final resu
which in any case can only be compared to physical
amples in an approximate way owing to the simple no
model.

The noise caused by logical operations on the data
partially modeled by adding a further gate failure to ea
qubit in the data between each round of QEC. This co
pletely accounts for single-block gates but not the er
propagation between data blocks caused by logic gates
tween data blocks. However, at any stage typically only
few logical qubits are involved in 2-bit gates, and these c
be timed so as to keep error propagation to a minimum
follows. If a controlled-phase logic gate is to be impl
mented, it should be placed just afterX-error correction on
both blocks involved, since at this stage in their evolution
blocks temporarily have a minimal number ofX errors, and
only this type of error is propagated~into Z on the other
block! by the gate. Similarly, if a controlled-NOT gate is to be
implemented, it should be placed just after the control b
have hadX-error correction, and the target bitsZ-error cor-
rection. The cost of this is that sometimes one or a f
blocks have to wait a little longer before being corrected,
that memory noise occurring directly in the data block ac
mulates for longer. However, since this noise is not the m
source of data errors, the omission of this detail from
numerical simulation is not expected to affect the final res
significantly.

A single logical step consists of a single transversal g
acting on the data block, followed by the complete QE
protocol. The program repeats thisQ times to represent an
algorithm ofQ steps. After each step, theX andZ bit-error
arrays are examined to see if the accumulated noise re
sents an uncorrectable error. If an uncorrectable error
occurred, the run is stopped and a record is kept of h
many steps were completed successfully. This is repeat
large number ('106) of times and the relative frequencies
success or a crash are used to obtain estimates of the fid
of a quantum computer stabilized by QEC, see below. Thi
a type of Monte Carlo simulation.

The numerical calculations were carried out for two e
ample codes, the@@7,1,3## single-error correcting code ob
tained from a classical Hamming code and the@@23,1,7##
three-error correcting code obtained from a classical Go
code. The classical codes in both these examples are pe
so their quantum versions perform especially well.

In order to interpret theX and Z bit-error arrays to dis-
cover whether they represent an uncorrectable error, it is n
essary to recall the properties of quantum codes. The com
nation of theX and Z errors represents an error operatorE
which has acted on the data qubits. However, the weight oE
does not in itself determine whetherE is correctable. For
example, ifE is in the stabilizer then it constitutes no error
all. It is necessary to determine rather whetherEuc&L would
be decoded touc&L by a perfect recovery of the computer. T
do this I calculate the syndromesHEX and HEZ whereEX
andEZ are the bit strings representing theX andZ parts ofE,
respectively, andH is the parity check matrix of the classica
2-7
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
codeC @Eq. ~3!#. Each syndrome has a coset leader, which
the minimal weight error vector which can cause that s
drome. If the weight of the coset leader for either syndro
is greater than the number of errors correctable by the qu
tum code, then an uncorrectable error has occurred.2

The success and crash frequencies provided by the
gram are interpreted as follows. Letnf(Q) andns(Q) be the
number of runs in which the quantum computer crashed
stepQ, and the number of runs in which the computer
mained successful at stepQ, respectively. The probability
that the computer crashes during stepQ, given that it has not
crashed in steps 1 toQ21, is then

p~Q!5
nf~Q!

ns~Q!1nf~Q!
. ~4!

With stochastic noise, this probability is expected to be
dependent ofQ once initial transient effects have died awa
and this was found to be the case. The transient behavior
found to last a few logical steps, with the general fo
p(Q). p̄@12(5/4)exp(2Q/2)# for Q>1 wherep̄ is the av-
eragep(Q) for largeQ. Hence it was sufficient to continu
each run to ten logical steps, and takep̄.@p(7)1p(8)
1p(9)1p(10)#/4. For each case, the simulation was
peated untilnf(Q510) reached 100, so the statistical unc
tainty in p̄ is expected to be'5%. The random part of the
variation inp̄ which is visible in Figs. 1–3 is consistent wit
this expectation. ForQ.10, the value ofFQ can be esti-
mated as

2Note, H can detect more errors than the quantum code can
rect; the quantum code stabilizer is formed fromH' not H.

FIG. 1. Results of numerical calculations ofp̄ ~symbols! com-
pared with the analytical estimate~curves! at anrep5b1r (12b).
The symbols indicatee5g (s), e5g/10(1), e5g/100 (3). The
calculation usedr 5r 85r 952 for the @@7,1,3## code; r 54, r 8
5r 953 for the @@23,1,7## code. ~a! @@7,1,3##, tm525; ~b!
@@7,1,3##, tm51; ~c! @@23,1,7##, tm525; ~d! @@23,1,7##, tm51.
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FQ.~12 p̄!Q. ~5!

The estimation method to be presented in Sec. IV w
used to predict the best choice of parametersr ,r 8,r 9 in the
last two steps of the protocol, and the choice was confirm
by repeated runs of the Monte Carlo calculations. One
pectsr 8.1 to be necessary so that the probability of acce
ing a wrong syndrome is not linear in the noise rates. It w
found that for the@@7,1,3## code, r 852 was optimal, and
very similar results were found forr 52 or 3,r 951 or 2. For
the @@23,1,7## code,r 54, r 85r 953 gave the best result
for low noise rates andr 53, r 85r 952 for high noise rates.

Figures 1–3 show example results of these calculatio
In each case the points indicate the results of the nume
calculations and the lines show the prediction of the mode
be described in Sec. IV. The parameters associated with
choice of the code are listed in Table I. The noise parame
were chosen to beg25g15gm5gp[g, and results for
three values ofe/g are shown. Changingg1 and/orgm by an
order of magnitude while leavingg2 fixed does not have a
large effect on the results, because the networks are do
nated by the 2-qubit gates. The value ofnrep can be freely
chosen, producing one route for the trade-off betwe
scale-up and noise-tolerance.nrep is accounted for in the nu

r-

FIG. 2. Same as Fig. 1, but for highernrep, hereanrep510@b
1r (12b)#.

FIG. 3. Same as Fig. 2, but with reducedr parameters,r 53,
r 85r 952 for the @@23,1,7## code. The dotted lines show th

‘‘break-even’’ conditionp̄5g to facilitate a rough estimate of th
noise threshold from these results.
2-8
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
merical calculations simply by adjusting the amount
memory noise in the data bits occurring during each round
QEC. It was convenient to treat the case wherenrep varies so
that the number of parallel corrections is the same for
values ofg ande in a given set of calculations.

The results in Fig. 1 are foranrep/@b1r (12b)#51 ~i.e.
nrep.1) and those in Fig. 2 are foranrep/@b1r (12b)#
510 ~i.e.,nrep.10). Figure 3 shows the effect of reducingr:
this is expected to make matters worse at very lowg, but
better at higherg. Comparison of Fig. 3 with Fig. 2 show
that a well-chosen reduction inr makes possible a usefu
increase in the noise threshold~see Sec. V B!.

The comparison between the numerical results in F
1–3 and the analytical prediction will be discussed in S
IV B after the analytical estimation method is described.

IV. ESTIMATE OF CRASH PROBABILITY

The numerical method permits the crash probability to
calculated for small codes and high noise rate. A quan
computer performing a large computation will require low
noise rate and larger codes which are able to correct m
errors. The Monte Carlo simulation is too slow to be use
in that regime. In this section I present a general analysi
the QEC protocol which permits an estimate of the cra
probability to be made for any code and noise rate. T
analysis will also be useful in order to understand the b

TABLE I. Parameters of codes considered in the text. The c
constructions are outlines in Appendix A. The parametersw andNA

are the maximum weight of a row or column of the latin rectan
for A, and the number of 1’s inA, respectively. The number of gate
that act in parallel in most time steps of the generation or verifi
tion network of a given ancilla isNA /w. The final column gives the
value of r which was found to be optimal wheng5100e51024,
tm525, with r 215r 85r 911.

Number Code type n k d w NA r

0 None 1 1 1
1 Hamming 7 1 3 3 12 3
2 Golay 23 1 7 11 77 4
3 Golay 21 3 5 7 63 4
4 BCH 31 11 5 15 122 4
5 QR 47 1 11 15 281 5
6 QR 45 3 9 15 255 4
7 QR 43 5 7 15 229 4
8 BCH 63 27 7 27 350 4
9 BCH 63 39 5 27 328 4
10 QR 79 1 15 27 801 5
11 QR 77 3 13 27 759 5
12 QR 75 5 11 27 713 5
13 QR 103 1 19 31 1265 6
14 QR 101 3 17 31 1215 5
15 QR 99 5 15 31 1165 5
16 QR 97 7 13 31 1119 5
17 BCH 127 29 15 47 1939 5
18 BCH 127 43 13 47 1802 5
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strategy for code concatenation, to be considered
Sec. V B.

The main route by which the quantum computer cras
is that too many errors accumulate in the data block betw
one round of correction and the next. These errors are ei
caused directly there by noise in the data qubits and the g
which act on them, or they are the result of error propagat
from the noisy ancillas. The fault-tolerant design of the QE
network ensures that each failure can only cause one err
any given data block, and more generally each set ofm fail-
ures can only cause total error of weightm in a data block.
Let g be the number of independent gate failure locatio
which can result in 1 error in the data block, ands be the
number of independent memory failure locations which c
result in one error in the data block, during a single recove
The probability that an unspecified error of weightm appears
in the data is given to good approximation by

B8~g,s,m,g,e![(
j 50

m

B~g, j ,g!B~s,m2 j ,e!, ~6!

whereB is the binomial function defined in Eq.~1!. The sum
gives the probability of no gate failures andm memory fail-
ures, plus the probability of one gate failure andm21
memory failures, and so on up tom gate failures and no
memory failures. It involves a slight misscounting sin
sometimes different failures have the same effect, so so
sets ofm failures produce an error of weight,m. However,
this misscounting is not expected to give the main limitati
on the accuracy of the whole calculation for the netwo
under consideration.

An error is uncorrectable if it has a weight larger than3 t.
In the limit of small g, e, the expressionp̄.2B8(g,s,t
11,2g/3,2e/3) is a rough estimate for the crash probabil
per block per recovery, and hence it is only necessary
estimateg and s for the QEC network in order to roughly
estimatep̄ for a given code. The factors of 2/3 account f
the fact that of all the errors affecting any given qubit,
average 2/3 requireX correction and 2/3 requireZ correction.
This is true for errors of any weight because they are cau
by uncorrelated failures. For example, of the 9 possi
2-qubit errors, 2 requireX correction of the first qubit alone
2 of the second qubit alone, and 4 of both qubits: the
numbers are correctly given by the model as 93(2/3)3(1
22/3) ~twice! and 93(2/3)32/3. The overall factor 2 inp̄
is because both theX error and theZ error must be correct-
able.

For a more precise estimate ofp̄, the protocol must be
analyzed more fully. A more complete analysis is indicated
Fig. 4, which gives a probability tree for the full protocol.
assume the quantum computer crashes not only when an
correctable error occurs but also when a sufficiently bad s

3There are correctable errors of higher weight, such as mem
of the stabilizer, but these have negligible probability compared
uncorrectable errors when the noise is uncorrelated and good m
mum distance codes are used.
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
drome is accepted~the latter is discussed further in Append
B!. I take into account the fact that the values ofg ands will
depend on how many syndromes have been extracted b
an acceptable one is found allowing a correction to ta
place. I will use the wordrecoveryto mean one attempt to
get a consistent syndrome for each type of error~which will
involve either 1 orr or r 9 syndrome extractions for each typ
of error! followed by the corrections that take place if suf
cient agreement among syndromes is found in step~8! of the
protocol. The wordcorrectionwill now refer to the last stage
of recovery only. Thus for any given data block sometim
several recoveries have to take place before a correction
be applied.

Consider the recovery of a single data block. I will co
sider just theX errors in the data block, and theX syndrome,
bearing in mind thatX errors in the data are produced par
by the network that extractsZ syndromes. The complet
crash probability of the computer per recovery per data bl
is assumed to be twice the crash probability associated
the X-error recovery of this single block.

Let PZa be the probability a verified ancilla, i.e., one th
was deemed good in steps~3! and ~4! of the protocol, has
one or moreZ errors, so that it will produce an incorrec
syndrome for the data block:

PZa.(
j 51

n

B8S 1

2
NGV1n~11g1 /g21gm /g2!,

1

2
Nh

1tmn, j ,
2

3
g2 ,

2

3
e D ~7!

.
1

3
g2NGV1

2

3
~g21g11gm!n1

1

3
eNh1

2

3
etmn, ~8!

whereNGV52NA1(n1k)/2 is the total number of gates i
the combinedG andV networks; it is dominated by the 2NA
term, whereNA is the number of 1’s in theA part of the
check matrixH5(IA) from which both theG and theV
networks are obtained;Nh is the number of ‘‘holes’’ in theG

FIG. 4. Probability tree to aid the calculation ofp̄. The branches
are labeled as follows.~a! First syndrome extracted is zero;~b! the
single syndrome extraction left a correctable error;~c! r 8 of the
most recently extracted syndromes are found to agree;~d! the ac-
cepted syndrome is right;~e! the multiple syndrome extraction left
correctable error. The crash probability is the sum of the proba
ties of the branches terminated by filled circles.
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andV networks, that is, the number of locations in space a
time where a qubit is resting and so experiences memory,
not gate failure:

Nh5$wn22NA13~n2k!/2%

1$w~n1~n1k!/2!22NA1~n2k!/2%.

The parameterw was discussed after Eq.~3!; the first term is
the number of holes inG, the second is the number of hole
in V.

The factors of 2/3 and 1/2 in Eq.~8! account for the fact
that of all the failures occurring, some cause purelyX error in
the ancilla which does not cause a wrong syndrome,
most of those that causeY error result in the ancilla failing
the verification, so they do not affect good ancillas. T
terms involvingg1 andgm are the contributions from failure
of the final Hadamard gates and measurements of the an
bits. The further term involvingg2 is from the controlled
gates connecting ancilla to data. Failures of the prepara
of ancilla bits inu0& do not contribute toPZa becauseu0& is
an eigenstate ofZ. The term involvingtm is the contribution
from memory failure in the ancilla during the time taken f
the verification bits to be measured.@Equation ~8! is dis-
cussed further in Appendix B.#

The fractiona defined in step~4! of the protocol is given
approximately by

a.12 2
3 ~NGVg21ngp1Nhe!. ~9!

This is one minus the probability that a failure of typeX or Y
occurs in theG andV networks, since almost all such failure
are detected by the verification.

In what follows, I will be calculating probabilities forX
errors to be present in the data block when theX-syndrome
extraction is performed. TheseX errors have three origins
the gates associated with the logical operation that evo
the logical quantum computation; theCZ gates that link an
ancilla or ancillas to the data block forX-syndrome extrac-
tion; and the network for the precedingZ-syndrome extrac-
tion ~including error propagation from those ancillas to t
data!. In a given recovery either 1 orr or r 9 extractions of
each type take place, I calculate the probability of each c
and deduce the average effect.

Let g(r X ,r Z) be the number of independent gate failur
resulting in anX error in the data when a network accom
plishing r X X-syndrome extractions andr Z Z-syndrome ex-
tractions is applied. For the same network, lets(r Z) be the
number of independent space-time locations of memory f
ures that result in anX error in the data.s does not depend on
r X because propagation from the ancillas used
X-syndrome extraction producesZ not X errors in the data.

g~r X ,r Z!.n@11r X1~11mt !r Z#, ~10!

s~r Z!.n@ tR1~nt1tm!r Z#, ~11!

where

i-
2-10
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tR5~2w1112tm!
b1r ~12b!

anrep
~12!

andm,n are constants of order 1 to be determined. The fr
tion b was defined in step~6! of the protocol;tR is the time
the data bits ‘‘rest’’ between successive recoveries. The e
mates ofg ands are the most important to get right, becau
they lead directly to the probability of uncorrectable errors
the data. In expression~10! for g the first term is caused b
then elementary gates of a single transversally applied lo
gate which may be present between recoveries in the pr
col adopted, the second term accounts for failure of the tra
versal CZ gates connecting ancillas to the data block to
tract X syndromes, and the third term the effect of t
Z-syndrome extractions. In the last case only, error propa
tion from the ancilla causesX errors in the data. These erro
are caused by failure of the last gates in theV network; their
effect is estimated by the termnmtr Z in g by the following
reasoning. The last gate ofV to act on each ancilla bit ca
leave anX error there, which is not detected by the verific
tion bits; most pairs of gate failures from the last or t
penultimate set to act on each ancilla bit can leave unde
ted single or doubleX errors; triples of gate failures from
still larger set can go undetected, and so on. This means
the distribution of undetected ancilla errors caused by f
ures inV is not binomial: the number of failure locations th
can contribute to an order-m failure is not independent ofm
but increases approximately linearly withm. I can neverthe-
less use a binomial as an approximation to the true distr
tion, as long as I make the approximation sufficiently ac
rate for the most important probability I wish to calculat
which is the probability of uncorrectable error in the da
block. For at-error correcting code, this is the probability o
order-(t11) failures. The termnmtr Z in g, and a similar
term ins, approximately counts the relevant locations, wh
the constantsm andn were found by fitting the theory to th
numerical results, see Figs. 1–3 and Sec. IV B. The va
m.0.35, n.1 were found to give the best fit.

Note that, as remarked in Sec. II, improving the fidelity
the ancillas can only slightly reduceg because it can only
reducem to a minimum of 0, and it can only allow a sligh
reduction in the syndrome repetition parametersr ,r 8,r 9.

The first term in the expression fors @Eq. ~11!# accounts
for the memory noise in the data block during the timetR
which has to pass between successive recoveries.tR can be
reduced by increasingnrep. If tR,(tm1r ), then the syn-
dromes for the next recovery are extracted before the m
surement of the current ones can be completed. Howeve
long as the classical processing of the syndrome informa
takes this into account, it need not be a problem. The res
Eq. ~11! accounts for the memory noise in the ancillas wh
is not detected by the verification and can propagate to
data. The termnntr Z follows from an argument similar to
that just given forg, and the other term accounts for th
period of waiting while the verification bits are measure
which has to be completed before the ancilla is coupled
the data~if it is found to be good!.

The fractionb defined in step~6! of the protocol is equa
to the probabilityP0 that the data block has noX errors, mul-
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tiplied by the probability (12PZa) that this fact is indicated
correctly by the first syndrome extracted. I estimate

P0.bB8S g~1,1!,s~1!,0,
2

3
g2 ,

2

3
e D

1~12b!B8S g~1,r !,s~r !,0,
2

3
g2 ,

2

3
e D , ~13!

b5P0~12PZa!. ~14!

The reasoning is that since the lastX-error correction, the
Z-syndrome extraction network required either 1 orr syn-
dromes, with probabilitiesb and (12b), respectively, and
only a singleX-syndrome extraction has been undertaken
far because we are at step~6! of the protocol. Note that for
Eq. ~13! I have assumed that whenever the first syndrom
nonzero,r are extracted, which results in a slight underes
mate ofb since in fact sometimesr 9,r are extracted. Also,
I ignore the variation ofb from one recovery to another. Th
imprecision associated with these simplifications is sm
compared to the imprecision of the whole calculation. Eq
tions ~11!–~14! are circular, but enableb to be found by
iteration, starting from a value in the range 0,b,1.

Let P1(r X) be the probability that an uncorrectable err
accumulates in the data whenr X X syndromes, and either 1
or r Z syndromes, are extracted in a single recovery attem
I take an error of any weight abovet to be uncorrectable, so

P1~r X!. (
m5t11

n

bB8S g~r X,1!,s~1!,m,
2

3
g2 ,

2

3
e D

1~12b!B8S g~r X ,r !,s~r !,m,
2

3
g2 ,

2

3
e D .

~15!

It is found that for a viable computer~i.e., p̄!1) this is the
largest contribution to the overall crash probabilityp̄.

Let Pagree( j ) be the probability that in step~8! of the
protocol sufficient syndromes are found to agree for corr
tion to be completed, wherej is the number of successiv
recoveries since the last time anX syndrome was accepte
for the block in question, so that anX-error correction took
place. I argue that agreement is found wheneverr 8 or more
good syndromes have been prepared withoutZ error, hence

Pagree~1!. (
m5r 8

r

B~r ,m,12PZa! ~16!

and, using the protocol as in steps~7b!, ~8b!,

Pagree~ j .1!. (
m5r 8

r 1r 9

B~r 1r 9,m,12PZa!. ~17!

~This estimate breaks down atr 950, but I always require
r 9>1.!

Let Pws be the probability of a crash caused by a group
r 8 syndromes conspiring to agree on a syndrome, e
2-11
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
though they are all wrong, which would result in the wro
‘‘correction’’ being made to the data. I estimate

Pws.NGV~g2/3!r 81Nh~e/3!r 8. ~18!

Pws is much smaller than (PZa)
r 8 because to accept a wron

syndrome it is necessary that thesameerror in the ancilla
happens inr 8 independent ancilla preparations. Any singleZ
failure will cause the ancilla to be in a state of nonzero s
drome. Since there are many more possible syndromes
individual failure locations in the ancilla preparation ne
work, it is rare that two different failure locations give rise
the same final error in the ancilla. Therefore the probabi
of obtaining an ancilla state of the same nonzero syndro
in r 8 independent preparations is, to lowest order ing,e, the
probability that the same failure happens in all the prepa
tions. This is approximately (g/3)r 8 multiplied by the num-
ber of different gate failure locations, plus a similar ter
accounting for memory failure. The factors 1/3 appear
cause almost all failures that produceY errors are detected b
the verification, so do not affect good ancillas, and tho
which produceX errors do not produce a wrong syndrom
Note, Eq.~18! does not include terms for the noise in th
gates connecting ancilla to data, nor the memory noise w
the verification bits are measured, nor noise in the anc
measurement. This is because noise at these locations c
predominantly single-bit errors in the ancilla, and these
almost harmless—see Appendix B—the further contribut
to Pws is negligible when (tme)2!g2 andgm

2 !g2.
It is found that for small codes and/or high noise ra

smaller values ofr ,r 8,r 9 are better, in order to reduceP; for
large codes and/or low noise rate, higher values ofr ,r 8,r 9
are better, in order to reducePws and to keepPagree suffi-
ciently large. Oncer 8 is large enough, the value ofp̄ is
insensitive toPws because it is dominated by the other term

I can now calculatep̄, using the probability tree shown i
Fig. 4 as a guide:

p̄~C,$g i%,e!.2$bP1~1!1~12b!@Pagree~1!

3@Pws1~12Pws!P1~r !#1S#%, ~19!

where C refers to the set of paramete
$n,k,t,w,NA ,r ,r 8,r 9,tm ,nrep% and $g i%5$g1 ,g2 ,gp ,gm%. S
is the sum of the probabilities associated with the low
branches of the tree when the first recovery attempt gave
consistent syndrome. To calculate these, rather than kee
account of all the possibilities, I use an average for the nu
ber of Z-syndrome extractions that take place in each rec
ery. This average is

r̄ .b1~12b!~Pagree~1!r 1@12Pagree~1!!r 9#. ~20!

I then have for the probability of uncorrectableX error after
a total of j .1 recovery attempts since the last correction

Pj. (
m5t11

n

B8S g„r 1~ j 21!r 9, j r̄ …,s~ j r̄ !,m,
2

3
g2 ,

2

3
e D
~21!
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j 21

@12Pagree~ i !#J Pagree~ j !@Pws1~12Pws!Pj #/ j .

~22!

The final division byj accounts for the fact that I am calcu
lating an average crash probability per attempt at recov
The logical quantum computation continues whether or
any recovery attempt gave a consistent syndrome.

A. Illustrative example

To illustrate the main features of the calculation, consid
for example, the@@127,43,13## BCH code, for parameter val
ues g51024, e51026, nrep52.5, tm525, and we choose
r 55, r 854, r 953. The code hasw547, NA51802 ~see
Table I! giving NGV53689, Nh58893. In each time step
'NA /w.38 gates act in parallel on each ancilla duri
preparation and verification; the recovery time istR5143
time steps.

These parameter values givea.0.74, b.0.8. Suppose
the computer consists of ten blocks. Of the 25 ancillas p
pared forX recovery, on average 25a.18 are found to pass
the verification. When the first syndrome is extracted
each block, 10b.8 are found to be zero, 2 nonzero. Forr
55, a further 4 syndromes are extracted from each of
two blocks needing further attention, this uses up the rem
ing 8 ancillas that passed verification. The ancilla error pr
ability is PZa.0.1 and the probability a data block has n
errors isP0.0.9, therefore the typical situation is that one
the two blocks being recovered is found in fact to be free
errors ~its first reported nonzero syndrome was wron
caused by aZ error in the ancilla preparation! while the other
has a correctable error. The probability that 4 of the 5 s
dromes agree isPagree.0.8 so the error is usually identifie
first time, but occasionally this must await the next recove
In the latter case the subsequent recovery of the block
question hasr 1r 958 syndromes available, the probabilit
that 4 of them are mutually consistent is'0.998.

The probabilities of uncorrectable error in the da
~branchesb̄ and d̄ in Fig. 4! are

P1~1!.3310213b15310210~12b!.3310211,

P1~r !.8310212b1231029~12b!.4310210,

while the probability of accepting a wrong syndrome isPws

.5310215. The overall result isp̄.3310210. It is seen
that the main contribution to the crash probability com
from the occasions where repeated syndrome extractions
required for bothX and Z recoveries, leading to too man
errors in the data. On these occasions the number of gate
memory failure locations isg(r ,r )52540,s(r ).39 000, re-
spectively, therefore gate failure dominates whene,g/15.
2-12
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B. Comparison of the analytical estimate
and the Monte-Carlo simulation

The prediction made by Eqs.~8!–~22! is shown by the
curves in Figs. 1–3. The main feature of both the numer
results and the analytical estimate is thatp̄ varies as (g
1const3e) t11 in the limit of small g, e. This is seen, for
example, in Eq.~15!, where a useful pair of approximation
is

B8~g,s,m,g,e!.B~g,m,g1se/g! ~23!

.S gg1se

m/e D m

. ~24!

The first approximation is quite accurate in the regime un
consideration~small g, e), while the second gives the righ
order of magnitude;e is the base of natural logarithms and
used Stirling’s formula to simplifym! ~even thoughm is not
large!.

The values of the fitted parametersm andn were adjusted
to get the best fit between the curves and the Monte C
‘‘data.’’ This implies that the curves must match the data in
least two places. The fact that the curves also correctly s
all the major trends as a function ofe, g, nrep, tm , and the
code parameters is evidence that the analysis is sufficie
complete to be useful. The analytical estimate predicts thp̄

falls slightly faster thang t11 in the region 1024, p̄,1022

because the mean number of syndromes extracted is fa
asb increases towards 1. The simulations are consistent
this but in the absence of simulated points atp̄,1024 it was
not possible to confirm it thoroughly. The Monte Carlo sim
lation was too slow to explore the latter region~each point at
p̄.1024 took many days to compute on a modern works
tion!.

The agreement overall is good. The main~but still mod-
est! discrepancy is that in Figs. 1 and 2 the analysis und
estimates the numerical results, while in Fig. 3 it overe
mates. In other words, the effect of changing ther
parameters is greater in the numerical simulation than in
analysis, in the region of largeg and smalle/g. By adjusting
m andn it was possible to get a better fit either to Figs. 1 a
2 or to Fig. 3; the choice shown (m50.35, n51) represents
the best compromise.

There is a small systematic disagreement in gradient
several of the sets of results, especially in Fig. 1. This wo
be enough to cause a disagreement inp̄ by an order of mag-
nitude if it persisted to lowerg values of orderg51024

~where a direct comparison between numerical and analy
results is not available!. However, the analytical model a
ways produces the power-law behaviorp̄}g t11 at low g ~as
long asr 8>t) so the disagreement in gradient will not pe
sist to lowg, and in any case whenp̄,1028 even an order
of magnitude error inp̄ will only be a relatively small effect
in the results to be obtained from the model in the rest of
paper.

The part of the analysis which can only be confirmed t
limited extent by the simulations is the linear scaling witht
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of the termsmt andnt in Eqs.~10! and~11!. Simulations of
more codes, especially codes correcting more errors, wo
be necessary to give further information.

C. Performance of a selection of codes

The estimated crash probability~19! was calculated for a
variety of codes with scale-upN/K in the range 7–400. The
gate and measurement noise parameters were set tog15g2

5gm5gp[g, and p̄ was calculated for several values ofg
with e5g/100 and withe5g/10, at tm525, nrep51. The
values ofr ,r 8,r 9 were adjusted to minimizep̄ for each case.
To make a useful comparison, I then consider notp̄ directly,
but rather the number of qubit gatesKQ which the stabilized
computer can achieve, allowing for the fact that codes w
k51 allow slightly more efficient fault-tolerant gates tha
codes withk.1, cf. Sec. II A. Using the method of ‘‘propa
gating the gate through a teleportation’’@9# only approxi-
mately twice as many recoveries per gate are needed w
k.1 than whenk51 @12#, so KQ51/p̄(0.5/p̄) whenk51
(k.1). The resulting values ofKQ are plotted in Fig. 5 as a
function of the scale-up for the code employed. The co
themselves are identified in Table I.

FIG. 5. AvailableKQ for a variety of codes, plotted against th
scale-upN/K of each code atnrep51, tm525. ~a! e5g/100, ~b!
e5g/10. The sets of results are atg51025(3), 1024(1),
1023(s); each code has a given scale-up, the codes are indic
by an index number placed by each point atg51025, which refers
to the list in Table I. The dotted lines joining the points at giveng
are to guide the eye.
2-13
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
Clearly at given values ofg, ande one would choose the
code of smallest scale-up which allows a desiredKQ to be
attained. The main conclusion to be drawn from Fig. 5 is t
for g<1024, the efficient codes such as@@127,43,13##,
@@127,29,15## perform well, but at higher noise level othe
codes such as those numbered 1 to 9 in Table I should
adopted, at a cost in scale-up.

V. CODE CONCATENATION

In order to get still smaller crash probabilities, and hen
larger algorithms, we need codes that can correct more
rors. Such codes exist, for example, a@@511,241,31## BCH

code, but they necessarily involve more parity checks
therefore larger networks to extract syndromes. The incre
in g, s, andPZa trades off against the increase int, and as a
result these codes only become useful at low values of
failure rates,g,1025.

Code concatenation enables this trade-off to be avoide
the cost of increased scale-up.

A. Crash probability of the concatenated code

For stabilizing quantum memory, any codeCi

5@@ni ,ki ,di ## can be concatenated with any other codeCo

5@@no,ko,do##, but for quantum algorithms the task of co
structing logical gates is rendered much more simple ifki

51 and both codes are CSS, therefore I restrict attentio
this case. Withki51, nino physical bits are used to storeko

logical bits. Ci is called the inner code, andCo the outer
code, and their combination is called the supercode.
physical bits will be called ‘‘level-0’’ bits. Considerno

groups containingni physical qubits each. To build the log
cal zero state of the concatenated code, first prepare
group of ni level-0 bits in the logical zero ofCi ~e.g., by
using a fault-tolerant measurement!. Each such block is then
one level-1 bit. Next use transversal Hadamard a
controlled-NOT operations to evolve theno level-1 bits into
the logical zero state ofCo. This network may or may no
involve a level-1 recovery~i.e., recovery of the level-1 qubit
in parallel, using the inner code! before each transversal gat

A concatenated code can be regarded in two ways. Firs
can be regarded as a single CSS code of parame
@@nino,ko,d## whered5(dido1di1do21)/2. The methods
described in previous sections apply directly, the only cha
being in the way the classical processor interprets the s
dromes. Owing to the code construction, to be uncorrecta
an error must be composed of more thant i5(di21)/2
single-bit errors in each of more thanto5(do21)/2 sub-
blocks. The probability for this is approximately

B„no,to11,B~ni ,t i11,p!…, ~25!

wherep is the single-physical-bit error probability. Eqs.~15!
and ~21! for P have to be adjusted accordingly. This fir
approach produces useful behavior when the 7-bit and 23
codes are combined once with themselves or each other
for larger codes theG and V networks become too large t
allow recovery unless the noise ratesg ande are very low.
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The second way to use a concatenated code is to m
more use of its structure, by recovering the encoded lev
qubits inside the network that prepares level-2 ancillas.
example, if after every gate in the level-2 network, a leve
recovery is applied to all level-1 qubits, then the overall b
havior is described by the analysis given in Sec. IV, i.e., E
~8!–~22!, applied to the blocks of level-1 qubits. The ga
and memory failure probabilitiesg1 ,e1 of the level-1 qubits
are estimated as the crash probability per block per recov
associated with the inner code, i.e.,g15e15 p̄(Ci ,g,e), and
then the crash probability of the supercode isp̄
. p̄(Co,g1 ,e1).

We can improve matters further by distributing the inn
recoveries more intelligently. The main point is that it
better not to recover resting qubits when this will make th
more noisy. To do better, after the initial preparation of t
level-1 qubits at the beginning of the level-2G network, a
level-1 recovery is applied in parallel to all level-1 qubit
but thereafter recover only nonresting level-1 qubits, just
fore a gate acts on them, with one exception. The excep
is the qubits in the data block, which rest for a long time
tR
i @1, so these qubits are given level-1 recoveries at

same rate as the qubits in the ancilla. With this method, e
level-1 qubit is recovered on average once everyh.1
1Nh

o/2NGV
o .2 steps of the level-2 network. The effect ca

be estimated by replacing the termnitR
i in Eq. ~11! by hnitR

i

in the calculation ofg15e15 p̄(Ci ,g,e), and then for the
calculation ofp̄5 p̄(Co,g1 ,e1) use the fact that the memor
noise in between gates of the outerG,V networks has been
absorbed intog1, therefore set

Nh
o50, tm

o 51, ~26!

and replacenotR
o by notR

o /h. This more intelligent placemen

of inner recoveries was found to reducep̄ for all the cases
plotted in the figures.

A small saving on ancilla preparation can be obtained
reusing theno level-1 qubits of any ancilla that failed it
level-2 verification.

I show in Fig. 6 the effect of concatenating the codes
Table I with the 7-bit or 23-bit code once or with the 7-b
code twice, estimated by the method just described, atnrep
51, tm525. The main conclusion is that the 23-bit code is
better choice than the 7-bit code, since for given scale-u
permits the higherKQ. It is clear that a great increase inKQ
is available from the concatenation of the 23-bit code w
another code. In particular, the combinationCi

5@@23,1,7##, Co5@@127,29,15## gives a very stable com
puter for scale-up around 1000.

B. Threshold

So far I have calculated the size of computationKQ
which can be achieved for a given scale-up and given va
of the failure probabilitiesg,e. Further use of concatenatio
leads to the ‘‘threshold result,’’ which is the result that th
situation p̄→0 can be obtained for values ofg, e below a
thresholdg0 , e0 which does not depend onK andQ, assum-
2-14
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
ing that the noise per qubit and per gate is independent o
size of the computer and is stochastic and uncorrelated,
sufficient parallel operation is available in the computing d
vice. The threshold result may be proved by analyzing
case of a particular code such as@@7,1,3##, concatenated to
arbitrarily many levels.p̄→0 is obtained when the cras
probability at each of the higher levels is less than that of
level below.

The protocol I have adopted is not guaranteed to be
absolute optimal one, and in particular a protocol that ha
higher scale-up and allows a slightly higher threshold m
exist. However, the protocol has been optimized in sev
ways, such as minimizing the number of gates that conn
ancillas to data, and minimizing the time to verify ancilla
Therefore it is unlikely that another protocol will offer sig
nificant increases in the threshold, under the assumptions
have been made about the noise and the timing. After
first two levels,p̄ is O(g (t11)2), i.e., varying quickly withg,
and therefore the threshold is insensitive to details of
protocol at higher levels.

An estimate of the threshold is immediately available
using the analysis described in Sec. V A, extended to m
levels. I use the analytical estimatep̄L5 p̄(C,p̄L21 ,p̄L21),
employing the adjustment given by Eq.~26! for the second

FIG. 6. AvailableKQ vs overall scale-up for codes concatenat
with an inner@@7,1,3## Hamming code (s) or @@23,1,7## Golay
code (3) or concatenated twice with the Hamming code (1). The
results are given for the same set of codes as in Fig. 5 and Tab
The caseg51024, tm525 is shown, for a computer withnrep51
for both inner and outer codes.~a! e5g/100, ~b! e5g/10.
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level, and then higher levels are modeled by takingtm51
without any adjustment toNh . The adjustment oftR

i by h
described just before Eq.~26! has negligible effect whennrep
is large, so does not affect the maximum possible thresh

The calculated threshold is shown in Fig. 7 for the cod
@@7,1,3## Hamming,@@23,1,7## Golay, and@@47,1,11# qua-
dratic residue, for three values oftm at the innermost level,
and for 0.01<e/g<1. It is seen that if the measurements a
fast (tm51), the two smaller codes give a similar thresho
that of the Golay code being somewhat higher. For the m
physically realistic case of slow measurements (tm@1), the
Golay code offers a threshold higher than that of the Ha
ming code by a factor 2–5. The Golay threshold values
in the region of 1023 whentm51 or e!g, falling to ;1024

when tm@1 ande5g.
It is instructive to compare this threshold calculation w

previous estimates. Previous calculations have all adop
the concatenated@@7,1,3## code rather than the Golay cod
and typically no statement is made about the measurem
time tm , but a value tm51 is implied. Gottesman and
Preskill @7,18# quoted as a ‘‘conservative estimate’’e0
51025 when memory noise dominates, andg051024 when
memory noise is negligible; in subsequent work the sa
authors derived approximate values 631024 for both param-
eters, with the caveat that these were overestimates, but
the true value would exceed 1024 @26#. Aharonov and
Ben-Or@15# found 1026 in a model where measurement an
classical computing is avoided, where one expects a lo
threshold. Zalka@24# found e051024 when memory noise
dominates, andg051023 when memory noise is negligible
In his calculation Zalka assumed many logical gates can t
place between recoveries without causing an avalanch
errors. My values for the case oftm51 and the@@7,1,3##
code aree051.331023 and g05331023, where recovery
takes place after every logical gate so that the avalanch

I.

FIG. 7. Threshold valuesg0 and e0 for tm51, 25, and 100.
Values in the range 0.01<(e/g)<1 are plotted. Full curves, con
catenated@@23,1,7##; dashed curves, concatenated@@7,1,3##; dotted
curves, concatenated@@47,1,11##. The highest value oftm produces
the lowest curve of each triplet.
2-15
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
avoided. My values are significantly higher than previou
reported ones, especiallye0 which is two orders of magni-
tude larger than the early ‘‘conservative estimates,’’ and o
order of magnitude larger than the estimate by Zalka, des
the fact that I uphold a further constraint in the requirem
to recover every block after every logical gate. This is a r
improvement, not simply a lack of precision in the estimat
because I have taken advantage of the insights present
Ref. @14# which speed the verification of ancillas and hen
increase the tolerance of memory noise. Furthermore, by
ognizing the advantage of the Golay code, which is m
important when measurements are slow (tm!1), the present
study reveals an increase in the gate noise thresholdg0 by an
order of magnitude attm5100, compared to what would b
the case for methods previously studied, and an increas
the memory noise thresholde0 by between one and two or
ders of magnitude, representing the improvement offered
the combination of faster verification combined with bet
coding.

I estimate the uncertainty of my threshold estimates to
approximately a factor 1.5; this is simply a judgement ba
on the degree of change in the results which was observe
refinements were added to the calculation.

VI. KQ SURFACE AND DISCUSSION

I now bring together all the methods discussed above
order to find the largest algorithm-sizeKQ which can suc-
ceed as a function of the noise rate and the scale-up m
mized over all the codes and parameter choices. This is d
by allowingnrep to take on a range of values, and calculati
KQ and the scale-up for each code~including concatenated
ones!, using whichever values ofr ,r 8,r 9 give the highest
KQ. The values of log10(N/K) are then binned at 5 bins pe
decade, and the maximum value ofKQ in each bin is noted.
This leads to a surface ofKQ as a function of scale-up an
noise rate. The surface is plotted~on a logarithmic scale! in
Fig. 8 for e5g/100, tm525. The optimal values of ther
parameters are listed in Table I for the caseg5100e
51024, tm525. Figure 9 shows lines of constantg and
contours of constantKQ, for the casese/g50.01 and 1, at
tm525. Figure 10 shows lines of constantg and contours of
constantKQ, for the casestm51 and 100, ate/g51.

The threshold result is indicated by the cliff atg.2
31023 on the surface shown in Fig. 8, but this cliff is not th
only important feature of the surface. Equally significant a
the cliffs at N/K.10 andN/K.1000. The first indicates
that large algorithms (KQ;1010) are possible for a modes
scale-up once the gate noise rate is<1024 ~at e5g/100), by
using a BCH code, and the second cliff indicates that at
same noise rate a scale-up of a few thousands allows
large algorithms (KQ;1040), using the Golay code conca
enated once with a BCH code.

The really huge values ofKQ.1020 should be interpreted
as an indication not that such large algorithms can neces
ily succeed, but rather that their failure will be for some oth
reason not considered here, such as technical or environm
tal problems causing correlated failure over many~e.g., hun-
dreds of! qubits.
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Comparing Fig. 9~b! with Fig. 9~d!, it is seen that increas
ing e/g from 0.01 to 1 at fixedtm has the effect approxi-
mately of shifting the surface in the direction of smallerg by
an order of magnitude. Comparing Fig. 9~d! with Fig. 10~d!,
it is seen that an increase intm from 25 to 100 ate5g has
the effect approximately of shifting the surface in the dire
tion of smallerg by almost another order of magnitude.

It should be reemphasized that all the noise rates quo
apply to nonlocal gates. They represent not the noise o
gate between neighboring qubits, or during the time for su
a gate, but the noise associated with a gate on qubits s
rated by some distance that depends on the code and o
structure of the computer. This distance has been discu

FIG. 8. Surface of maximum algorithm sizeKQ as a function of
g and scale-upN/K, at e5g/100 andtm525. All the axes have
logarithmic scales, labeled in powers of 10. The surface has b
truncated atKQ51050 to bring out the lower portions.

FIG. 9. ~a!,~c! Lines of constantg, for log10g522,23,24,
25. ~b!,~d! contours of constantKQ. ~a!,~b! for the case plotted in
Fig. 8, which hase5g/100, tm525. ~c!,~d! for the casee5g, tm

525. The contours are at 1010, 1020, 1030, etc.; every fifth contour
is shown with a thicker line.
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OVERHEAD AND NOISE THRESHOLD OF FAULT- . . . PHYSICAL REVIEW A 68, 042322 ~2003!
in Ref. @19#, where it is found that for certain reasonab
choices of the layout of the computer, the tolerated noise
a computer allowing only nearest-neighbor coupling is
pected to be about an order of magnitude smaller than
tolerated noise for nonlocal gates which has been given h
Also, in the case of only nearest-neighbor couplings, at
given time step in theG,V networks, most ancilla qubits
which are said to be ‘‘resting’’ in the present discussion w
be involved in one or more swap operations. A rough in
cation of the impact of this is obtained by letting the memo
noise parametere in the present discussion include a cont
bution from the imprecision of swap gates.

A further assumption underlying all the results quoted
that the computing device allows as much parallelism in
operation as is logically possible for the networks cons
ered. A reduction in the available parallelism can be comp
sated to some extent by a reduction in the memory nois

VII. CONCLUSION

The main results of this paper are Figs. 7–10, the se
Eqs. ~8!–~26!, the network details set out in Table I, an
related insights such as the good performance of the 23
Golay code, and the role of the measurement timetm .

The fundamental reason why the crash probabilities fal
such low values is that uncorrelated and stochastic noise
the special property that the likelihood of a cluster of failur
falls exponentially with the size of the cluster. There are t
main reasons why in practice the noise will not be like th
qubit-qubit interactions and the technical details of the m
chinery used to supply the gate operations. The former
probably not too big a problem, since the strength of ma
body Hamiltonians typically falls very rapidly with the num
ber of bodies~see comments in Sec. I A!. The latter can be
tackled by standard coding techniques such as random
ing, interleaving, and concatenation. This implies tha
study such as the present one should be regarded merely
starting point for the complete structure of the computer. O

FIG. 10. As Fig. 9, but for the casee5g and~a!; ~b! tm51; ~c!,
~d! tm5100.
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method to suppress correlations is to use a low-level enc
ing such asu0&L5u0101&2u0110&1u1001&2u1010&, u1&L
5u0101&1u0110&2u1001&2u1010&; this is a decoherence
free subspace forZZII, IIZZ, andXXXX operators and so
is unaffected by jointZ rotation of adjacent pairs of bits an
joint X rotation of quadruplets of bits.

Further work in this area could address the following
sues. Does the error propagation directly between d
blocks contribute significantly to the crash probability, wh
recoveries are placed in an optimal way as described in S
III? How well does the simple noise model capture the m
features of noise and imprecision in particular physical
amples? To what degree are error processes present w
effects add coherently rather than incoherently as assu
here? How much correlation and nonstochastic behavio
found in practice? Further numerical simulations could
carried out on larger codes, mainly to test Eqs.~10! and~11!.
The cost of moving information around, and the transp
distances required in QEC networks, could be further a
lyzed so that noise tolerance for nearest-neighbor inte
tions can be calculated. The performance of further encod
to suppress correlated noise could be studied.

ACKNOWLEDGMENTS

I would like to acknowledge helpful conversations wi
D. Gottesman. This work was supported by the EPSRC
the Research Training and Development and Human Po
tial Programs of the European Union.

APPENDIX A: CODE CONSTRUCTION

Table I lists the parameters of the codes considered in
text. The values of@@n,k,d## are readily available from stan
dard texts such as Ref.@27#, but the values ofw andNA have
to be obtained by examining the check matrices of the c
sical codes. These were created using standard methods
Ref. @27#, Chaps. 7, 9, 16. The parity check matrix of a@n
52m21,kc ,d# classical BCH code was created by lettingf
be equal to anmth-order polynomial which is a factor of 1
1xn over GF(2). Thecheck matrix consists of a matrix o
powers off, where each entry is replaced by a column ofm
bits giving the coefficients in the polynomialf j .

For a quadratic residue code havingn a prime which is
one less than a multiple of 4, the coefficientsf i , 0< i<n
21, are defined to be 0~1! if i is a quadratic residue~non-
residue! respectively, modulon, and f 051. The generator
matrix is equal to then3n circulant matrixGi j 5 f j 2 i .

Further codes listed were obtained by deleting two c
umns from the generator matrix of the classical code, to
from @@n,k,d## to @@n22,k12,d22##, see Refs.@28,29#.

Once the check matrix or generator matrix was obtain
it was converted into the (IA) form, and thenw and NA
could be obtained.

APPENDIX B: ANCILLA PREPARATION STATISTICS

The ancilla preparation and verification was studied us
the Monte Carlo method described in Sec. III. The meth
2-17
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ANDREW M. STEANE PHYSICAL REVIEW A68, 042322 ~2003!
was to use the noisyG, V and ancilla-data coupling network
to extract a single syndrome from a data block that was p
pared with no errors. This was repeated many times~starting
from an error-free data block each time!, and the various
syndromes obtained were counted for values ofg in the
range 1025,g,1022.

Under the conditions of the numerical experiment, t
obtained syndrome should be zero. The nonzero syndro
indicate the errors produced by the preparation/verifica
network which were not detected during verification, and
further errors produced by the coupling of ancilla to data,
final Hadamard gates on the ancilla, and the measureme

Let the syndromes be$s%. The program gives the prob
abilitiesPs(g,e,tm) of obtaining eachs, for a range of values
of g at givene/g andtm . I fit each set of results to a powe
law

Ps~g!5asg
cs, ~B1!

where the fitted parametersas andcs depend one/g, tm and
the code under consideration. Only values ofPs less than
0.01 were included in the fit, in order to avoid the no
power-law dependence whenPs approaches 1. I can thu
examine the statistics of the ancilla preparation in some
tail by examining the set of coefficientsas , cs .

Figure 11 shows histograms giving the distribution ofcs
values in the case of the Golay code, fortm51. The obtained
syndromes are first divided into sets, defined by the we
of the coset leaders. I give the histogram for each set. T
shows the power-law dependence for preparing an an
with an error of each weight. For weight 1, I obtaincs51, as
expected: the most likely cause of a single error is a sin
failure. For weight 2,cs falls between 1 and 2, indicating tha
the most likely weight-2 errors are caused by single failu

FIG. 11. Distribution ofcs values giving the power-law depen
dence of the probability of obtaining errors in the prepared anc
as a function of gate noise rate. The example given is for the G
code attm51 and ~a! e5g, ~b! e5g/100. Three histograms ar
plotted, showing the distribution for errors of weight 1~full line!, 2
~dashed line!, and 3~dotted line!.
04232
e-

e
es
n
e
e
ts.

e-

ht
is
lla

le

s

or double failures in roughly equal proportions. For weight
mostcs values are close to 1, indicating that those weigh
errors that can be produced by a single failure are the m
likely ones to occur.

Figure 12 shows plots ofas vs cs . There are two features
that stand out. First, there is a correlation betweenas andcs ,
for the syndromes of each error weight, such thatas in-
creases by a factor of order 103 whencs increases by 1. This
means that thePs having smallcs will be more likely than
those having largecs wheng,1023, which is the regime of
interest. Therefore errors~of whatever weight! caused by
single failures are the main ones I need to account for
attempting to model the behavior.

The second feature is that each weight-1 error is m
more likely to be produced than any individual weight-2 e
ror. This is to be expected: there are several single-fail
locations that can produce a given weight-1 error in the
cilla, but only a smaller number of locations that can produ
any given error of weight.1.

Note that ate5g/100, Fig. 12 shows that most individua
errors of weight 3 are more likely than individual errors
weight 2, but Fig. 11 shows that there are fewer of the
This suggests the weight-3 errors here are caused by
failure in the preparation and verification networks, wh
most of the weight-2 errors are caused by memory failur

A further statistic extracted from the calculations was t
total probabilityPw of obtaining any ancilla error of given
weightw, for weights between 1 and 4. This probability w
fitted to a power law~as a function ofg at fixede/g). The
powers obtained were close to 1~e.g., attm51 the powers
were 0.97,1.6,1.4,1.1 for weights 1,2,3,4, respectively, w
e5g, and 0.93,1.2,1.1,1.1 whene5g/100.! In view of this
and of the fact noted above—that errors caused by sin
failures dominate the statistics wheng,1023—modeling
these probabilities by a linear dependence ong will capture
the main features. Table II gives the fitted coefficienta in the
single-parameter linear fitPw515ag, and a8 in the fit

,
y

FIG. 12. The fitted coefficients of Eq.~B1! for all the ancilla
errors observed in a large number of runs of the Monte Carlo si
lation for the Golay code, attm51. ~a! e5g, ~b! e5g/100. The
symbols indicate the error weight 1(o), 2(1), or 3(3).
2-18
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Pw521Pw531Pw545a8g, for two different values ofe/g
and two different values oftm . I expect the net probability
PZa5(wPw for the ancilla to have some error, as given
Eq. ~8!. The table shows that the numerical results are fit
reasonably well by this model.

The other feature of the analysis presented in Sec.
which I need to confirm is the value ofPws. This is the
probability of a crash caused by several successive anc
conspiring to agree on a wrong syndrome. Suppose the
cillas all suffer from the same error vectore. When they
couple to the data, they pick up the error vectord of the data
bits to give a net error vectore1d. Assuminge1d is cor-

TABLE II. Linear fit coefficientsa, a8 for the probabilities of
ancilla error of weight 1 (a, column 3! and weight.1 (a8, column
4!, obtained from the numerical calculations at two values ofe/g
and of tm . The final column gives the probability of any ancil
error as estimated by Eq.~8!.

e/g tm a a8 a1a8 PZa

1 1 196 36 214 243g
0.01 1 65 21 86 103g
1 25 509 54 563 609g
0.01 25 65 16 81 106g
on

d
ce
O

-
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rectable, the correction applied to the data will bee1d,
which leaves the errore in the data. Ife has small weight,
this will not cause a crash, and furthermore ife has weight 1,
it will only add a further small contribution~scaling as the
failure rates raised to the powerr 8) to the coefficient for
single-data errors, which is essentially harmless@14#. It fol-
lows that Pws can be estimated as the probability thatr 8
ancillas all have the same errore whose weight is greate
than 1. Such errors are caused mostly by that part of thG
andV networks which takes place beforeV is completed, in
which X andY errors are mostly detected. The probability f
any given e is therefore eitherg/3 or e/3, depending on
whether it was caused by a gate failure or a memory failu
The number of differente of weight .1 that can be cause
by a single failure is overestimated byNGV (Nh) for thosee
caused by gate failure~memory failure!, hence I obtain the
approximate value forPws given in Eq.~18!. @For the Golay
code the numerical study indicated for that case the t
numbers were.NGV/4(.Nh/4).# If tm is sufficiently large,
then the memory noise while verification bits are measu
will be such that a double failure in this part of the netwo
is as likely as a single failure elsewhere; such a contribut
can be neglected as long as (tme)2!g2. If the measuremen
failure probabilitygm is sufficiently large, then double mea
surement failures will be significant; their contribution
small as long asgm

2 !g2.
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