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It should also be noted that this theorem carries over readily tioe code. The resulting codes are therefore more efficient than CSS
nonbinary codes (see [3, Secs. 4 and 5] for the constraints of twes. The examples | will give are found to be among the most
nonbinary quantum LP bound); in particular, the quantum LP bourdficient quantum codes known, and enabled some of the bounds in

is monotonic for larger alphabet codes as well. [7] to be tightened. The code construction is essentially the same
as that described for Reed—Muller codes in [24], the new feature is
REFERENCES to understand how the method works and thus prove that it remains

successful for a much wider class of code. After this some relevant
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Il. QuAaNnTUM CODING

Following [7], the notatior[n, &, d]] is used to refer to a quantum
error-correcting code for qubits havin@2* codewords and minimum
distanced. Such a code enables the quantum information to be
Enlargement of Calderbank—Shor—Steane Quantum Codes restored after any set of up tdd — 1)/2] qubits has undergone
errors. In addition, wher is even,d/2 errors can be detected. We

Andrew M. Steane restrict attention to the “worst case” that any defecting qubit (i.e.,

any qubit undergoing an unknown interaction) might change state in

) ) . a completely unknown way, so all the error proces3esZ, and
Abstract—It is shown that a classical error correcting codeC = Y = X Z must be correctable [8], [9], [13], [21]

[n, k, d] which contains its dual, C-- C C, and which can be enlarged . h . .
to C' = [n, k' > k+ 1, d'], can be converted into a quantum code of A quantum error-correcting code is an eigenspace of a commutative

parameters|[n, k + k' —n, min (d, [3d’/2])]]. This is a generalization of Subgroup of the groug of tensor products of Pauli matrices. The
a previous construction, it enables many new codes of good efficiency to becommutativity condition can be expressed [6], [7], [9], [24]
discovered. Examples based on classical Bose—Chaudhuri-Hocquenghem

(BCH) codes are discussed. H,-H +H.-H =0 (1)

Index Terms—BCH code, CSS code, quantum error correction. where H, and . are (n — k x n) binary matrices which together

form the stabilizer ¥ = (H.|H.). All vectors (u.|u.) in the code
. INTRODUCTION (whereu, andw. aren-bit strings) satisfyH, - u. + H. - u, = 0.

Quantum information theory is rapidly becoming aWeII-estabIish%z?eszzigenerated by the genergler (G|G-) which, therefore,

discipline. It shares many of the concepts of classical informa-
tion theory but involves new subtleties arising from the nature H.-GI'+H.-GF =o. 2
of quantum mechanics [2], [23]. Among the central concepts in

common between classical and quantum information is that of erdorother words,;/X may be obtained fron¥ by swapping theX and
correction, and the error-correcting code. Quantum error-correctiggparts, and extracting the dual of the resulting+ %) x 2n binary
codes have progressed from their initial discovery [19], [20] and timeatrix. The rows ofGG. and G. have lengthn, and the number of
first general descriptions [5], [20], [21] to broader analyses of thews isn + k.

physical principles [3], [6], [9], [13] and various code constructions The weight of a vectou.|u.) is the Hamming weight of the
[6], [9], [10], [14], [17], [18], [22], [24]. A thorough discussion of bitwise or of u, with u.. The minimum distance of the codeC
the principles of quantum coding theory is offered in [7], and mang the largest weight such that there are no vectors of weightn
example codes are given, together with a tabulation of codes ahy C*, where the dual is with respect to the inner product
bounds on the minimum distance for codeword lengtip ton = 30
guantum bits.

For larger n there is less progress, and only a few generg| e code has furthermore no vectors of weightl in C, apart
code constructions are known. The first important quantum cog8, the zero vector.

construction is that of [5], [20], [21]. The resulting codes are the css code construction [5], [21] is to take classical cades
commonly referred to as Calderbank—Shor—Steane (CSS) codes, ¢, with Cf C Cs, and form
can be shown that efficient CSS codes existnass oo, but on -
0 ) 2= <H2 0 ) 3)
G 0 Hy

the other hand, these codes are not the most efficient possible. | g = <G1
will present here a method which permits most CSS codes to be 0
enlarged, without an attendant reduction in the minimum distance\%ereGi and H; are the classical generator and check matrices. The
Manuscript received April 24, 1998; revised February 23, 1999. This wodual conditionCi- C C, ensures thafl, - H] = H, - H =0
was supported by the Royal Society and by St. Edmund Hall, Oxford.  anq therefore, the commutativity condition (1) is satisfied”'|f=
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((uzluz), (velvs)) = we - v +us - vg.
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An interesting subset of CSS codes is that given by the abofet (u) > d', wt (v) > d', wt (u+v) > d'}. These are sufficient to
construction starting from a classidal %, ] which contains its dual, imply thatwt (u|v) > 3d’/2. For, if u andv overlap inp places, then
leading to a quanturf[n, 2k — n, d]] code.

wt(u+v)=wt(u) —p+wt(v)—p

I1l. NEw CobE CONSTRUCTION and

wt (ulv) = wt (u) + wt (v) — p

I will present the new construction by stating and proving the
(wt (u) + wt (v) + wt (u +v))/2 > 3d'/2.

following.

Theorem 1: Given a classical binary error-correcting code=  This completes the proof.
[n, k, d] which contains its dualC*+ C C, and which can be
enlarged toC’ = [n, k' > k + 1, d'], a pure quantum code of
parametergn, k + k' — n, min(d, [3d’/2])]] can be constructed.

Proof: The generator for the quantum code is

The above construction was applied to Reed—Muller codes in
[9] and [24]. These codes are not very efficient (they have small
k/n for given n, d) but they have the advantage of being easily
decoded. A large group of classical codes which combine good

D AD efficiency with ease of decoding are the BCH codes. They include
G=1|G 0 (4) Reed-Solomon codes as a subset. | will now derive a set of quantum
0 G error-correcting codes from binary BCH codes using the above

where G generates the classical codé and G and D together construction, combined with some simple BCH coding theory.

generateC’, as doesF and AD together (we will choosed such

that D and AD generate the same set). IV. APPLICATION TO BINARY BCH CoDES
The stabilizer is Properties of BCH codes are discussed and proved in, for example,
AB B [15]. A binary BCH code of designed distanéeds a cyclic code of
H=|H 0 (5) lengthn over GF(2) with generator polynomial
!
0 | H g(2) = Leam. AM® (2), MO+ (), o, MOy (9)

where H' checks the cod€’, so has: — &’ rows, { H', B} checks
the codeC, so B hask' — k rows, and

i—pBp" (AT>—1 (BDT>_]. ©) MY () = H (r — a’) (20)

i€C,

where

From the dual conditions specified in TheoremH,H'T = (0 in which « is a primitiventh root of unity over GR2), andC; is a
andH'B" = 0 so the commutativity condition (1) is satisified. Thecyclotomic cosetmod n over GH2), defined by
definition of A ensures we have the correct stabilizer since Co = {5, 25 45, -+, 27~} (1)
AB(AD)' = BD". ) _ _ _ _
wherem, = |C,] is obtained fron2™ss = s mod n. The dimension
Since the number of rows in the generatok is &', the dimension of the code isk = n — deg (g(x)). From (9) and (10) this implies
of the quantum code i& + &' — n. It remains to prove that the k = n—>__|C,| where the sum ranges from=btos =6 +b—2
minimum distance isnin(d, [3d'/2]). but only includes each distinct cyclotomic coset once. This can also
We chooseA such thatD and AD generate the same set.be expressefl = n—|Z¢| whereZe = CLUC 41 U---UChys—2 IS
Therefore, for any vectofu|v) generated by D|AD), eitheru = v  called thedefining setThe minimum distance of the codeds> 6.
or wt (u + v) > d'. We choose the mad such thatu = v never The dual of a cyclic code is cyclic. Grasst al. [11] derive the
occurs (a fixed-point free map). This can be achieved as long asuseful criterion that a cyclic code contains its dual if the union of
has more than one row, by, for example, the map cyclotomic cosets contributing t9(«) does not contain bott'; and
0100+ -0 Crn—s. In other words,.

0010---0 {(n—i)¢gTe Vielc}=>Ct CC. (12

4= 0001-.--0 . ®)

000.(). ) A. Primitive BCH Codes
1100---0 Consider first the BCH codes with = 2™ — 1, the so-called
_ primitive BCH codes. In order to find the codes which satisfy the
- To complete the proof we will show that for any nonzero vectagondition (12), we will restrict the argument #o = 1 and find
(ulv) generated byg, wt (u|v) > min (d, 3d'/2) (and, therefore, the smallests such thatn — » € C, for somer < s. The largest

wt (ulv) > min (d, [3d'/2])). permissible designed distance will then be= s.
For the nonzero vectdru|v), if either wt (u) > d or wt (v) > d For evenm, the choices = 2"/% — 1 gives

thenwt (u|v) > d, so the conditions of Theorem 1 are satisfied. The ,

only remaining vectors are those for which both (v) < d and 2" =n—s=C, =C,

wt (v) < d. Now, wt (u) can only be less thad if D is involved o . .
in the generation ofi, and wt (v) can only be less thar if AD so this is an upper bound anFor oddm, an upper bound is provided
’ by s = 20"*+1/2 _ 1 since then

is involved in the generation of, sinceG on its own generates a 7 °

binary code of minimum distancé. However, since the mag is s20m=0/2 = (s —1)/2.

fixed-point free, and using the fact thBtand AD generate the same

set, the binary vector + v is not zero and is a member of a distanc&Ve will show that these upper bounds can be filled, i.e., that no
d' code, thereforewt (v + v) > d'. We thus have the conditions smallers leads ton — r € C, for r < s.
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TABLE
PARAMETERS [[n, I, D]] oF THE QUANTUM CODES OBTAINED FROM PRIMITIVE
BINARY BCH CobEes FOR n < 256. THE BCH Copes HAVE BEEN EXTENDED
BY AN OVERALL PARITY CHECK IN ORDER TO ALLOW THE DISTANCE 3
QuanTUM CobE TO BE OBTAINED BY COMBINING A BCH CODE WITH THE
EVEN-WEIGHT CoDE. FOR D > 3 IF THE UNEXTENDED BCH CoODES ARE
Usep, A [[n — 1, K +1, D — 1]] QuanTum CoDE |s OBTAINED

n|] k kK d &| K D

8] 4 7 4 2] 3 3
16| 11 15 4 2] 10 3
32026 31 4 2] 25 3
32021 26 6 4| 15 6
3216 21 8 6| 5 8
64| 57 63 4 2| 5 3
64| 51 57 6 4| 44 6
64| 45 51 8 6| 32 8
1281120 127 4 2|119 3
1281113 120 6 4105 6
1281106 113 8 6| 91 8
128/ 99 113 10 6| 84 9
128| 92 106 12 8| 70 12
1281 8 99 14 10| 56 14
1281 78 99 16 10| 49 15
256 | 247 255 4 2|246 3
256 | 239 247 6 4230 6
256 | 231 239 8 6214 8
256 | 223 239 10 6206 9
256 | 215 231 12 8190 12
256 | 207 223 14 10174 14
256 | 199 223 16 10| 166 15

Forn = 2™ — 1, the elements of the cyclotomic cosefs are
largest whers is one less than a power Bf s = 27 — 1. Specifically,
for s = 2 — 1 we have

(52i modn) > (r2° modn), Vi<m,r<s.

This is obvious fors2' < n and the proofvforsQi > nis
straightforward. The largest elementd (s = 2/ — 1) is obtained
for the largesti such thats2* < n, giving

max (Cs)=2" =2""7 =n—7r

wherer = 277 —1. This elementnax (C;) = n—r is the largest in
the defining sef: for a code of designed distanée= s; therefore,
it is only possible forZ< to contain bothi and » — i (for any i)

if it containsr andn — r, sincer = 277 — 1 is the smallest
element in its coset, and any other pairs: — i must havei > r.

Finally, we have a failure of the condition (12) only+f< s, that

is, 2777 — 1 < 29 — 1, therefore,j > [m/2].

To summarize the above, we have proved the following:

Lemma 1: The primitive binary BCH codes contain their duals ifj

and only if the designed distance satisfies

§<2lm/2 g, (13)

Using the code construction of Theorem 1, together with Lemma
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TABLE I
As TaBLE |, BuT FOR NonPRIMITIVE BCH CobES WiITH . < 127

n k k¥ d 4| K D
22) 15 21 4 2| 14 3
220 12 15 6 4 5 6
46| 33 45 4 2} 32 3
461 29 33 6 4| 16 6
52| 43 51 4 2] 42 3
741 64 73 4 2| 63 3
741 55 64 6 4] 45 4
74, 46 55 10 6| 27 9
86| 77 8 4 2| 7 3
8| 69 77 6 4| 60 6
90| 78 89 4 2| T 3
90| 67 78 6 4| 55 6
90| 56 67 10 6| 33 9
90| 45 56 12 10| 11 12
94] 83 93 4 2| 8 3
941 78 8 6 4| 67 6
94 68 78 8 6| 52 8
941 58 78 10 6| 42 9
941 53 68 12 8| 27 12

106 93 104 4 2] 92 3
106 88 93 6 4| 68 6
106 75 8 8 6| 50 8
1006 71 8 10 6| 46 9
118 1105 117 4 2(104 3
118} 93 105 6 4| 8 6
1181 8 93 8 6| 96 8
1181 69 93 10 6| 44 9

[[», K, D]] given in the table are for the extended BCH codes (i.e.,
extended by an overall parity check). Using unextended codes leads

to a further quantum code of parametflis — 1, K + 1, D — 1]],
for D > 3.

B. Nonprimitive BCH Codes
Whenn # 2™ — 1 the cyclotomic cosetsmod n do not have so

much structure so in general the only way to find if condition (12) is

satisfied is to examine each coset individually.

One way in which the requirement (12) is not met i€if contains
both: and —i mod n, which impliesCs = C'_;, for someC; C Z-.
If s is the smallest element i@, theni, n» — i € C, if and only
if s. n—s e C,, from whichs2? = —smodn for somej < m..
Multiplying by 27 we haves2? = —s2/ = smodn, therefore,
= m,/2 and this is only possible for even,. Furthermore, since
ms>1 IS a factor ofmy, m, can be even only iin, is even. This
observation slightly reduces the amount of checking to be done.

The values ofn in the rangel < n < 127 for which C; does
Hot containn — 1 are

the list of quantum codes in Table | is obtained. The further property
used is that BCH codes are nested, i.e., codes of smaller distance

contain those of larger, which is obvious since the former can té- 15,21, 23,31, 35, 39, 45,47, 49,51, 55. 63,69, 71, 73, 75,

7

279,
71

obtained from the latter by deleting parity checks. The parameters5, 87,89,91,93,95,103,105,111,115,117,119,121,123,127}
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An efficient code is obtained if one or more of the cosets is small[8] A. Ekert and C. Macchiavello, “Quantum error correction for commu-

this happens for nication,” Phys. Rev. Lettvol. 77, pp. 2585-2588, Sept. 1996.
[9] D. Gottesman, “Class of quantum error-correcting codes saturating the
n=21,23,45.51,73,85,89,93,105, 117 guantum Hamming boundPhys. Rev. Avol. 54, pp. 1862-1868, 1996.
o : S [10] ____, “Pasting quantum codes,” preprint quant-ph/9607027.

(not Countlng pnmlt'\/e Codes) Quantum codes obtained from BCHl] M. GraSSI, Th. Beth, and T. Pe”iZZari, “Codes for the quantum erasure

: : : channel,”Phys. Rev. Avol. 56, pp. 33-38, 1997.
codes with these values ofare listed in Table II. Further good codes[lz] A. Hocquenghem, “Codes correcteurs derreusGHiiffres vol. 2, pp.

exist in the rangel27 < n < 511 for 147-156, Sept. 1959.
Y - P . [13] E. Knilland R. Laflamme, “A theory of quantum error correcting codes,”
n =133,151,153,155,165, 189,195, 217,219, 255, Phys. Rev. Avol. 55, pp. 900-911, 1997.
267.273.275.279.315. 337,341, 381, 399, 455. [14] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum

error correcting code,Phys. Rev. Lettvol. 77, pp. 198-201, July 1996.
[15] F.J. MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
V. EFFICIENCY Codes. Amsterdam, The Netherlands: North-Holland, 1977.
Th d in Tabl | d Il with r,%6] R. J. McEliece, E. R. Rodemich, H. C. Rumsey, Jr., and L. R. Welch,
e c.o. e parameters in Tables | an compare we- with t “New upper bounds on the rate of a code via the Delsart—-MacWilliams
most efficient quantum codes known. For example, [{22, 5, 6]], inequalities,” IEEE Trans. Inform. Theoryvol. IT-23, pp. 157166,
[[32, 15, 6]], and [[32, 5, 8]] codes fill lower existence bounds in 1977.
[7], and the present work stimulated the discovery of the cyclid?] E. M-tRalns,dR-thargn, PI._V;/I. STO;,Q and NéééAégfalngeé;Nonaddltlve
01 £ @ : : “ uantum code,Phys. Rev. Lettvol. 79, pp. —954, .
[[21, 5, 6]] code quot?d n [7.]' J. Blerb.rauer and Y. Ed_el ( Quan_[18] g M. Rains, “Qua)rlltum codes of minimﬁﬁw distance tWEEE Trans.
tum Twisted Codes,” preprint) have independently discovered "a” |ytorm. Theory vol. 45, pp. 266-271, Jan. 1999.
[[22, 5, 6]] code. [19] P. W. Shor, “Scheme for reducing decoherence in quantum computer
The [[93, 68, 5]] code is comparable with thgs53, 61, 5]] code memory,” Phys. Rev. Avol. 52, pp. R2493-R2496, Oct. 1995.
quoted in [7], though the[93, 53, 7]] code is not as good as [20] f\'et,tvl'v%tle%ge’;)‘;Ergosarscgrs;gdi]nuﬁ]ycfggg in quantum theofstiys. Rev.
[[85, 53, 7]] qupted in [7]. ObV_'Ol_stw' the quantum codes based __, “Multiple particle interference and quantum error correction,” in
BCH codes will be best for primitive BCH codes, so we expect the = proc. Roy. Soc. Lond.,Aol. 452, pp. 2551-2577, Nov. 1996.

codes in Table | rather than Table Il to compare best with othg2] ____, “Simple quantum error correcting code®hys. Rev. Avol. 54,

code constructions. Indeed, the distariceodes in Table | are the pp. 4741-4751, 1996.

previously known shortened Hamming codes [7], [9], [24], or analodé®! @'lg;gmum computing,Repts. Progr. Physvol. 61, pp. 117-173,
thereof, and are optimal. [24] —, “Quantum Reed—Muller codesSEEE Trans. Inform. Theoryol.

The quantum codes constructed by Theorem 1 have an upper bound 45, pp. 1701-1703, July 1999.
on the rateK/n = (k + k')/n — 1 arising from the upper bound
on %k and%' for binary codes. In the asymptotic limit this bound on
the quantum codes is

K/n < R(d/n)+ R(2d/3n) — 1 (14)

) _ _ _ On Binary Constructions of Quantum Codes
whereR(d/n) is the maximum rate of a binafy, &, d] linear code.
For example, the sphere-packing bound?igl/n) < 1 — H(d/2n); Gérard CohenSenior Member, IEEESylvia Encheva,
the codes we have discussed have parameters lying close to this and Simon LitsynMember, IEEE
bound (though in the limit of largen it is known that BCH
codes are no longer efficient). Taking(x) less than or equal to
the McEliece—Rodemich—Rumsey—Welch upper bound [16], we findAbstract—We improve estimates on the parameters of quantum codes
K/n = 0 for d/n > 0.2197 in the limit of largen. This may be obtained by Steane’s construction from binary codes. This yields several

. . ) - new families of quantum codes.

compared withd/n < 0.1825 for CSS codes and the limit/n < _ ‘
0.308 for pure quantum stabilizer codes discussed by Ashikhmin [1]. Index Terms—BCH codes, generalized distance, quantum codes.
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