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Methods of finding good quantum error-correcting codes are discussed, and many example codes are pre-
sented. The recipeC2

'#C1, whereC1 and C2 are classical codes, is used to obtain codes for up to 16
information quantum bits~qubits! with correction of small numbers of errors. The results are tabulated. More
efficient codes are obtained by allowingC1 to have reduced distance, and introducing sign changes among the
code words in a systematic manner. This systematic approach leads to single-error-correcting codes for 3, 4,
and 5 information qubits with block lengths of 8, 10, and 11 qubits, respectively.@S1050-2947~96!07611-1#

PACS number~s!: 03.65.Bz,89.70.1c,89.80.1h

Two recent papers have shown that efficient quantum
error-correcting codes exist@1,2#. A quantum error-
correcting code is a method of storing or transmittingK bits
of quantum information usingn.K quantum bits~qubits!
@3#, in such a way that if an arbitrary subset of then qubits
undergoes arbitrary errors, the transmitted quantum informa-
tion can nevertheless be recovered exactly. The only condi-
tion is that the values ofn andK, and the structure of the
error-correcting code, place an upper limit on the number of
qubits which can undergo errors before quantum information
is irretrievably lost. In this context an ‘‘error’’ is any physi-
cal process which influences the quantum information but
whose effect cannot be ‘‘undone’’ simply by applying, upon
reception, a time-reversed version of the ‘‘error’’ process. In
practice this will be because the errors are unpredictable
~e.g., caused by unknown stray fields! or they entangle the
information-bearing system with another system which is not
accessible to detailed manipulation~e.g., the environment!.
The latter case, entanglement with the environment, includes
as a subset relaxation processes, such as, spontaneous emis-
sion and phase decoherence.

A simple such error-correcting code was presented in@4#,
and a general method of encoding a single qubit with correc-
tion of multiple errors was presented in@5#. More impor-
tantly, further work@1,2# derived whole classes of codes, for
multiple correction of many qubits, and showed thatefficient
codes exist. The word ‘‘efficient’’ in this context refers to the
fact that the ratioK/n, which is called the rate of the code,
need not become smaller and smaller asK increases, for a
given probability of error per qubit. However, whereas the
pioneering works just mentioned established the possibility
of efficient quantum error-correction, and presented the sim-
plest codes possible, they did not address the more pragmatic
issue of identifying other specific useful codes. This is the
subject addressed in this paper.

It is important to identify codes for more than a single
qubit, since it is known that codes involving more informa-
tion can be more powerful than simple repetition of single-
qubit codes. In comparing two coding techniques, one may
appear more powerful because it can encode a single qubit
more efficiently. However, if it cannot also be applied to
many qubits in an efficient way, for example, because find-

ing a good code is too difficult, then a simpler technique for
which multiple-qubit codes can can be found may end up
being the better choice.

The earlier simple codes have now been improved upon
with the discovery@6,7# of a ‘‘perfect’’ code, that is, one
which fills a lower bound~elucidated below! on the number
of qubitsn required to do the job. This code is more efficient
than those constructed by the recipe of@1# and @2#, and in-
troduces an important class of codes. However, it is not yet
known how to generalize the construction method in order to
obtain other efficient codes, so once again the task of iden-
tifying specific examples of useful codes is an important one.
These more efficient codes are also discussed here. Simple
methods to find good codes are described, and three ex-
amples presented.

Note that the errors which we wish to correct are com-
pletely random, and we have no knowledge of their nature
other than that they affect different qubits independently. If
we are in possession of further information about an error
process, this can be used to construct codes which are more
resistant to the errors caused by that process@8,9#. An ex-
ample is when the dominant error process is spontaneous
emission. In this case the ‘‘error’’ process is in fact almost
completely known, but causes an unavoidable coupling to
the environment. Efficient coding for this situation has re-
cently been considered@10,11#. In the present work we make
the standard assumption that the only predictable feature of
the errors is their random nature, so we wish the code to
correct as many arbitrary errors as possible using as few
qubits as possible.

Arbitrary errors of qubits can usefully be divided into
‘‘amplitude errors,’’ that is, changes of the formu0&↔u1&,
and ‘‘phase errors,’’ that is, changes of the form
u0&1u1&↔u0&2u1&. This division is not meant to imply that
these simple state rotations in Hilbert space are the only form
of error considered, but rather a completely general error can
be described as a combination of such amplitude and phase
errors, with associated entanglement with the environment.
Less obviously, but importantly, a method which can correct
both amplitude and phase errors is sufficient to correct gen-
eral errors@1,2,12#.

An essential result which relates the problem of error-
correction coding of a quantum channel to that of a classical
channel is embodied in theorems 3.1 and 3.3 of@2# and theo-
rem 1 of @1#:
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Theorem ~‘‘ quantum correction theorem’’ !: If C1 and
C2 are both linear@n,k,d# codes with$0%#C2

'#C1#F2
n ,

then the quantum codeQC1 ,C2
is a t-error-correcting code,

wheret5 b(d21)/2c.

This statement is taken from@1#. Note, however, that we
have definedk to be the dimension ofC1 rather than of its
dual as in@1#, and replacedC2 byC2

' , to make the reasoning
more symetric. The symbolF2

n refers to then-dimensional
vector space over a binary field. The phrase
‘‘ t-error-correcting code’’ refers to the fact that this form of
encoding allows correction after arbitrary errors oft qubits.
This is stated and proved as a seperate theorem~Theorem
3.3! in @2#. In @2#, the equivalent statement of the quantum
correction theorem is the following:

To encode K qubits with minimum distance d1 in one
basis, and minimum distance d2 in the other, it is sufficient to
find a linear code of minimum distance d1, whose Kth order
subcode is the dual of a distance d2 code.

SinceC2
' has dimensionn2k, andC2

'#C1, clearlyC2
' is

aKth order subcode ofC1, with K52k2n, which links the
first statement to the second. In the second statement a more
general form is considered, in which the minimum distances
of C1 andC2 need not be equal. This has consequences for
the type of error which can be corrected, as elucidated in@2#.
In particular, if only phase errors are present, thend1 can be
1, that is,C1 is simply the set of all words, so the coding
problem reduces to that of findingC25@n,K,d2#, which
means it is equivalent to the classical coding problem. The
same simplification applies when only amplitude errors are
present, in which caseC2 is the set of all words andC1 is the
error correcting code.

The second statement above refers to two different bases
in which the state of the information-bearing quantum sys-
tem may be expressed. For a single qubit, basis 1 is
$u0&,u1&%, and basis 2 is$(u0&1u1&)/A2,(u0&2u1&)/A2%.
For multiple qubits, bases 1 and 2 are defined to be the
respective product bases. The reason why these bases are
introduced is that correction of amplitude errors is essentially
a classical error correction operating in basis 1, while that of
phase errors is essentially a classical error correction operat-
ing in basis 2@2#.

The rest of this paper is concerned with finding quantum
error-correcting codes. We begin with codes obtained ac-
cording to the recipe of the quantum correction theorem. In
Sec. I we consider arbitraryd1 and d2, for the caseK50.
This is not a fruitless exercise since it will be shown that a
code withK.0 can be obtained from one withK50. In
Sec. II the cased15d2[d is considered, for arbitraryd and
K. This case is important because a completely general error
of less thand/2 qubits can be corrected by the use of such a
code~quantum correction theorem above, and Theorem 6 of
@2#!. As well as specific codes, simple methods for finding
codes, and for deducing one code from another are given.

Note that whereas the method of Secs. I and II will pro-
duce a set of useful codes, whose rate does not reduce as
K is increased at constant error probability per qubit, it will
not produce the most efficient codes possible. However, the
codes may be regarded as a starting point from which more
efficient codes can be derived by judicious use of sign

changes with code augmentation~adding of code words! or
puncturing~deletion of bits!. Such methods are discussed in
Sec. III, where optimal or almost optimal quantum codes are
presented for encoding 3 to 5 qubits with single-error correc-
tion.

Many powerful mathematical~group theoretical! tech-
niques have been applied in the pursuit of classical coding
theory @8#, and since completing the present work I have
learned of two studies which apply such techniques with
much success to quantum coding@15,16#. In this paper, the
approach is to use simple concepts such as Hamming dis-
tance, parity check, and generator matrices, and examine
methods to convert classical codes into good quantum codes.
The simplicity of these concepts has the advantage of being
suggestive of useful coding techniques, since they make the
structure of the codes simple to appreciate, but they do not
always lead to analytical proofs of the properties of the quan-
tum codes, for which one must resort to computer testing.
The two approaches of trying simple ideas and applying
powerful analytical methods are both useful in the quest to
find good codes. The matrix methods used here have the
further advantage that the quantum networks for encoding
and correction can be derived quite straightforwardly from
the parity check and generator matrices, by generalizing the
method described in@2#.

To distinguish the various types of code, it is helpful to
have a concise notation. Classical linear error-correcting
codes are identified by the notation@n,k,d#, meaning a code
by which n classical bits can storek bits of classical infor-
mation with minimum distanced, hence allowing correction
of up to b(d21)/2c errors. The expression@x# denotes the
largest integer less than or equal tox. The notation
$n,K,d1 ,d2% is here introduced to identify a ‘‘quantum
code,’’ meaning a code by whichn quantum bits can store
K bits of quantum information and allow correction of up to
b(d121)/2c amplitude errors, and simultaneously up to
b(d221)/2c phase errors. For codes withd15d2[d the no-
tation will be abreviated to$n,K,d%[$n,K,d,d%. Such
codes allow recovery after arbitrary error of up to
b(d21)/2c of the quantum bits. It may be argued that the
Hamming distanced is no longer a useful term in the quan-
tum context, since it is not clear whether 2t11 always cor-
responds to a quantity with the correct properties to be called
a ‘‘distance’’ between code vectors of a quantum
t-error-correcting code. However, I retain the use ofd, both
because it implies the distinction between error detection and
correction, and because the concept of distance remains use-
ful in searching for quantum codes, as will be shown in Sec.
III.

The recipeC15@n,k,d1#;C25@n,k,d2#;C2
'#C1 of the

quantum correction theorem leads to a code construction in
which each code vector~i.e., encoded version of a given
logical symbol! consists of a superposition of words with
coefficients equal in sign as well as magnitude in one of the
bases 1 or 2~though not in the other!. One may therefore
choose the sign of all coefficients in the superposition to be
positive, in the chosen basis. A code having this special form
~i.e., all those discussed in Secs. I and II! will be indicated by
appending a superscript ‘‘1 ’’ sign to the notation, i.e.,
$n,K,d1 ,d2%

1. In general, by allowing more general code
vectors, a code having the same correction ability but higher
rate can be obtained from one with all-positive signs in the
original basis. In symbols,
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$n,K,d1 ,d2%
1⇒~$n8,n,K,d1 ,d2%

and/or $n,K8.K,d1 ,d2%!, ~1!

where the implication sign is used to mean that once the
left-hand side code is known, the right-hand side code can be
obtained easily.

I. ZERO INFORMATION QUBITS

This section will consider$n,0,d1 ,d2%
1 codes. Ifd1 is the

minimum distance of a classical linear codeC, then by the
quantum correction theorem~second statement above!, d2 is
just the minimum distance of the dual codeC', when
K50. In symbols,

@n,k,d#,d'[$n,0,d,d'%1. ~2!

Helgert and Stinaff@13# have prepared a table of the mini-
mum distanced of linear codes@n,k,d# for given n andk.
Specifically, the interesting quantity is the highest
d5dmax(n,k) permitted for the given values ofn and k. If
dmax(n,k) is not known then Helgert and Stinaff give upper
and lower bounds on it. For brevity, Helgert and Stinaff’s
table will be referred to as HS. It is possible to convert such
a table into one providing a lower bound on the smallest
number of bitsn5nmin(d,d

') necessary in order that a code
can have distanced and its dual have distanced'. For a
given d, one commences withn5d, which gives a code
@d,1,d#,d'52. To allow larger values ofd', n must be
increased, andk set to the largest value allowing an
@n,k,d# code, as indicated by HS. The values ofn andk are
increased together in this way until HS indicates that an
@n,n2k,d'# code is possible. Clearly, there is no code with
n smaller than the value thus obtained, for which both
@n,k,d# and @n,n2k,d'# codes are possible. This does not
prove, however, that an@n,k,d# code exists whose dual has
distanced'. A necessary but not sufficient existence condi-
tion is established, or in other words, a lower bound on the
value ofnmin(d,d

'). This lower bound is given in Table I.
To find out whether the lower bound in Table I is sharp, I

have attempted to identify codes which satisfy the bound.
Success at identifying such a code is indicated by an under-
lined n value in Table I, and the code identified is described
in Table II. An asterisk in Table I indicates that a code with
n close to the lower bound exists and is identified in the
caption.

In Table II, the identification@n,k,d#1@n8,k8,d8# refers
to a code built by combining two others as follows. To the
check matrix of the first code (@n,k,d#) in the sum, addi-
tional columns are added as specified by the generator matrix
of the second code (@n8,k8,d8#) in the sum. This lengthens
the minimum distance of the dual byd8 while increasingn
by n8 and reducingd. For example, the code identified as

TABLE I. Lower bound onn permitting a dual pair of codes of
distancesd andd'. The underlined figures~the columnd53 and
the row d'57) indicate that the bound is sharp and the code is
given below. The asterisks indicate the following possibilities: a
reduced Golay code can be used to obtaind5d'55 with n518.
The @31,16,5# BCH code hasd'512, sod,d'55,11 is possible
with n530. There are quadratic residue self-dual codes with param-
eters@48,24,12# and @80,40,16# so d5d'511, 15 is possible with
n546, 78, respectively@8#.

n d
3 5 7 9 11 13 15

3 6
5 11 16*

d' 7 14 20 22
9 20 25 30 34
11 23 28* 33 39 42*
13 27 33 38 43 46 52
15 30 37 42 47 51 56 60*

TABLE II. Properties of codes making up Table I. The size of the code isk, that of the dual isn2k.
Where the code is identified as a sum of two or more, the first code in the sum is extended by the others in
a manner explained in the text. Other codes may be possible, having the same$n,k,d,d'%1 but a different
structure. However, there are no linear codes of smallern for the samed,d', with the exception of the final
entry: two-error-correcting BCH codes are not necessarily optimal. They are included here because they are
close to optimal and easily constructed.

n k d d' codeC

2 1 2 2 Repetition
6 3 3 3 Hamming
11 4 3 5 @8,4,4# extended Hamming1 @3,3,1#
14 10 3 7 Hamming
20 15 3 9 @16,11,4# extended Hamming1 @4,4,1#
23 18 3 11 @16,11,4# 1 @7,4,3# Hamming
27 22 3 13 @16,11,4# 1 @8,4,4# 1 @3,3,1#
30 25 3 15 Hamming
24 12 8 8 Golay
n 1 n 2 Repetition↔ even weight
2r21 n2r 3 2r21 Hamming↔ Simplex
2r21 n22r 5 2r2122br /2c BCH↔ BCH'
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‘‘ @16,11,4# extended Hamming1@4,4,1# ’’ is the @20,15,3#
code with the following check matrix:

H15S 11111111111111110000

10101010101010101000

01100110011001100100

00011110000111100010

00000001111111100001

D ~3!

Its dual has minimum distance 81159.
One can ‘‘navigate’’ around Table I to some extent by use

of the following two constructions:

@n,k,d#,d'⇒H @n21,k21,d#, d'21

@n21,k,d21#, d'.
~4!

In these two constructions, the code on the right-hand side is
derived from theC5@n,k,d# code on the left-hand side by
removing a single row from the generator (k→k21) or par-
ity check (d→d21) matrix. To see how the minimum dis-
tance of the dual code is affected, recall that the generator
matrix of C is the parity check matrix ofC', therefore de-
leting a row from the generator matrix ofC means deleting a
row from the check matrix ofC', and vice versa. A single
row deleted from a generator matrix leaves the minimum
distance either unaffected~the most likely result! or in-
creased. A single row deleted from a check matrix leaves the
minimum distance either reduced by one~the most likely
result! or unaffected.

II. K INFORMATION QUBITS

The caseKÞ0 will now be addressed. The simplest case
to consider is that of a classical code which contains its own
dual: C'#C5@n,k,d#. This is only possible when 2k>n.
Such codes have been called ‘‘weakly self-dual’’@8#. Since
C' is a subcode ofC, clearly the quantum correction theo-
rem can be satisfied withd15d25d andK52k2n, since
C' is itself the subcode required by the theorem. In symbols,

C'#C5@n,k,d#⇒C5$n,2k2n,d%1. ~5!

In such a case, the error corrector is the same in basis 1 and
basis 2. An example is the Hamming code discussed in@2,5#.
This result transforms the search for quantum$n,K,d%1

codes to a large extent to a search for classical weakly self-
dual codes. This was recognized in@1#, where a proof was
given that weakly self-dual codes exist which satisfy the
Gilbert-Varshamov bound. However, there exist$n,K,d%1

codes which cannot be derived from weakly self-dual codes
~examples are given below!, and these can be more efficient
~higherK/n for given d/n) than the best weakly self-dual
codes.

A code contains its dual if and only if all the rows of the
parity check matrix satisfy all the parity checks@i.e.,
wt(Hi•Hj ) is even, for alli , j50, . . . ,n2k21, where wt~z!
is the number of 1’s in z#. This implies that when a single
row is deleted from the parity check matrix, the resulting
code again contains its dual. Using the second construction
given in ~4!, combined with Eq.~5!, one finds

C'#C5$n,K,d%1⇒C8'#C85$n21,K11,d21%1.
~6!

This allows one to generate codes encoding more quantum
information ~having greaterK) from ones of smallerK, at
the expense of reducedd. Note thatd is not required to fall
by 1, but implication~6! states thatd does not fall by more
than 1 in this construction.

Next the following question will be addressed: we wish to
encodeK qubits with givend5d15d2. What is the neces-
sary value ofn? The quantum correction theorem implies
that if subcodes of an@n,k,d# code are used, then
K52k2n. In the case of single-error correction, i.e.,d53,
Hamming’s construction implies

k<n2 d log2~n11!e, ~7!

therefore, for an$n,K,3%1 code,

K<n22d log2~n11!e. ~8!

Whenn52r21 we have a perfect Hamming code, and for
this case the code contains its dual. Therefore equality holds
in ~8!, and K5n22 log2(n11). The smallestn allowing
d53 for values ofK in the range 1 to 16 is indicated in
Table III.

ForK52 Eq.~8! impliesn>10. In factn510 is possible
using the following code:

H15S 10110010000101100100

1010110010

0110010001

D , H25S 11110010000111100100

1010010010

1110110001

D , ~9!

D5S 00010011000000010011D . ~10!

Here,H1 andH2 give the correctors in bases 1 and 2, re-
spectively, and the generator works as follows. LetC1 be the
classical code of whichH1 is the check matrix. The two rows
of D are the fourth and sixth rows of the generatorG1 of
C1, which is obtained from the well-known relation

H15~AuI n2k!⇔G15~ I kuAT!, ~11!

whereI j is the j3 j identity matrix, andA is the rest of the
check matrix. Adding these two extra checks toH1, we ob-
tain the check matrix for a subcodeC2

' of C1. The four states
~code vectors! in the quantum$10,2,3%1 code are the sub-
code uC2

'&, whose generator isH2, and its three cosets
uC2

'
%D0&,uC2

'
%D1&,uC2

'
%D0%D1&, whereD0 andD1 are

the rows ofD ~the letterD is chosen here for ‘‘displace-
ment’’!. In symbols, one may write this generation procedure
as

G5SH2

D D . ~12!

This equation may be regarded as a summary of the quantum
network which will encode the two qubits of information.
Note that since the rows ofD are members of the codeC1,
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they satisfy all the checks ofH1, and so the cosets they
generate are all subsets ofC1. Also, since the rows ofD
have odd weight, the cosetuC2

'
%Di& fails the parity check

Di , so the cosets are distinct. In generalD need not have
rows of odd weight. The nonoverlapping of the cosets is
ensured by the fact thatC2 is not a zero-distance code.

The matrix formed byH1 plus the extra rows given by
D is the generator ofC2, and the corrector in basis 2,H2, is
obtained from this generator using relation~11!. All these
relationships may be summarized as follows:

H1↔G1→D, ~13!

SH1

D D↔H2 , ~14!

H1↔SH2

D D5G. ~15!

From this one may see that an equivalent code is obtained by
usingH1 andD as the generator in Eq.~12! instead ofH2
andD. A further equivalent quantum code can be obtained
by using the first two rows ofG1 for D, instead of the fourth
and sixth rows@cf. Eqs.~16! and ~25! below#.

The above approach can clearly be applied to any classi-
cal @n,k,d# code. That is, one produces a subcode by using
2k2n words from the code as extra parity checks, with the
aim that the check matrix thus obtained is the generator of
another~or the same! @n,k,d# code. However, it is not clear
whether this method can always succeed in producing a use-
ful quantum code. For example, whereas the cyclic check

TABLE III. Upper bound ond for $n,K,d%1 codes of smallK andn. Entries which are identical to the
one immediately above them~i.e., withn reduced by 1! are left blank, in order to bring out the pattern in the
results. A pair of figures is given when the table of HS@13# indicates a range of distance values rather than
a precise upper limit. The underlined values are produced by codes given in Table IV or obtained from them
by the methods discussed in the text. For these codes the listed upper bound is thus shown to be obtainable.
Some codes are obtained from one another by deleting a row ofG1 ~moving upwards and to the left in the
table!, or by deleting a row ofH1 ~moving upwards and to the right in the table!. An asterisk (* ) indicates
a self-dual or weakly self-dual code.

d K
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1*
2 1*
3 1*
4 2 2* 1*
5 2 1*
6 2 2* 1*
7 3* 2 1*

8* 2 2* 1*
9 3 2 1*
10 3 2 2* 1*
11 4 3 2 1*
12 4 3 3 2 2* 1*

n 13 4 3 2 1*
14 4 3 2 2* 1*
15 4 3* 2 1*

16 4 4* 2 2* 1*
17 5 4 3 2
18 4 4 3 2 2*
19 5 4 3 3 2
20 5 4* 4 3 3
21 6 5* 4 3 3
22 6* 5 4 3 3
23 7* 6 5 4 3 3

24* 6 45 4 3 3
25 56 45 4 3 3
26 6 56 45 4 3 3
27 78 6 56 45 4 3
28 67 6 56 45 4
29 68 67 6 56 4* 5
30 6* 8 67 5* 6 6 56 4*
31 7* 8 68 67 6 5* 4

54 4745SIMPLE QUANTUM ERROR-CORRECTING CODES



matrix H1 of Eqs. ~9! leads quickly to a quantum code, the
Hamming check matrix for the same parameters@10,6,3#
does not lead to a generator in the form given by Eq.~11!
whose rows can be used to formD. It would be interesting to
try to prove or disprove the hypothesis that the existence of a
classical@n,k,d# code is sufficient to imply at least the ex-
istence of a quantum$n,2k2n,d%1 code. The author’s cur-
rent impression is that this hypothesis is untrue in general.
However, it is true for weakly self-dual codes, and probably
gives a close estimate of the parameter values possible for
other cases.

The single-error-correcting codes indicated in Table III
were all obtained by using the above method of using code
words as extra parity checks, but note that whereas I have
thus found single-error correcting$13,5,3%1 and $14,6,3%1

codes, filling the lower limit onn set by the Hamming
bound, I have not found$11,3,3%1 or $12,4,3%1 codes even
though classical@11,7,3# and @12,8,3# codes exist. These
single-error-correcting quantum codes are all obtained from
the cyclic code given by the irreducible primitive polynomial
x4511x. The check matrixH1 in Eqs. ~9! is the check
matrix of this cyclic code for the casen510, and for higher
n, up ton515, further columns are added to the front of the
matrix following the standard procedure. Once we have
H1, the quantum code is fully defined once the relevant dis-
placement matrixD is given. Forn512 to 14 the following
matricesD fulfill the requirements for single-error correc-
tion:

D $12,3,3%15S 001000001010000100000101

000010001011
D , ~16!

D $13,5,3%15S 1000000001111

0100000001110

0010000000111

0001000001010

0000000010011

D , ~17!

D $14,6,3%15S 10000000001101

01000000001111

00100000001110

00010000000111

00001000001010

00000000010011

D . ~18!

Note that the casesn513 andn514 are similar to one an-
other, and can be obtained by reducing then515 code. For
n515 the codeC1 contains its own dual.

Using the above methods, and once again the table of HS,
lists of quantum$n,K,d%1 codes can be compiled. The re-
sults are summarized in Tables III and IV. The upper bound
on d is found from the classical bound
dmax@n,k5(K1n)/2# given by HS. As it stands, Table III is
incomplete in that for most entries I have not found codes
which realize the upper bound, thus proving that it is obtain-
able. However, classical self-dual codes supply efficient
quantum codes of low rate, high distance~low K/n, high
d), and Bose-Chaudhuri-Hocquengham~BCH! codes supply
efficient quantum codes of high rate, low distance. Therefore

TABLE IV. Example$n,K,d%1 codes. The final entries give some assorted values ofn andK larger than
those covered by Table III.

n K d codeC1K

4 2 2
n n22 2 Even weight, for evenn
2r21 n22 log2(n11) 3 Hamming,r.2
eg. 7 1 3
15 7 3
31 21 3
2r21 n24 log2(n11) 5 BCH,r.4
eg. 31 11 5
29 11 4 reduced BCH,C'#C
2r21 n22t log2(n11) 2t11 t-error correcting BCH
eg. 31 1 7 BCH
30 6 5 delete three rows from H of previous entry
16 6 4 extended Hamming
17 7 3 see text
19–27 8–16 3 cyclic, see text
23 1 7 Golay

48 0 12 quadratic residue~self-dual!
63 3 11 BCH
63 15 9 BCH
80 0 16 quadratic residue~self-dual!
104 0 20 quadratic residue~self-dual!
127 15 17 BCH
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we have identified infinite series of codes, asn increases, at
the two ends of the rangeK50 to ;@n2 log2(n)#.

The $17,7,3%1 code in Table III is specified by the fol-
lowing check matrix:

H15S 01100111100110000

10111100101101000

11010010111100100

11101001110000010

00011111110000001

D ~19!

with theD matrix equal to the last seven rows ofG1. This
code can be obtained by adding a check bit to the
@16,11,4# extended Hamming code.

The single-error-correcting codes indicated in Table III as
certainly obtainable~i.e., which I have succeeded in finding!
for 7,K,17 do not realize the minimum implied by the
results of HS, but require one additional qubit, similar to the
casesK53 and 4 already remarked. Using the clue men-
tioned above that a cyclic classical code rather than a Ham-
ming code is a good choice, all the codes fromK58 to 16
were obtained from the cyclic classical codes of primitive
polynomial x5511x3. In this series of codes, a classical
@n,k,d# code gives rise to a quantum$n,2k2n21,d%1 code.
For example, the generator forK516 is

~20!

The generators for the other codes in this series have a simi-
lar form and will not be listed.

A $20,9,3%1 code can also be obtained from the classical
code having the minimumn for d53,d'59, referred to in
Tables I and II. Its check matrixH1 is given in Eq.~3!, and
the displacement matrix is formed from rows ofG1 as fol-
lows:

D $20,9,3%151
01000000000000010100

00000100000000010110

00000001000000010001

00000000010000010101

00000000001000011101

00000000000100010011

00000000000010011011

00000000000001010111

00000000000000111111

2 . ~21!

III. MORE EFFICIENT CODES

Implication ~1! was used in the introduction to encapsu-
late the twin facts that in general$n,K,d%1 codes are not the
most efficient possible, and that they can be used as a start-
ing point to obtain more efficient$n,K,d% quantum codes.
The simplest example is the perfect$5,1,3% quantum code
described in@6,7#, which can be obtained by deleting any
two bits from the $7,1,3%1 code described in@5,2#, and
changing the signs of a subset of the words in each of the
two code vectors. The relevent sign changes can be found for
this simplest case by an exhaustive computer search. The
computer search is a useful tool in the task of finding good
codes, which may be likened to a search for the best fruit on
a many-branched tree. However, a complete search of all
possible allocations of signs rapidly becomes too time con-
suming, as the parameters$n,K,d% are increased. Intelligent
search techniques must be used, and barren branches of the
tree ruled out as efficiently as possible, while fruitful
branches must be identified before the search begins, which
is the demanding task of the human researcher. In this sec-
tion a set of quantum codes will be presented, all of which
were found by taking advantage of two simple methods to
identify fruitful branches and thus find suitable sign alloca-
tions quickly. Before discussing these sign allocations, how-
ever, we will consider ways of combining classical codes
which go beyond the simple recipeC2

'#C1.
The generator matrix of a quantum code, Eq.~12!, creates

one classical code~forming the first quantum code vector!
and 2K21 cosets~which form the remaining quantum code
vectors!. Thus we may picture the first quantum code vector
as a lattice of points in ann-dimensional Hamming space,
and the other code vectors as this lattice displaced around the
Hamming space by distances of orderd. The codes described
in previous sections used lattices displaced so that each point
in any given lattice was at least a distanced from any point
in another lattice. In other words, the set of all the lattices
formed a classical code of distanced, and this ensured that
error correction was possible in basis 1. However, in forming
a quantum code, it is not necessary to displace the lattices as
far as this. Bit flips in basis 1, i.e., amplitude errors, will
cause a given lattice to move towards some other lattice, i.e.,
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the code vectors approach, but if we now allow the signs in
basis 1 to be negative as well as positive, then lattices~i.e.,
cosets! which overlap, in that they contain the same sets of
words, may nevertheless correspond to orthogonal quantum
states since there is an equal number of positive and negative
contributions to the inner product̂ i ,eku j ,el&, where
u i ,ek&,u j ,el& are code vectors affected by errorsek ,el . Thus
if we start from a set of code vectors with all-positive signs
when written in basis 1, then the introduction of sign changes
permits the distance between cosets in basis 1 to be reduced.

Clearly, we must not hope for too much from this ability
to allow the cosets to approach. The minimum assumption is
that we may permit the distance between cosets in basis 1 to
be reduced by one. In other words, the recipe for a
$n,K,d% quantum code becomesC2

'#C1 whereC2 is a dis-
tanced classical code as before, but nowC1 is a distance
d21 code. In addition, we wishC2

' to have as large a mini-
mum distance as possible, in order to allow a lot of ‘‘room’’
to move the lattice around in Hamming space before it over-
laps itself. These two conditions, together with a judicious
application of sign changes, will be used to find optimal
single-error-correcting quantum codes. First, however, we
must consider how to apply sign changes to the words in the
code vectors.

The first method to allocate sign changes to the words in
each code vector is to restrict the possible sign allocations to
those given by rows of the Hadamard matrix@8#. That is to
say, we use thew3w Hadamard matrix to supplyw differ-
ent allocations ofw signs. A sign allocation is a set ofw
11’s and21’s, giving the signs of each of thew words in
the superposition forming the code vector to be tested. The
Hadamard matrix can be used in this way since in all the
codes considered here, each code vector contains a number
of wordsw equal to a power of 2. It is not hard to convince
oneself that a row of the Hadamard matrix is an intelligent
choice of sign allocation for any quantum code derived from
a linear classical code by the methods discussed in previous
sections~with possibly one or more bits deleted!.

Once we have a code vector, that is, a set of words with a
proposed sign allocation, it is tested. The test consists of first
testing whether errors in the code vector lead to states or-
thogonal to the code vector itself and to each other, and then
testing whether such erroneous states are also orthogonal to
all the other code vectors in the code and their erroneous
versions. The possible errors included in the test are all those
which the code is supposed to be able to correct. If a code
survives such a test, then errors of different syndrome lead to
orthogonal states, and the orthogonality of different code
vectors is also preserved. Such an ‘‘orthogonal coding’’ im-
plies that error correction is certainly possible. This latter
fact is a central part of the argument presented in@1# and@2#.
An elegant presentation of it is also provided by Ekert and
Macchiavello @12#, which enables the latter authors to de-
duce a quantum version of the Hamming bound, based on
counting the number of possible orthogonal directions in Hil-
bert space, see also@9,7,16#. Their bound is

2K(
i50

t

3i S ni D<2n ~22!

for the sizeK of a possible quantum code which can correct

t general errors usingn qubits. This bound is more general
than that required for$n,K,2t11%1 codes derived in@2#,
since it includes the possibility of the more general
$n,K,2t11% codes which we are considering in this section.
However, there is an intriguing possibility that it is not
strictly necessary for all possible error syndromes of all pos-
sible code vectors to be associated with mutually orthogonal
states, since some error correction techniques may be able to
correct errors of different syndrome without needing to dis-
tinguish the syndromes explicitly. This is the subject of ac-
tive research@7,9,14,15# and will not be addressed in the
present work. In other words, we use ‘‘orthogonal coding’’
throughout.

The second of our two methods to identify fruitful trial
codes is to consider the sign allocation, that is the row of
w 11’s and21’s, as itself a binary vector of lengthw, and
then to use linear combinations of such vectors in a fashion
to be explained shortly. To keep the notation concise, we
replace11 in the sign allocation vector by 0, and21 by
1, to get a vector in the usual binary form, but one which is
understood to represent a sign allocation amongw super-
posed words. Note that this vector has lengthw, which is a
power of two and usually larger than the lengthn of the
words in the superposition forming a code vector. For ex-
ample, the sign allocation for the two code vectors of the
five-qubit code of@6# can be written

00010100, 01110010, ~23!

where the least significant~i.e., rightmost! bit in the sign
vector gives the sign of the first word in the code vector, and
we assume the order of the words in the code vectors is that
obtained when they are generated using the generator matrix

G5S 1010110011

01111

11111

D ~24!

~cf. Eq. 12 for the notation!. Note that the signs in~23! are
not rows of the Hadamard matrix, showing that the Had-
amard method will not pick up all good codes. However,
both sign vectors in~23! are offset from rows of the Had-
amard matrix by the same code vector 00010100, so~23! is a
coset of a sign allocation obtained by the Hadamard method
~i.e., a coset of a subset of a first-order Reed-Muller code!.

The second of our two methods to allocate signs only
applies to codes of more than one encoded qubit, i.e., having
more than two code vectors. The method is to let the set of
2K w-bit sign vectors itself be a classical linear code~or a
coset of a linear code if necessary!, and to allocate each sign
vector thus generated to the corresponding code vector gen-
erated byG. For example, once we have found sign vectors
s00,s01,s10 for the first three code vectors of an$n,2,d%
code, we try the sign vectors115s00%s01%s10 for the fourth
code vector. By this process, we only needK sign vectors
~plus possibly one more to form a coset! to specify all the
signs for an$n,K,d% code, rather than finding 2K indepen-
dent vectors which is a much more demanding task.
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The quantum Hamming bound~22! states that for single-
error correction (t51,d53), at leastn55,7,8,9,10 qubits
are required to encodeK51,2,3,4,5 qubits, respectively, and
n510 qubits are required to correctK51 qubit with double-
error correction (t52,d55). Then55 case is a perfect code
since it fills the bound, and is that discussed in@6,7#. The
next most simple case isn57, for which we search for an
encoding of two qubits with single-error correction. I have
not found such a$7,2,3% code, despite a wide but not com-
plete search~this search was not restricted to the two meth-
ods just discussed!. The best codes I have found are ones
which encode two qubits using 7 but for which the third and
fourth code vectors are not quite compatible with the first
and second. That is to say, there are ten cases in which a
single-qubit error in one code vector leads to the same quan-
tum state as a different single-qubit error in another code
vector, causing an ambiguity for any error corrector. These
ten cases are taken out of the 882/253872 possible compari-
sons between one code vector with its erroneous versions
and another code vector with its erroneous versions, so the
code comes close to single-error correction, while not real-
izing it completely.

An encoding of three qubits permitting complete single-
error correction can be obtained withn58, which is optimal
in that this is the lower limit given by~22!. To find the code,
we begin with a classical codeC2 having a minimum dis-
tance of at least 3, to allow correction of errors in basis 2
~phase errors! and having a dualC2

' of minimum distance as
large as possible, since this dual code defines the lattice in
basis 1 whose various displaced versions constitute the code
vectors in basis 1. The@8,4,3# Hamming code is not a good
choice since its dual has a minimum distance of only 1.

Instead we adopt the extended Hamming code or Reed-
Muller codeC25@8,4,4#, which is self-dual soC2

' has a
minimum distance of 4. Since we wantd53, we allowC1 to
have distanced2152. This suggests the even-weight
@8,7,2# code, which has the correct number of code vectors
to allow K53. Thus we obtain the following generator:

G$8,2,3%5S 01010101

00110011

00001111

11111111

11000000

10100000

10001000

D . ~25!

The sign vectors are found by computer search using the two
shortcuts described above, which leads to eight sign vectors
generated by

S$8,3,3%5S 00110011001100110000111100001111

0110011001100110
D [S 3333

0F0F

6666
D , ~26!

where the second version is the first written in hexadecimal
to bring out the structure.

Equations~25! and ~26! are quite concise and combine
several notations introduced in this paper. To make sure the
notation is correctly understood, the$8,2,3% code defined by
these equations is now written out in full:

uv000&5

1u00000000& 1u01010101& 1u00110011& 1u01100110&
1u00001111& 1u01011010& 1u00111100& 1u01101001&
1u11111111& 1u10101010& 1u11001100& 1u10011001&
1u11110000& 1u10100101& 1u11000011& 1u10010110&

, ~27!

uv001&5

2u11000000& 2u10010101& 1u11110011& 1u10100110&
2u11001111& 2u10011010& 1u11111100& 1u10101001&
2u00111111& 2u01101010& 1u00001100& 1u01011001&
2u00110000& 2u01100101& 1u00000011& 1u01010110&

, ~28!

uv010&5

2u10100000& 2u11110101& 2u10010011& 2u11000110&
1u10101111& 1u11111010& 1u10011100& 1u11001001&
2u01011111& 2u00001010& 2u01101100& 2u00111001&
1u01010000& 1u00000101& 1u01100011& 1u00110110&

, ~29!

uv011&5

1u01100000& 1u00110101& 2u01010011& 2u00000110&
2u01101111& 2u00111010& 1u01011100& 1u00001001&
1u10011111& 1u11001010& 2u10101100& 2u11111001&
2u10010000& 2u11000101& 1u10100011& 1u11110110&

, ~30!
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uv100&5

1u10001000& 2u11011101& 2u10111011& 1u11101110&
1u10000111& 2u11010010& 2u10110100& 1u11100001&
1u01110111& 2u00100010& 2u01000100& 1u00010001&
1u01111000& 2u00101101& 2u01001011& 1u00011110&

, ~31!

uv101&5

2u01001000& 1u00011101& 2u01111011& 1u00101110&
2u01000111& 1u00010010& 2u01110100& 1u00100001&
2u10110111& 1u11100010& 2u10000100& 1u11010001&
2u10111000& 1u11101101& 2u10001011& 1u11011110&

, ~32!

uv110&5

2u00101000& 1u01111101& 1u00011011& 2u01001110&
1u00100111& 2u01110010& 2u00010100& 1u01000001&
2u11010111& 1u10000010& 1u11100100& 2u10110001&
1u11011000& 2u10001101& 2u11101011& 1u10111110&

, ~33!

uv111&5

1u11101000& 2u10111101& 1u11011011& 2u10001110&
2u11100111& 1u10110010& 2u11010100& 1u10000001&
1u00010111& 2u01000010& 1u00100100& 2u01110001&
2u00011000& 1u01001101& 2u00101011& 1u01111110&

. ~34!

This code has also recently been derived by Gottesman
@16#. He presents a general construction for
$2r ,2r2r22,3% codes. These parameters are consistent with
the supposition that such codes are obtained from the above
method applied to the classical pairC2

'5 first order Reed-
Muller @2r ,r11,2r21# code, C15 even weight
@2r ,2r21,2# code.

Proceeding to the encoding of four qubits, the bound~22!
implies that single error correction is possible withn59.
However,n59 is not large enough to allow a significant
improvement on the properties of the@8,4,4# classical code,
so it seems unlikely that$9,4,3% is possible, and I have not
been able to find such a code. Withn510, on the other hand,
we can adopt the 11-bit code indicated in Tables I and II
which allowsd53,d'55, reducing it by the first construc-
tion in ~4! to obtainC25@10,6,3#, C2

'5@10,4,4#. This leads
to the following quantum code:

G$10,4,3%51
0101010110

0011001101

0000111100

1111111100

1100000000

1010000000

1000100000

0000000011

2 , ~35!

S$10,4,3%5S 00110011001100110000111100001111

0101010110101010

0000111111110000

D [S 3333

0F0F

55AA

0FF0

D . ~36!

Calderbanket al. @15# have also obtained a code of these
parameters. The quantum Hamming bound~22! does not rule
out the possibility of a further information qubit without in-
creasingn, i.e., $10,5,3%, but I have been unsuccessful in
finding such a code.

To encode five qubits with single-error correction, the
classical 11-bit code withd53,d'55 just mentioned can be
used to obtain the following quantum code:

G$11,5,3%51
01010101100

00110011010

00001111001

11111111000

11000000000

10100000000

10001000000

00000000110

00000000101

2 , S$11,5,3%5S 3333

0F0F

55AA

0FF0

3333

D .

~37!

This is optimal for five information qubits and single-error
correction if$10,5,3% does not exist.

IV. CONCLUSION

Much research is currently directed to finding the most
efficient quantum error-correction techniques. Commonly in
these efforts only the simplest example code, encoding a
single qubit of information, is actually identified. However,
to convey many bits of information, it is known from classi-
cal theory that more advanced codes, involving many infor-
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mation bits, are more powerful than a repetition of single-
information-bit codes. This implies that a more efficient
coding technique is not useful unless the task of applying it
to many information bits is mathematically tractable. A sim-
pler coding technique, which is less efficient than other
methods for one qubit, may become more efficient than the
competing methods when many qubits are involved, simply
because powerful many-qubit codes can be identified for the
simpler method but not for its competitors.

In this paper many examples have been given of quantum
error-correcting codes of reasonably high efficiency. In the
process, several simple techniques for manipulating codes
and guessing additional ones have been described. Quantum
networks to encode and correct each code have not been
given, since they can be deduced directly from the relevent
generator and parity check matrices@2# @Theorem 3.1#.

Starting with the simplest general method of quantum er-
ror correction, based on dual pairs of classical linear codes,
and specified here by the notation$n,K,d%1, we have tabu-
lated codes which can be lifted almost directly from classical
coding theory because they are self-dual or weakly self-dual.
In addition, classical dual code pairs with maximald,d'

have been tabulated, since they form a useful starting point
for finding quantum codes. We have then examined in more
detail the case of single-error correction, obtaining many
good quantum codes from classical codes which are not
weakly self-dual, and whose conversion to the quantum case
therefore requires more ingenuity. A method using a subset
of the rows of the generator matrix as extra parity checks has
been described, and used to find quantum codes of param-

eters $10,2,3%1,$12,3,3%1, $13,5,3%1,$14,6,3%1,$17,7,3%1,
$19•••27,8•••16,3%1.

Next, we have improved on the$n,K,d%1 codes by al-
lowing one of the classical codes (C1) used to generate the
quantum code to have its minimum distance reduced, and
compensating for this by allowing the signs of words in the
code vectors to be either positive or negative in all bases. To
find out how to allocate the signs in this case, it is necessary
to use insight rather than trial and error. By making the sign
allocations themselves form a classical linear code, and by
using the Hadamard matrix to supply useful sets of signs, we
have introduced further structure into the quantum code. As
well as making the design of generator and corrector net-
works easier, this allows the set of possible sign allocations
to be vastly restricted, which greatly aids the search for good
codes. These methods have enabled us to identify single-
error correcting $n,K,3% quantum codes ofn58,10,11,
K53,4,5 qubits, respectively. The first is optimal, and it is
possible that the others are also, though$10,5,3% and
$11,6,3% are not ruled out by the quantum Hamming bound.

Developing general methods for producing good error-
correcting codes is notoriously difficult. The task of finding
good codes can be framed as a computational problem. It
may be an example of a practically important computation
whose solution on an ideal quantum computer is more effi-
cient ~has lower computational complexity! than any algo-
rithm for a classical computer.
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