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Methods of finding good quantum error-correcting codes are discussed, and many example codes are pre-
sented. The recipeﬁgcl, where C; and C, are classical codes, is used to obtain codes for up to 16
information quantum bitgqubit9 with correction of small numbers of errors. The results are tabulated. More
efficient codes are obtained by allowi@y to have reduced distance, and introducing sign changes among the
code words in a systematic manner. This systematic approach leads to single-error-correcting codes for 3, 4,
and 5 information qubits with block lengths of 8, 10, and 11 qubits, respectip&1y050-294®6)07611-1

PACS numbd(s): 03.65.Bz,89.70t¢,89.80+h

Two recent papers have shown that efficient quantuning a good code is too difficult, then a simpler technique for
error-correcting codes exis{1,2]. A quantum error- Wwhich multiple-qubit codes can can be found may end up
correcting code is a method of storing or transmittiadits ~ Peing the better choice. _
of quantum information using>K quantum bits(qubits _The earlier simple codes have now been improved upon
[3], in such a way that if an arbitrary subset of theyubits  With the discovery{6,7] of a “perfect” code, that is, one
undergoes arbitrary errors, the transmitted quantum informav—vhICh _f|||s a Iovyer boundeluc_ldated_beIO\)von the numpgr
. of qubitsn required to do the job. This code is more efficient
S than those constructed by the recipe[df and[2], and in-
tion is that the values of andK, and the structure of the {oquces an important class of codes. However, it is not yet
error-correcting code, place an upper limit on the number oknown how to generalize the construction method in order to
qubits which can undergo errors before quantum informatiombtain other efficient codes, so once again the task of iden-
is irretrievably lost. In this context an “error” is any physi- tifying specific examples of useful codes is an important one.
cal process which influences the quantum information bufhese more efficient codes are also discussed here. Simple
whose effect cannot be “undone” simply by applying, upon methods to find good codes are described, and three ex-
reception, a time-reversed version of the “error” process. Inamples presented. ) _
practice this will be because the errors are unpredictable NOteé that the errors which we wish to correct are com-
(e.g., caused by unknown stray fieldsr they entangle the pletely random, and we ha\(e no know[edge of their nature
information-bearing system with another system which is nof)ther than that they affect different qubits independently. If

ible to detailed iulati h : ¢ we are in possession of further information about an error
accessible to detailed manipulatioe.g., the environment ) 50qs “this can be used to construct codes which are more

The latter case, ent_anglement with the environment, i”d”der%sistant to the errors caused by that prod@sg]. An ex-
as a subset relaxation processes, such as, spontaneous ergisple is when the dominant error process is spontaneous
sion and phase decoherence. emission. In this case the “error” process is in fact almost
A simple such error-correcting code was presentddjn  completely known, but causes an unavoidable coupling to

and a general method of encoding a single qubit with correcthe environment. Efficient coding for this situation has re-
tion of multiple errors was presented jB]. More impor- ~ cently been considergd0,11]. In the present work we make
tantly, further work{1,2] derived whole classes of codes, for the standard assumption that the only predictable feature of
multiple correction of many qubits, and showed thfiicient ~ the errors is their random nature, so we wish the code to
codes exist. The word “efficient” in this context refers to the COITECt as many arbitrary errors as possible using as few
fact that the ratidk/n, which is called the rate of the code, qubits as possible. . - .
need not become smaller and smallerkagncreases, for a Arb_|trary errors of qu_b its can usefully be divided into

. o . : “amplitude errors,” that is, changes of the forf)«<|1),
given probability of error per qubit. However, whereas the

. . . ; ) e “phase errors,” that is, changes of the form
pioneering works just mentioned established the pOSSIbI!It}fO>+|1><_)|0>_|l>_ This division is not meant to imply that

of efficient quantum error-correction, and presented the simgege simple state rotations in Hilbert space are the only form
plest codes possible, they did not address the more pragmaii¢ error considered, but rather a completely general error can
issue of identifying other specific useful codes. This is thepe gescribed as a combination of such amplitude and phase
subject addressed in this paper. errors, with associated entanglement with the environment.
It is important to identify codes for more than a single |ess obviously, but importantly, a method which can correct
qubit, since it is known that codes involving more informa- hoth amplitude and phase errors is sufficient to correct gen-
tion can be more powerful than simple repetition of single-eral errorg1,2,13.
qubit codes. In comparing two coding techniques, one may An essential result which relates the problem of error-
appear more powerful because it can encode a single qubibrrection coding of a quantum channel to that of a classical
more efficiently. However, if it cannot also be applied to channel is embodied in theorems 3.1 and 3.R¢find theo-
many qubits in an efficient way, for example, because findrem 1 of[1]:
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Theorem (* quantum correction theorehy: If C; and changes with code augmentati¢dding of code wordsor
C, are both lineafn,k,d] codes with{0}CC;CC,CF3, puncturing(deletion of bitg. Such methods are discussed in
then the quantum cod®c. .. is at-error-correcting code, Sec. lll, where optimal or almost qptimal quantum codes are
wheret=|(d—1)/2) 12 presented for encoding 3 to 5 qubits with single-error correc-

' tion.

Many powerful mathematicalgroup theoretical tech-
This statement is taken frorfl]. Note, however, that we niques have bee_n applied in t'he pursuit of classical coding
have definec to be the dimension o€, rather than of its theory[8], and since completing the present work | have
dual as i 1], and replace®, by C3 , to make the reasoning learned of two studies which .apply such t.echnlques with
more symetric. The symbdt} refers to then-dimensional much success to quantum codifich, 16 In this paper, _the .
vector space over a binary field. The phraseapproach is to use simple concepts such as Hamming q|s-
‘“t-error-correcting code” refers to the fact.that this form of tance, parity check, and generator matrices, and examine
encoding allows correction after arbitrary errorstagubits methods to convert classical codes into good quantum codes.

J The simplicity of these concepts has the advantage of being
This is stated and proved as a seperate thedf®morem  g,qqestive of useful coding techniques, since they make the

3.3 in [2]. In [2], the equivalent statement of the quantuMg;rctyre of the codes simple to appreciate, but they do not
correction theorem is the following: _ _ always lead to analytical proofs of the properties of the quan-
To encode K qubits with minimum distance i one  tym codes, for which one must resort to computer testing.
basis, and minimum distance th the other, it is sufficientto  The two approaches of trying simple ideas and applying
find a linear code of minimum distance,dvhose Kth order  powerful analytical methods are both useful in the quest to
subcode is the dual of a distanceg dode. find good codes. The matrix methods used here have the
SinceCé has dimensiom—Kk, andCégCl, clearlycg is further advantage that the quantum networks for encoding
aKth order subcode of;, with K=2k—n, which links the ~ and correction can be derived quite straightforwardly from
first statement to the second. In the second statement a moifee parity check and generator matrices, by generalizing the
general form is considered, in which the minimum distancegnethod described if2]. n
of C; andC, need not be equal. This has consequences for 10 distinguish the various types of code, it is helpful to

the type of error which can be corrected, as elucidatd@]in have a concise notation. Classical linear error-correcting
In particular, if only phase errors are present, ttgan be ~ codes are identified by the notatipn,k,d], meaning a code

Lt .. Sy o et o a o, 0t g D UEN T classical s can s s o sl i
problem reduces to that of finding,=[n,K,d,], which of up to|(d—1)/2] errors. The expressiojx] denotes the
means it is equivalent to the classical coding problem. Th

oo e . . ?argest integer less than or equal ta The notation
same simplification applies when only amplitude errors are{n K,dy,d,} is here introduced to identify a “quantum
present, in which casg, is the set of all words an@, is the PRt

: code,” meaning a code by which quantum bits can store
error correcting code.

, K bits of quantum information and allow correction of up to
The second statement above refers to two different bas ?dl—l)/ZJ amplitude errors, and simultaneously up to

in which the state of the |nformat|or_1-bear|ng quantu_m SYS{(d,—1)/2| phase errors. For codes with=d,=d the no-
tem may be expressed. For a single qubit, basis 1 igtion will be abreviated to{n,K,d}={n,K,d,d}. Such
{|0),|1)}, and basis 2 is{(|0)+]1))/v2,(10)=|1))/\2}.  codes allow recovery after arbitrary error of up to
For multiple qubits, bases 1 and 2 are defined to be thgd—1)/2] of the quantum bits. It may be argued that the
respective product bases. The reason why these bases #&mming distancel is no longer a useful term in the quan-
introduced is that correction of amplitude errors is essentiallgfum context, since it is not clear whether21 always cor-
a classical error correction operating in basis 1, while that ofesponds to a quantity with the correct properties to be called
phase errors is essentially a classical error correction operag ‘“distance” between code vectors of a quantum
ing in basis 2[2]. t-error-correcting code. However, | retain the usedpboth

The rest of this paper is concerned with finding quantunbecause it implies the distinction between error detection and
error-correcting codes. We begin with codes obtained aceorrection, and because the concept of distance remains use-
cording to the recipe of the quantum correction theorem. Irful in searching for quantum codes, as will be shown in Sec.
Sec. | we consider arbitrargl; andd,, for the caseK=0. 1.
This is not a fruitless exercise since it will be shown that a The recipeC,=[n,k,d;];C,=[n,k,d,];C5CC, of the
code withK>0 can be obtained from one witki=0. In quantum correction theorem leads to a code construction in
Sec. Il the casé;=d,=d is considered, for arbitrarg and  which each code vectofi.e., encoded version of a given
K. This case is important because a completely general errdogical symbo) consists of a superposition of words with
of less thard/2 qubits can be corrected by the use of such aoefficients equal in sign as well as magnitude in one of the
code(quantum correction theorem above, and Theorem 6 obases 1 or Zthough not in the othér One may therefore
[2]). As well as specific codes, simple methods for findingchoose the sign of all coefficients in the superposition to be
codes, and for deducing one code from another are given. positive, in the chosen basis. A code having this special form

Note that whereas the method of Secs. | and Il will pro-(i.e., all those discussed in Secs. | andwlll be indicated by
duce a set of useful codes, whose rate does not reduce appending a superscript+" sign to the notation, i.e.,
K is increased at constant error probability per qubit, it will {n,K,d;,d,}*. In general, by allowing more general code
not produce the most efficient codes possible. However, theectors, a code having the same correction ability but higher
codes may be regarded as a starting point from which moreate can be obtained from one with all-positive signs in the
efficient codes can be derived by judicious use of sigroriginal basis. In symbols,
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TABLE I. Lower bound omn permitting a dual pair of codes of Helgert and Stinaff13] have prepared a table of the mini-
distancesd andd*. The underlined figureghe columnd=3 and  mum distanced of linear codeg n,k,d] for givenn andk.
the rowd* =7) indicate that the bound is sharp and the code iSSpecificaIIy, the interesting quantity is the highest
given below. The asterisks indicate the following possibilities: ag—dg (n,k) permitted for the given values of andk. If
reduced Golay code can be used to obthind" =5 with n=18. maxt . o
The[31,16,3 BCH code hasi* =12, sod,d*=5,11 is possible dmay(N,K) is not known_then Helge_rt and Stinaff give yppe:r
and lower bounds on it. For brevity, Helgert and Stinaff's

with n=30. There are quadratic residue self-dual codes with param- . . .
eters[48,24,13 and[80,40,16 sod=d" =11, 15 is possible with table will be referred to as HS. It is possible to convert such

n=46, 78, respectivelys]. a table into one providing a lower bound on the smallest
number of bitsn=n,;,(d,d*) necessary in order that a code
n d can have distance and its dual have distancd". For a
3 5 7 9 11 13 15 given d, one commences witim=d, which gives a code

[d,1,d],d*=2. To allow larger values oft*, n must be

3 6 - .

5 1 16 increased, andk set to the largest value allowing an
4t 7 Y 20 22 [n,k,d] code, as indicated by HS. The valuesnodndk are

9 20 25 30 34 increased together in this way until HS indicates that an

[n,n—k,d*] code is possible. Clearly, there is no code with
n smaller than the value thus obtained, for which both
[n,k,d] and[n,n—k,d*] codes are possible. This does not
prove, however, that ajn,k,d] code exists whose dual has
distanced". A necessary but not sufficient existence condi-

11 | 23 28 33 39 42
13 | 27 33 38 43 46 52
15| 30 37 42 47 51 56 60

{n,K,dy,do} " =({n’<n,K,d;,dy} tion is established, or in other words, a lower bound on the
value ofn,,(d,d*). This lower bound is given in Table I.
and/or {n,K'>K,d;,d,}), () To find out whether the lower bound in Table | is sharp, |

where the implication sign is used to mean that once th have attempted .to_identify codes V\.Ihi.Ch _satisfy the bound.

left-hand side code is known, the right-hand side code can b%uccess at |d_ent|fy|ng such a code is _|nd|c_a_ted _by an u_nder-

obtained easily ' fined n value in Table I, and the code identified is described
' in Table Il. An asterisk in Table I indicates that a code with

n close to the lower bound exists and is identified in the
I. ZERO INFORMATION QUBITS caption.

This section will considefn,0,d, ,d,} * codes. Ifd; is the In Table I, the identificatiorin,k,d]+[n’,k",d"] refers
minimum distance of a classical linear co@e then by the 0@ code built by combining two others as follows. To the

guantum correction theorefsecond statement aboyel, is ~ check matrix of the first code[§,k,d]) in the sum, addi-
just the minimum distance of the dual cod®", when tional columns are added as specified by the generator matrix

K=0. In symbols, of the second codg §’,k’,d"]) in the sum. This lengthens
the minimum distance of the dual l/ while increasingn
[n,k,d],d*={n,0d,d*"}". (2 by n’ and reducingd. For example, the code identified as

TABLE Il. Properties of codes making up Table I. The size of the code ihat of the dual im—k.
Where the code is identified as a sum of two or more, the first code in the sum is extended by the others in
a manner explained in the text. Other codes may be possible, having thgsagtgd*}* but a different
structure. However, there are no linear codes of smallfer the samed,d*, with the exception of the final
entry: two-error-correcting BCH codes are not necessarily optimal. They are included here because they are
close to optimal and easily constructed.

n k d d codeC

2 1 2 2 Repetition

6 3 3 3 Hamming

11 4 3 5 [8,4,4] extended Hamming- [3,3,]1]
14 10 3 7 Hamming

20 15 3 9 [16,11,4 extended Hamming- [4,4,]]
23 18 3 11 [16,11,4 + [7,4,3 Hamming
27 22 3 13 [16,11,4 + [8,4,4 + [3,3,]]

30 25 3 15 Hamming

24 12 8 8 Golay

n 1 n 2 Repetition— even weight
2'—1 n—r 3 2t Hamming«— Simplex

2—1 n—2r 5 211l BCH « BCH*
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“[16,11,4 extended Hammingt[4,4,1" is the [20,15,3 ctcc={nK,d}*'=cCc’tcC’'={n-1K+1d-1}".
code with the following check matrix: (6)
111211111111212111000Q0 This allows one to generate codes encoding more quantum
10101010101010101000 information (having greateK) from ones of smalleK, at
the expense of reducet]l Note thatd is notrequiredto fall
H,=( 011001100110011001 (3 by 1, but implication(6) states thatl does not fall by more
0001111000011110001/0 than 1 in this construction.

Next the following question will be addressed: we wish to
encodeK qubits with givend=d;=d,. What is the neces-
sary value ofn? The quantum correction theorem implies

Its dual has minimum distance+8.=9. that if subcod f Kd d d th
One can “navigate” around Table | to some extent by use at It subcodes o a”[f" .d] code are used, then
K=2k—n. In the case of single-error correction, i.d5 3,

of the following two constructions: - oL
Hamming'’s construction implies

00000001111111100001

[n—1k—1d], d*—-1

[ 1k,d—1] dt 4 k=n—Jlogy,(n+1)], )
n—1Kk,d— ’ .

[nk,d],d-=

therefore, for af{n,K,3} " code,
In these two constructions, the code on the right-hand side is
derived from theC=[n,k,d] code on the left-hand side by K=n-2[log,(n+1)]. (8
removing a single row from the generaté&¢k—1) or par-
ity check @—d—1) matrix. To see how the minimum dis-
tance of the dual code is affected, recall that the generat
matrix of C is the parity check matrix o€+, therefore de-
leting a row from the generator matrix 6f means deleting a
row from the check matrix o€+, and vice versa. A single Table 1ll. . . .
row deleted from a generator matrix leaves the minimum Fork=2 Eq..(8) |mpl|§sn>10. In factn=10 is possible
distance either unaffectetthe most likely resujt or in-  USing the following code:

Whenn=2"—-1 we have a perfect Hamming code, and for
c}pis case the code contains its dual. Therefore equality holds
In (8), and K=n—2 logy(n+1). The smallesn allowing
d=3 for values ofK in the range 1 to 16 is indicated in

creased. A single row deleted from a check matrix leaves the 101100100 111100100

minimum distance either reduced by oftte most likely

resum or unaffected. Y 010110010 Y 011110010 9

1=| 1010120010" 27| 1010010014 ©
II. K INFORMATION QUBITS 011001000 111011000
The caseK # 0 will now be addressed. The simplest case
to consider is that of a classical code which contains its own _ 000100110 (10)
dual: CtCC=[n,k,d]. This is only possible whenkz=n. ~10000010011°

Such codes have been called “weakly self-duf8]. Since
C' is a subcode o€, clearly the quantum correction theo- Here,H; andH, give the correctors in bases 1 and 2, re-
rem can be satisfied witd;=d,=d and K=2k—n, since  spectively, and the generator works as follows. Cetbe the
C' is itself the subcode required by the theorem. In symbols¢lassical code of whichi, is the check matrix. The two rows
of D are the fourth and sixth rows of the generaty of
ctccC=[nk,d]=C={n,2k—n,d}*. (5)  C,, which is obtained from the well-known relation

In such a case, the error corrector is the same in basis 1 and Hi=(Alln_ )= G1=(I|AD), (13)
basis 2. An example is the Hamming code discusség,B. ) o . . )

This result transforms the search for quant§mk,d}* wherel; is i:'hEJXJ.Identlty matrix, andA is the rest of the
codes to a large extent to a search for classical weakly selfheck matrix. Adding these two extra checks-g, we ob-
dual codes. This was recognized [[h], where a proof was tain the check matrix for a SUbCOdE of Cl- The four states
given that weakly self-dual codes exist which satisfy the(code vectorsin the quantum{10,2,3" code are the sub-
Gilbert-vVarshamov bound. However, there existK,d}*  code [C;), whose generator i$1,, and its three cosets
codes which cannot be derived from weakly self-dual code$C; ®D,),|C;®D,),|C;®Dy®D,), whereDy andD, are
(examples are given belgywand these can be more efficient the rows ofD (the letterD is chosen here for “displace-
(higher K/n for given d/n) than the best weakly self-dual ment”). In symbols, one may write this generation procedure

codes. as

A code contains its dual if and only if all the rows of the
parity check matrix satisfy all the parity checKse., G— (E) (12)
wt(H;-H;) is even, for alli,j=0, ... h—k—1, where wz) D)

is the number of X in z]. This implies that when a single

row is deleted from the parity check matrix, the resulting This equation may be regarded as a summary of the quantum
code again contains its dual. Using the second constructionetwork which will encode the two qubits of information.
given in (4), combined with Eq(5), one finds Note that since the rows @ are members of the codg;,
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TABLE lIl. Upper bound ond for {n,K,d}* codes of smalK andn. Entries which are identical to the
one immediately above thefne., withn reduced by Lare left blank, in order to bring out the pattern in the
results. A pair of figures is given when the table of HS] indicates a range of distance values rather than
a precise upper limit. The underlined values are produced by codes given in Table IV or obtained from them
by the methods discussed in the text. For these codes the listed upper bound is thus shown to be obtainable.
Some codes are obtained from one another by deleting a rd®y ¢moving upwards and to the left in the
table), or by deleting a row ofH,; (moving upwards and to the right in the tabl&n asterisk {) indicates
a self-dual or weakly self-dual code.

d K
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1| 1
2 1*
3 1*
4 | 2 2 1
5 2 1
6 g g* 7*
73 2 1
8* 2 2 1
9 | 3 2 1
10 3 2 1
11 | 4 3 2 1*
12 4 3 3 2 iy

n 13 4 3 2 1*
14 4 3 2 2 1*
15 4 3* 2 1*
16 4 4* 2 2 1*
17 | 5 4 3 2
18 4 4 3 2 2
19 | 5 4 3 3 2
20 5 4% 4 3 3
21 | 6 5* 4 3 3
22 6* 5 4 3 3
23 | 7* 6 5 4 3 3
24* 6 45 4 3 3
25 56 45 4 3 3
26 6 56 45 4 3 3
27 | 78 6 56 45 4 3
28 67 6 56 45 4
29 | 68 67 6 56 4*5
30 6*8 67 5%6 6 56 4*
31 | 7*8 68 67 6 5* 4

they satisfy all the checks dfi;, and so the cosets they H,
generate are all subsets 6f. Also, since the rows oD Hie| 5| =G (15

have odd weight, the cos¢g€; ®D;) fails the parity check
D;, so the cosets are distinct. In genebalneed not have
rows of odd weight. The nonoverlapping of the cosets i
ensured by the fact th&t, is not a zero-distance code.

The matrix formed byH; plus the extra rows given by
D is the generator of,, and the corrector in basis B,,, is
obtained from this generator using relatighl). All these
relationships may be summarized as follows:

From this one may see that an equivalent code is obtained by
usingH; andD as the generator in E412) instead ofH,
andD. A further equivalent quantum code can be obtained
by using the first two rows oB, for D, instead of the fourth
and sixth rowqcf. Egs.(16) and (25) below.

The above approach can clearly be applied to any classi-
cal[n,k,d] code. That is, one produces a subcode by using
2k—n words from the code as extra parity checks, with the

H;—~G;—D, (13 aim that the check matrix thus obtained is the generator of
another(or the samg[n,k,d] code. However, it is not clear

(ﬂ) oH (14) whether this method can always succeed in producing a use-

D 2 ful quantum code. For example, whereas the cyclic check
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TABLE IV. Example{n,K,d}" codes. The final entries give some assorted valuesaofdK larger than
those covered by Table Il

n K d codeC™X
2 2

n n—2 2 Even weight, for even

2'—-1 n—2 log,(n+1) 3 Hammingg >2

eg. 7 1 3

15 7 3

31 21 3

2'—1 n—4 log,(n+1) 5 BCHr>4

eg. 31 11 5

29 11 4 reduced BCIE: CC

2'—1 n—2t logy(n+1) 2t+1 t-error correcting BCH

eg. 31 1 7 BCH

30 6 5 delete three rows from H of previous entry

16 6 4 extended Hamming

17 7 3 see text

19-27 8-16 3 cyclic, see text

23 1 7 Golay

48 0 12 guadratic residuself-dua)

63 3 11 BCH

63 15 9 BCH

80 0 16 quadratic residuself-dua)

104 0 20 guadratic residuself-dua)

127 15 17 BCH
matrix H, of Egs.(9) leads quickly to a quantum code, the 100000000111
Hamming check matrix for the same parametgt§,6,
does no?lead to a generator in the forrrr)1 given%?(ﬂrf) 010000000111
whose rows can be used to foin It would be interesting to D1353+=| 0010000000111, (17)
try to prove or disprove_: the h.ypothesifs that the existence of a 000100000101
classical[ n,k,d] code is sufficient to imply at least the ex-
istence of a quanturfn,2k—n,d}* code. The author’s cur- 000000001001,
rent impression is that this hypothesis is untrue in general.
However, it is true for weakly self-dual codes, and probably
gives a close estimate of the parameter values possible for 1000000000110
other cases. 0100000000111

The single-error-correcting codes indicated in Table Il

were all obtained by using the above method of using code D _ 0010000000111 (18)
words as extra parity checks, but note that whereas | have {1463" 0001000000011
thus found single-error correctingl3,5,3" and{14,6,3* 0000100000101
codes, filling the lower limit onn set by the Hamming
bound, | have not found11,3,3"* or {12,4,3" codes even 0000000001001,

though classica[11,7,3 and[12,8,3 codes exist. These

single-error-correcting quantum codes are all obtained frony ;e that the cases= 13 andn=14 are similar to one an-
the cyclic code given by the irreducible primitive polynomial other, and can be obtained by reducing the15 code. For
x*=1+x. The check matrixH; in Egs. (9) is the check | _ & e codeC, contains its own dual.

matrix of this cyclic code for the case= 10, and for higher Using the above methods, and once again the table of HS
n, up ton=15, further columns are added to the front of the ;g quantum{n,K,d}* coaes can be compiled. The re- ’
matrix following the s_tandard procedure. Once we ha\./esults are summarized in Tables Ill and IV. The upper bound
H,, the quantum code is fully defined once the relevant dis- n d is found from the classical bound
placement matribD is given. Forn=12 to 14 the following do.[n,k=(K+n)/2] given by HS. As it stands, Table IIl is
matricesD fulfill the requirements for single-error correc- inr?:i)mblete in that for most entries | have no’t found codes

tion: which realize the upper bound, thus proving that it is obtain-
00100000101 able. However, classical self-dual codes supply efficient
quantum codes of low rate, high distan@ew K/n, high
Di1233+= 000100000103, (16) d), and Bose-Chaudhuri-Hocquengh&@BCH) codes supply

00001000101 efficient quantum codes of high rate, low distance. Therefore
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we have identified infinite series of codes,radcreases, at A {20,9,3" code can also be obtained from the classical

the two ends of the range=0 to ~[n—logy(n)]. code having the minimum for d=3,d* =9, referred to in
The {17,7,3" code in Table Il is specified by the fol- Tables I and II. Its check matrik; is given in Eq.(3), and
lowing check matrix: the displacement matrix is formed from rows @f as fol-
lows:
01100111100110000
1011110010110100 01000000000000010100
H,=| 1101001011110010 (19) 00000100000000010110
1110100111000001 00000001000000010001
00011111110000001 0000000001000001010]
D{20,9.3+=| 0000000000100001110f. (22)

with the D matrix equal to the last seven rows @f. This

code can be obtained by adding a check bit to the 0000000000010001001
[16,11,4 extended Hamming code. 00000000000010011011
Th_e single—.error—_correcti.ng codes indicated in Talr_)le Il as 00000000000001010111
certainly obtainabléi.e., which | have succeeded in finding
for 7<K<17 do not realize the minimum implied by the 00000000000000111111
results of HS, but require one additional qubit, similar to the
casesKk=3 and 4 already remarked. Using the clue men- ll. MORE EFEICIENT CODES
tioned above that a cyclic classical code rather than a Ham- o ) . )
ming code is a good choice, all the codes frém 8 to 16 Implication (1) was used in the introduction to encapsu-

were obtained from the cyclic classical codes of primitivelate the twin facts that in genergh,K,d} * codes are not the
polynomial x5=1+x3. In this series of codes, a classical Most efficient possible, and that they can be used as a start-

[n,k,d] code gives rise to a quantum,2k—n—1d}* code. ing point to obtain more efficienfn,K,d} quantum codes.

For example, the generator f&r=16 is The simplest example is the perfed,1,3 quantum code
described in[6,7], which can be obtained by deleting any
011001111100011011101010000 two bits from the{7,1,3" code described if5,2], and
changing the signs of a subset of the words in each of the
101100111110001101110101000 two code vectors. The relevent sign changes can be found for
001111100011011101010000100 this simplest case by an exhaustive computer search. The
computer search is a useful tool in the task of finding good
100111110001101110101000010 codes, which may be likened to a search for the best fruit on
110011111000110111010100001 a many-branched tree. However, a complete search of all
001000000000000000000011100 possible allocations of signs rapidly becomes too time con-
suming, as the parametdns,K,d} are increased. Intelligent
.000010000000000000000000“1 search technigues must be used, and barren branches of the
000000100000000000000011111 tree ruled out as efficiently as possible, while fruitful
branches must be identified before the search begins, which
000000001000000000000011001 is the demanding task of the human researcher. In this sec-
0000000000100000000000C1100 tion a set of quantum codes will be presented, all of which
G .=| 000000000001000000000000110 were found by taking advantage of two simple methods to
{27163} ‘ identify fruitful branches and thus find suitable sign alloca-
00000000000010000000000001 1 tions quickly. Before discussing these sign allocations, how-
000000000000010000000010101 ever, we will consider ways of combining classical codes
000000000000001000000011110 which go beyond the simple reci; C C,.
The generator matrix of a quantum code, E®), creates
000000000000000100000001111 one classical codéorming the first quantum code vecjor
000000000000000010000010011 and X—1 cosetswhich form the remaining quantum code
vectorg. Thus we may picture the first quantum code vector
000000000000000001000011101 as a lattice of points in an-dimensional Hamming space,
000000000000000000100011010 and the other code vectors as this lattice displaced around the
000000000000000000010001101 Hamming space by distances of ordefThe codes described
in previous sections used lattices displaced so that each point
000000000000000000001010010 in any given lattice was at least a distarttérom any point
000000000000000000000101001 in another lattice. In other words, the set of all the lattices

formed a classical code of distandeand this ensured that
error correction was possible in basis 1. However, in forming
a quantum code, it is not necessary to displace the lattices as
The generators for the other codes in this series have a simfiar as this. Bit flips in basis 1, i.e., amplitude errors, will
lar form and will not be listed. cause a given lattice to move towards some other lattice, i.e.,

(20
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the code vectors approach, but if we now allow the signs int general errors using qubits. This bound is more general
basis 1 to be negative as well as positive, then lattites  than that required fofn,K,2t+1}* codes derived if2],
coset$ which overlap, in that they contain the same sets okince it includes the possibility of the more general
words, may nevertheless correspond to orthogonal quantufm,K,2t+ 1} codes which we are considering in this section.
states since there is an equal number of positive and negatiéowever, there is an intriguing possibility that it is not
contributions to the inner producti,e/]j,e), where strictly necessary for all possible error syndromes of all pos-
li,ex),]j,e) are code vectors affected by err@se . Thus  sible code vectors to be associated with mutually orthogonal
if we start from a set of code vectors with all-positive signsstates, since some error correction techniques may be able to
when written in basis 1, then the introduction of sign changegorrect errors of different syndrome without needing to dis-
permits the distance between cosets in basis 1 to be reducethguish the syndromes explicitly. This is the subject of ac-
Clearly, we must not hope for too much from this ability tive researcH7,9,14,13 and will not be addressed in the
to allow the cosets to approach. The minimum assumption ipresent work. In other words, we use “orthogonal coding”
that we may permit the distance between cosets in basis 1 throughout.
be reduced by one. In other words, the recipe for a The second of our two methods to identify fruitful trial
{n,K,d} quantum code become&s, CC, whereC, is a dis- codes is to consider the sign allocation, that is the row of
tanced classical code as before, but nddy is a distance w +1's and—1’s, as itself a binary vector of length, and
d—1 code. In addition, we wisk; to have as large a mini- then to use linear combinations of such vectors in a fashion
mum distance as possible, in order to allow a lot of “room” to be explained shortly. To keep the notation concise, we
to move the lattice around in Hamming space before it overfeplace+1 in the sign allocation vector by 0, andl by
laps itself. These two conditions, together with a judiciousl, to get a vector in the usual binary form, but one which is
application of sign changes, will be used to find optimalunderstood to represent a sign allocation amenguper-
single-error-correcting quantum codes. First, however, w¢osed words. Note that this vector has lengthwhich is a
must consider how to apply sign changes to the words in theower of two and usually larger than the lengthof the
code vectors. words in the superposition forming a code vector. For ex-
The first method to allocate sign changes to the words irample, the sign allocation for the two code vectors of the
each code vector is to restrict the possible sign allocations téve-qubit code of 6] can be written
those given by rows of the Hadamard mafi&{. That is to
say, we use thevXw Hadamard matrix to supply differ- 00010100, 01110010, (23
ent allocations ofw signs. A sign allocation is a set @

+1’s and—1's, giving the signs of each of the words in \yhare the least significarti.e., rightmost bit in the sign
the superposition forming the code vector to be tested. Thga oy gives the sign of the first word in the code vector, and

Hadamard matrix can be used in this way since in all th§,e 455ume the order of the words in the code vectors is that

codes considered here, each code vector contains a NUMRGLained when they are generated using the generator matrix
of wordsw equal to a power of 2. It is not hard to convince

oneself that a row of the Hadamard matrix is an intelligent

choice of sign allocation for any quantum code derived from 10101

a linear classical code by the methods discussed in previous 10011

sections(with possibly one or more bits deleted G=1 01111 (24)
Once we have a code vector, that is, a set of words with a -

proposed sign allocation, it is tested. The test consists of first 1111

testing whether errors in the code vector lead to states or-
thogonal to the code vector itself and to each other, and thefcf. Eq. 12 for the notation Note that the signs i23) are
testing whether such erroneous states are also orthogonal not rows of the Hadamard matrix, showing that the Had-
all the other code vectors in the code and their erroneouamard method will not pick up all good codes. However,
versions. The possible errors included in the test are all thoseoth sign vectors i23) are offset from rows of the Had-
which the code is supposed to be able to correct. If a codamard matrix by the same code vector 0001010G28pis a
survives such a test, then errors of different syndrome lead tooset of a sign allocation obtained by the Hadamard method
orthogonal states, and the orthogonality of different coddi.e., a coset of a subset of a first-order Reed-Muller ¢ode
vectors is also preserved. Such an “orthogonal coding” im- The second of our two methods to allocate signs only
plies that error correction is certainly possible. This latterapplies to codes of more than one encoded qubit, i.e., having
fact is a central part of the argument presenteldjrand[2]. more than two code vectors. The method is to let the set of
An elegant presentation of it is also provided by Ekert and2¥ w-bit sign vectors itself be a classical linear coge a
Macchiavello[12], which enables the latter authors to de- coset of a linear code if necessargnd to allocate each sign
duce a quantum version of the Hamming bound, based owector thus generated to the corresponding code vector gen-
counting the number of possible orthogonal directions in Hil-erated byG. For example, once we have found sign vectors
bert space, see al$6,7,16. Their bound is S00,So1,S10 for the first three code vectors of gm,2,d}

¢ code, we try the sign vect®q ;= Sgo® Sg1® S1 for the fourth

ZKE 3i< n code vector. By this process, we only ndgdsign vectors

<5 i (plus possibly one more to form a coséd specify all the
signs for an{n,K,d} code, rather than finding*2indepen-
for the sizeK of a possible quantum code which can correctdent vectors which is a much more demanding task.

<2n (22)
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The quantum Hamming bour(@2) states that for single- Instead we adopt the extended Hamming code or Reed-
error correction (=1d=3), at leastn=5,7,8,9,10 qubits Muller code C,=[8,4,4], which is self-dual saC, has a
are required to encode=1,2,3,4,5 qubits, respectively, and minimum distance of 4. Since we watht 3, we allowC; to
n=10 qubits are required to corre€t=1 qubit with double- have distanced—1=2. This suggests the even-weight
error correction{=2,d=5). Then=5 case is a perfect code [8,7,2] code, which has the correct number of code vectors

since it fills the bound, and is that discussed ®7]. The to allow K=3. Thus we obtain the following generator:
next most simple case is=7, for which we search for an

encoding of two qubits with single-error correction. | have 0101010

not found such §7,2,3 code, despite a wide but not com- 00110011

plete searclithis search was not restricted to the two meth-

ods just discussedThe best codes | have found are ones 00001111

which encode two qubits using 7 but for which the third and Gisoa= 111111111 . (25)
fourth code vectors are not quite compatible with the first o MO

and second. That is to say, there are ten cases in which a

single-qubit error in one code vector leads to the same quan- 10100000

tum state as a different single-qubit error in another code 1000100

vector, causing an ambiguity for any error corrector. These

ten cases are taken out of the’B- 3872 possible compari- e sign vectors are found by computer search using the two

sons between one code vector with its erroneous Versiong,,c.ts described above, which leads to eight sign vectors
and another code vector with its erroneous versions, so th&enerated by

code comes close to single-error correction, while not real-
izing it completely.

An encoding of three qubits permitting complete single-
error correction can be obtained witl= 8, which is optimal
in that this is the lower limit given by22). To find the code,
we begin with a classical codg, having a minimum dis-
tance of at least 3, to allow correction of errors in basis 2where the second version is the first written in hexadecimal
(phase erropsand having a duaC; of minimum distance as to bring out the structure.
large as possible, since this dual code defines the lattice in Equations(25) and (26) are quite concise and combine
basis 1 whose various displaced versions constitute the codeveral notations introduced in this paper. To make sure the
vectors in basis 1. Thg,4,3 Hamming code is not a good notation is correctly understood, t§8,2,3 code defined by
choice since its dual has a minimum distance of only 1lthese equations is now written out in full:

001100110011001) 3333
Sig33=| 000011110000111f=| OFOF), (26)
01100110011001 6666

+]00000000 +[0101010} +]0011001} +|01100110
+|0000111} +[01011019 +]00111100 +|0110100}

[v00 T 4]11111113 +[10101010 +|11001100 +|1001100}’ @
+]11110000 +]1010010} +|1100001} +|10010110

—[11000000 —|1001010} +|1111001} +]|10100110
—|1100111} —|10011010 +|11111100 +|1010100}

[v00 T —]0011111} —[01101010 +|0000110 +|0101100} 28
—|00110000 —|0110010} +|0000001} +|01010110
~[10100000 —|1111010} —|1001001} —|11000119
+]10101113 +[11111010 +|10011100 +|1100100}

lvol T —]0101111} —|0000101) —|01101100 —|0011100}' 29
+]01010000 +]0000010} +]0110001} +|00110110
+]01100000 +]0011010} —|0101001} —|00000119
—]0110111} —[00111010 +|01011100 +|0000100}

lvol T +]1001111} +]11001010 —|10101100 —|1111100} 30
—|10010000 —|1100010} +|1010001} +|11110110
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|v100) =

lv101) =

[v110 =

l[v11)=

+]10001000
+]1000011}
+]0111011}
+|01111000

—101001000
—|0100011%
~]1011011}
~110111000

—100101000
+]0010011%
~]1101011}
+]11011000

+11101000
—|1110011%
+]0001011}
—|00011000

A. M. STEANE
~]1101110} —|1011101}
~]11010010 —|10110100
—00100010 —|01000100
—|00101103 —[0100101}
+|0001110} —[0111101%
+]00010010 —[01110100
+]11100010 —|10000100
+|1110110} —|1000101}
+]0111110} +]0001101}
—]01110010 —|00010100
+]10000010 +|11100100
~|1000110} —|1110101}
~]1011110} +]1101101}
+]10110010 —|11010100
—|01000010 +|00100100
+/0100110} —]0010101}

+]11101110
+]1110000%
+00010003’
+]00011119

+|00101110
+]0010000%
+]1101000}’
+]11011110

~101001110
+]0100000%
~|1011000}’
+]10111110

—|10001110
+|1000000%
~|01110003}
+]01111110

(31)

(32

(33

(34

This code has also recently been derived by Gottesma@alderbanket al. [15] have also obtained a code of these
[16]. He presents a general construction forparameters. The quantum Hamming bo2® does not rule
{2",2"—r—2,3} codes. These parameters are consistent witlout the possibility of a further information qubit without in-
the supposition that such codes are obtained from the abowgeasingn, i.e., {10,5,3, but | have been unsuccessful in
method applied to the classical pay, = first order Reed- finding such a code.

Muller [2"r+1,27'] code, C;= even weight To encode five qubits with single-error correction, the
[27,2"—1,2] code. classical 11-bit code witd=3,d" =5 just mentioned can be

Proceeding to the encoding of four qubits, the bo(2®)  ysed to obtain the following quantum code:
implies that single error correction is possible witl=9.

However,n=9 is not large enough to allow a significant 0101010110
improvement on the properties of th&,4,4] classical code,
so it seems unlikely thaf9,4,3 is possible, and | have not 0011001101
been able to find such a code. Witk 10, on the other hand, 00001111001 3333
we can adopt the 11-bit code indicated in Tables | and Il
: o ; 11111111 FOF
which allowsd=3,d* =5, reducing it by the first construc- 11111111000 0FO
tion in (4) to obtainC,=[10,6,3, C; =[10,4,4. This leads Gi153=| 11000000000, sS;;;55=| 55AA
to the following quantum code: 10100000000 OFFO0
010101011 10001000000 3333
001100110§ 0000000011
0000111100 0000000010
1111111100 (37)
Gi1043= , (39 . . o . . .
1100000000 This is optimal for five information qubits and single-error
1010000000 correction if{10,5,3 does not exist.
100010000
IV. CONCLUSION
000000001
Much research is currently directed to finding the most
0011001100110011 / 3333 efficient quantum error-correction techniques. Commonly in
000011110000111 OFOF these efforts only the simplest example code, encoding a
S = = (36) single qubit of information, is actually identified. However,
(10,4,3
010101011010101 55AA to convey many bits of information, it is known from classi-
00001111111100Q00 |\ OFFO cal theory that more advanced codes, involving many infor-
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mation bits, are more powerful than a repetition of single-eters {10,2,3%,{12,3,3", {13,5,3%,{14,6,3%,{17,7,3",
information-bit codes. This implies that a more efficient{19-.-27,8 --16,3".

coding technique is not useful unless the task of applying it Next, we have improved on thin,K,d} ™ codes by al-

to many information bits is mathematically tractable. A sim-lowing one of the classical code€{) used to generate the
pler coding technique, which is less efficient than otherquantum code to have its minimum distance reduced, and
methods for one qubit, may become more efficient than th€ompensating for this by allowing the signs of words in the
competing methods when many qubits are involved, Simpw:_ode vectors to be either pos_itive or nt_egative ir_1 all bases. To
because powerful many-qubit codes can be identified for thénd out how to allocate the signs in this case, it is necessary
simpler method but not for its competitors. to use insight rather than trial and error. By making the sign

In this paper many examples have been given of quanturﬁllocations themselves form a classical linear code, and by
error-correcting codes of reasonably high efficiency. In the!Sing the Hadamard matrix to supply useful sets of signs, we
process, several simple techniques for manipulating cod ave introduced further structure into the quantum code. As

and guessing additional ones have been described. Quantd’ﬁ?” as mgkmg .the design of generator_ and .corrector .net-
networks to encode and correct each code have not be orks easier, th|§ allows Fhe set of p933|ble sign allocations
given, since they can be deduced directly from the releven be vastly restricted, which greatly aids the sgarch for 90°d
gener’ator and parity check matride [Theorem 3.1 codes. These methods have enabled us to identify single-

Starting with the simplest general method of quantum erError correctl_ng{n,K,S} _guantum ‘?Od‘?s 0“?:8’10'113 :
ror correction, based on dual pairs of classical linear codes, :3.’4’5 qubits, respectively. The first is optimal, and it is
and specified here by the notatiém,K,d} *, we have tabu- possible that the others are also, thouQIO,S,_3 and
lated codes which can be lifted almost directly from classicall 11:6:3 are not ruled out by the quantum Hamming bound.

coding theory because they are self-dual or weakly self-dual. DeV(_eIoping geperal methods -fqr producing good_ error-
In addition, classical dual code pairs with maxini" correcting codes is notoriously difficult. The task of finding

have been tabulated, since they form a useful starting poirﬂOOd codes can be framed as a computaﬂonal F’“’b'e”.”- It
for finding quantum codes. We have then examined in mor ay be an example of a practically important gomputatlon
detail the case of single-error correction, obtaining man;)"{
good quantum codes from classical codes which are ndt' .
weakly self-dual, and whose conversion to the quantum cadd"™m for a classical computer.

therefore requires more ingenuity. A method using a subset ACKNOWLEDGMENT

of the rows of the generator matrix as extra parity checks has
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ent (has lower computational complexjtghan any algo-
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