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control and manipulation of d.o.f. and interactions
⇔

progress in many-body physics

Experiment: new physical phenomena
Models

• standard (simple)
– Hubbard model
– Ising model

• custom-tailored
– Rokhsar Kivelson

• soluble
– low-dimensional

Phases and transitions
• fractionalised phases
• ???

Dynamics
• real-time quantum
• out of equilibrium

Disorder



Fractionalisation

High- and low-energy descriptions often have little in common
• molecules → waves
• band electrons → spin waves

Fractionalisation: ‘quantum numbers’ not simply related
• spin-charge separation (high-Tc?)
• Laughlin quasiparticles (charge e/3)
• magnetic monopoles (spin ice)



Cold atom realisations of fractionalised phases

• Kitaev II model (non-Abelian anyons)
– Quantum mechanical toolbox Zoller, Buchler, ...

• Triangular lattice topological phases
– four-spin plaquette exchange Misguich, Lhuillier

– tunable n.n. exchange
– Klein models
– quantum dimer models

• classical fractionalisation in d = 3
– simple Ising model with non-collinear axes
– nearest-neighbour or long-range dipoles do the trick!



Fluctuations and quantum dimer models

Fluctuations (thermal, quantum, . . .) destroy order.

⇒ what happens instead?

⇒ QDMs capture several aspects of new physics

Outline

• historical perspective: high-temperature superconductors

– spin liquids and fractionalisation

• quantum dimer models
– phase diagram

– liquidity and deconfinement
– topological order

• Outlook

Quantum dimer models:liquidity, fractionalisation and topological



Background: short-range RVB physics

Basic problem of high-Tc: how do holes hop through an
antiferromagnetic Mott insulator on square lattice?
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Hole motion is frustrated:
hopping creates domain walls

+ + + +

+ + + +

+ + + +

+ + + +
+ + + ++ +

Possible resolution: magnet enters a different phase
resonating valence bond liquid phase

which breaks no symmetries. Neighbouring electrons form a

singlet (“valence”) bond, denoted by a dimer: | ↑↓〉 − | ↓↑〉 ∼

Some unusual types of orderin condensedmatter physics



The basic RVB scenario - electron fractionalisation

Energetics RVB Neel

single pair valence bond optimal

higher coordination energy from resonance ...each neighbour

hole doping motion unimpeded motion frustrated

• Basic resonance move is that of benzene

Some unusual types of orderin condensedmatter physics



The basic RVB scenario - electron fractionalisation

Energetics RVB Neel

single pair valence bond optimal

higher coordination energy from resonance ...each neighbour

hole doping motion unimpeded motion frustrated

————–

• Basic resonance move is that of benzene

• Removing an electron→ holon + spinon

spinon and holon are
deconfined

↓
(bosonic) holons can

condense

Some unusual types of orderin condensedmatter physics



The Rokhsar-Kivelson quantum dimer model

H
QDM

= t( )+v( )
H

QDM
= t( )+v( )

• Hilbert space: exponentially numerous dimer coverings

• Resonance (t) and potential (v) term from uncontrolled
approximation – one parameter: v/t

• RK point v/t = 1 is exactly soluble in d = 2 at T = 0:

|0〉 = 1√
Nc

∑
c |c〉 → 〈P̂ 〉 = 1

Nc

∑
c,c′〈c|P̂ |c′〉 = 1

Nc

∑
c pc

→ classical calculation for diagonal operators

• v/t > 1 and limits of v/t → −∞ give solid (staggered and
columnar, respectively) phases:

Some unusual types of orderin condensedmatter physics



The enemy: order by disorder

• Consider v = 0: only term in HQDM is kinetic term

• kinetic term gains energy from resonating plaquette:

=

• Maximal energy gain→ dense packing

• Dense packing→ crystallinity

• Crystallinity→ symmetry breaking: ‘order by disorder’

• Plaquette solid: only variational guess!

Some unusual types of orderin condensedmatter physics



Phase diagram for square and triangular lattices

1

staggered

staggered

RVB

0

columnar 12x 12

columnar columnar/plaquette
v/t

All phases on square lattice are confining RK; Sachdev; ...

Triangular lattice has bona fide RVB phase

Some unusual types of orderin condensedmatter physics



Liquidity and fractionalisation

• Removing an electron: holon (S=0) and spinon (q=0)

• Spinon and holons are deconfined: spin-charge separation

Quantum dimer models:liquidity, fractionalisation and topological



Anything beyond conventional order and disorder?

Gas-crystal (e.g. rock salt):

Paramagnet-ferromagnet

Anything else???

Quantum dimer models:liquidity, fractionalisation and topological



Liquidity and topological order

Topological order on surface of non-trivial topology (e.g. cylinder)

• Winding parity P with respect to cut
is invariant under action of HRK

⇒ P labels topological sectors

• Liquids locally indistinguishable ⇒
ground states |e〉, |o〉 degenerate for
L → ∞:
‘topological degeneracy/order’ Wen

• Unlike conventional order: degenera-
cy due to breaking of local symmetry

Quantum dimer models:liquidity, fractionalisation and topological



Topological quantum computing Kitaev; Ioffe et al.

Topological protection: Use |P〉 = |e〉, |o〉 as q-bit Kitaev

• Liquids locally indistinguishable: Ee
N − Eo

N ∝ exp(−L)
⇒ local noise HN cannot lead to dephasing

• Proposal is scalable: many cuts in single chip

• Implementation as Josephson-junction array Ioffe et al.

• Problem: logic gates; non-local operations, ...
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Quantum dimer models:liquidity, fractionalisation and topological



High-dimensional fractionalisation

Fractionalisation through frustration
• frustrated Ising models

– ground-state degeneracy
– spin ice

• equivalence of short- and long-range interactions
• topological phase with emergent quasiparticles

– monopoles and artificial photons
– algebraic correlations without criticality

• dimensional reduction



Conventional vs frustrated Ising models

• Consider classical Ising spins, pointing
either up or down: σi = ±1

• Simple exchange (strength J):

H = Jσiσj

– J < 0: ferromagnetic – spins align
– J > 0: antiferromagnetic – spins antialign
– . . . but only where possible: ‘frustration’

=⇒ What happens instead?

?



Frustration leads to (classical) degeneracy

Not all terms in H =
∑

〈ij〉 σiσj can simultaneously be minimised

• But we can rewrite H:

H =
J

2

(

q
∑

i=1

σi

)2

+ const

which can be minimised
• for tetrahedron:

∑

i σi = 0

⇒ Ngs = (4

2
) = 6 ground states

?

Degeneracy is hallmark of frustration (⇒ quantum Hall!)



Zero-point entropy on the pyrochlore lattice

• Pyrochlore lattice =
corner-sharing tetrahedra

Hpyro =
J

2

∑

tet

(

∑

i∈tet

σi

)2

• Pauling estimate of ground state
entropy S0 = ln Ngs:

Ngs = 2N

(

6

16

)N/2

⇒ S0 =
1

2
ln

3

2

• microstates vs. constraints;
N spins, N/2 tetrahedra



Mapping from ice to spin ice

• In ice, water molecules retain their identity
• Hydrogen near oxygen ↔ spin pointing in

150.69.54.33/takagi/matuhirasan/SpinIce.jpg

• axes non-collinear!



A dipolar Hamiltonian of spin ice Siddharthan+Shastry

• Simple nearest-neighbour model:

Hnn = −J
∑

〈ij〉

~µi~µj

• For polar molecules with dipole moment µ:

H = Hnn +
µ0

4π

∑

ij

~µi · ~µj − 3(~µi · r̂ij)(~µi · r̂ij)

r3

ij

• Both give same entropy (!!!) Gingras et al.

WHY???



The ‘dumbell’ model

Dipole ≈ pair of opposite charges (µ = qa):
• Sum over dipoles ≈ sum over charges:

Hij =

2
∑

m,n=1

v(rmn
ij )

=

+q

−q

aµ

• v ∝ q2/r is the usual Coulomb interaction (regularised):

v(rmn
ij ) =

{

µ0 qm
i qn

j /(4πrmn
ij ) i 6= j

vo(
µ
a
)2 = J

3
+ 4D

3
(1 +

√

2

3
) i = j,



Origin of the ice rules

Choose a = ad, separation between centres of tetrahedra

Resum tetrahedral charges Qα =
∑

rm
i ∈α qm

i :

H ≈

mn
∑

ij

v(rij,mn) −→
∑

αβ

V (rαβ) =

{

µ0

4π

QαQβ

rαβ
α 6= β

1

2
voQ

2

α α = β

• Ice configurations (Qα ≡ 0) degenerate⇒ Pauling entropy!



Excitations: dipoles or charges?

• Ground-state
– no net charge

• Excited states:
– flipped spin ↔ dipole excitation
– same as two charges?

one dipole
Q=0

two charges



Excitations: dipoles or charges?

• Ground-state
– no net charge

• Excited states:
– flipped spin ↔ dipole excitation
– same as two charges?

one dipole
Q=0

two charges

Fractionalisation in d = 1



Excitations in spin ice: dipolar or charged?

Single spin-flip (dipole µ)
≡

two charged tetrahedra
(charges qm = 2µ/ad)

Are charges independent?
⇒ Fractionalisation in d = 3?



Deconfined monopoles

Dumbell Hamiltonian gives

E(r) = −
µ0

4π

q2

m

r

• magnetic Coulomb interaction
for magnetic dipoles

• electric Coulomb interaction
for electric dipoles



Deconfined monopoles

Dumbell Hamiltonian gives

E(r) = −
µ0

4π

q2

m

r

• magnetic Coulomb interaction
for magnetic dipoles

• electric Coulomb interaction
for electric dipoles

• deconfined monopoles (in ~H)



Intuitive picture for monopoles

Simplest picture does not work: disconnect monopoles

SN SN
Next best thing: no string tension between monopoles:

N S SN

Two monopoles form a dipole:
• connected by tensionless ‘Dirac string’
• Dirac string is observable



Kagome ice: dimensional reduction in a field

Ising axes are not collinear

• [111] field pins one sublattice of spins ~B

⇑



Kagome ice: dimensional reduction in a field

Ising axes are not collinear

• [111] field pins one sublattice of spins
• Other sublattices form kagome lattice
• Kagome lattice: two-dimensional
• Can change effective dimensionality

without touching lattice

~B

⇑



Conventional order and disorder

Gas-crystal (e.g. rock salt):

Paramagnet-ferromagnet (e.g. fridge magnet)

In between: critical points

Anything else???



Is spin ice ordered or not?

No order as in ferromagnet
• deconfined monopoles
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Is spin ice ordered or not?

No order as in ferromagnet
• deconfined monopoles

Not disordered like a paramagnet
• ice rules ⇒ ‘conservation law’

Consider magnetic moments ~µi as
(lattice) ‘flux’ vector field

• Ice rules ⇔ ∇ · ~µ = 0 =⇒ ~µ = ∇× ~A



Is spin ice ordered or not?

No order as in ferromagnet
• deconfined monopoles

Not disordered like a paramagnet
• ice rules ⇒ ‘conservation law’

Consider magnetic moments ~µi as
(lattice) ‘flux’ vector field

• Ice rules ⇔ ∇ · ~µ = 0 =⇒ ~µ = ∇× ~A

• Local constraint
⇒ ‘emergent gauge structure’

• Bow-tie motif in neutron scattering
• Algebraic (but not critical!) correlations



Spin ice correlations: emergent gauge structure

• Define ‘flux’ vector field on links of the
ice lattice: Bi

• Local constraint (ice rules) becomes
conservation law (as in Kirchoff’s laws)

⇒ gauge theory

∇ · B = 0 =⇒ B = ∇× A

• Spin ice configurations differ by
flipping spins in a loop

• Amounts to reversing closed loop of
flux B

• Smallest loop: hexagon (six links)

Emergence and projective equivalence: why spin ice obe



Long-wavelength analysis: coarse-graining

• Coarse-grain B → B̃ with ∇ · B̃ = 0

• ‘Flippable’ loops have zero average flux:

low average flux⇔ many microstates

• Ansatz: upon coarse-graining, obtain energy
functional of entropic origin:

Z =
∑

B

δ∇.B,0 →

∫

DB̃ δ(∇ · B̃) exp[−
K

2
B̃2]

• Artificial magnetostatics!

• Resulting correlators are transverse and
algebraic (but not critical!): e.g.

〈B̃z(q)B̃z(−q)〉 ∝ q2
⊥/q2 ↔ (3 cos2 θ − 1)/r3.

Emergence and projective equivalence: why spin ice obe



Quantum frustration: U(1) Coulomb phase

• Hilbert space: classical ground states of (spin) ice

• Add coherent quantum dynamics for hexagonal loop:

HRK = −t



| 〉〈| | + h.c.



 + v



| 〉〈| | + · · ·





• Effective long-wavelength theory Sq =
∫

#E2 − c2 #B2
Maxwell

• This describes the Coulomb phase of a U(1) gauge theory:
– gapless photons, speed

of light c2 ∝ t − v

– deconfinement

– microscopic model!
RKTF

0 18−

MF

‘staggered’confining phases Coulomb

v/t

• Artificial electrodynamics with frustrated system as ‘ether’

Emergence and projective equivalence: why spin ice obe



Collaborators

Theory:
• Claudio Castelnovo

(Oxford)
• John Chalker (Oxford)
• Karol Gregor (Caltech)
• Sergei Isakov (ETHZ)
• Kumar Raman (UIUC)
• Shivaji Sondhi (Princeton)
• Adam Willans (Oxford)

Experiment:
• Steve Bramwell (UCL)
• Zenji Hiroi (Tokyo)
• Art Ramirez

(Alcatel-Lucent)
• Peter Schiffer (Penn State)

+ many more



Fractionalisation in simple lattice models

Triangular lattice correlated electrons
• spin-charge separation
• topological order ⇒ quantum computing

Fractionalisation in spin model in d = 3

• n.n. or dipolar Ising model with non-collinear axes
• frustration gets rid of simple ordered ground state

– huge low-temperature entropy
– monopoles (also classically) and artificial photons (qm)
– algebraic correlations without criticality
– several ways of obtaining dimensional reduction
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