Rotating Bose-Einstein condensates in the Lowest Landau Level

JD

September 23, 2008

We consider a 2D Bose gas of N atoms of mass M, confined in an isotropic harmonic potential $V(r) = m\omega^2 r^2/2$, with $r = (x^2 + y^2)^{1/2}$. We use \hbar , ω , $\hbar\omega$, $\sqrt{\hbar/(m\omega)}$ as units of angular momentum, frequency, energy and length, respectively. We are interested here in the properties of the system when it is rotating at a frequency Ω close to the trapping frequency ω .

1 Single particle problem

- 1. Consider the single particle Hamiltonian $\hat{H} = \hat{p}^2/(2M) + \hat{V}(r)$. Show that the energies can be written $E_n = n + 1$ (*n* non negative integer) and that the dimensions of the associated eigenspace \mathcal{E}_n is $g_n = n + 1$.
- 2. (lengthy! One can admit the result and continue...) Show that one can find a basis of each subspace \mathcal{E}_n that is also an eigenbasis of \hat{L}_z , where \hat{L}_z is the z component of the angular momentum operator, with the eigenvalues $L_z = -n, -n+2, \ldots, n-2, n$. Note that $\hat{L}_z = -i\partial_{\theta}$, where θ is the polar angle in the xy plane.

Hint 1: consider the (non-normalized) states

$$\phi_{j,k}(x,y) = e^{r^2/2} \left(\partial_x + i\partial_y\right)^j \left(\partial_x - i\partial_y\right)^k \left(e^{-r^2}\right) \tag{1}$$

where j and k are non-negative integers.

Hint 2: in case of difficulty, just restrict to the subspaces \mathcal{E}_0 and \mathcal{E}_1 .

- 3. Show that $(x + iy)^n e^{-r^2/2}$ has the energy n + 1 and the angular momentum $L_z = n\hbar$.
- 4. The single particle Hamiltonian in the rotating frame is $\hat{H}' = \hat{H} \Omega \hat{L}_z$. Give the eigenvalues of \hat{H}' as a function of Ω .
- 5. What happens for $\Omega = 1$, i.e. a rotation frequency equal to the trapping frequency? Show in particular that the eigenstates form infinitely degenerate manifolds (Landau levels), separated by the energy 2 (i.e. $2\hbar\omega$ in real life).
- 6. Give the mathematical structure of a state in the Lowest Landau Level.
- 7. (lengthy! One can admit the result and continue...) Show that for a state in the LLL one has the following identity

$$\langle E_{\rm kin} \rangle = \langle E_{\rm ho} \rangle = \frac{1}{2} + \frac{1}{2} \int \psi^* \left[L_z \psi \right] \, d^2 r \tag{2}$$

where the kinetic and harmonic oscillator energies are:

$$\langle E_{\rm kin} \rangle = \frac{1}{2} \int |\vec{\nabla}\psi|^2 \, d^2r \qquad \langle E_{\rm ho} \rangle = \frac{1}{2} \int r^2 \, |\psi|^2 \, d^2r \, . \tag{3}$$

Figure 1: Structure of the ground state of a rotating Bose-Einstein condensate described by a LLL wavefunction ($\Lambda = 3000$). (a) Vortex location; (b) Atomic density profile (with a larger scale). The unit for the positions x and y is $(\hbar/(m\omega))^{1/2}$.

2 A mean-field analysis of the gas

In the following \tilde{g} denotes the dimensionless 2D coupling strength. We choose Ω slightly smaller than ω .

- 1. Explain the reason for this choice of Ω .
- 2. Write the energy functional to be minimized for the determination of the ground state.
- 3. Show that if one restricts to the LLL, the minimization procedure depends only on the parameter

$$\Lambda = \frac{N\tilde{g}}{1-\Omega} \ . \tag{4}$$

An example of minimization is shown in fig.1 for $\Lambda = 3000$.

- 4. Once the state ψ minimizing the energy functional is known, how can one find the locations of the vortices?
- 5. Give an estimate of the radius of the cloud using a coarse graining over the vortex structure.

Reference: A. Aftalion, X. Blanc, and J. Dalibard, Phys. Rev. A 71, 023611 (2005).