Goal of these lectures

Low dimensional quantum gases, rotation and vortices

Review article: I. Bloch, J. Dalibard, W. Zwerger, Many-Body Physics with Ultracold Gases Rev. Mod. Phys. **80**, 885 (2008)

Jean Dalibard, Laboratoire Kastler Brossel*, ENS Paris

* Research unit of CNRS, ENS, and UPMC

Outline of the lectures

- 1. Static 2D gases
 - Normal to superfluid transition
 - Berezinski-Kosterlitz-Thouless mechanism: breaking of vortex pairs

2. Rotating 2D gases

Vortices are the "simplest way" to set a quantum system in rotation.

Physics in the Lowest Landau Level and Connection with Quantum Hall phenomenon

Discuss some aspect of the physics of quantum low dimensional systems

Planar fluids

Quantum wells and MOS structures

High *T*_c superconductivity

Discuss also the effect of quantum rotation

Neutron stars

Superconductor in a magnetic field

VORTICES

Chapter 1 : Static 2D gases

§1. The ideal Bose gas in 2D

The ideal uniform 2D Bose gas

The ideal uniform 2D Bose gas (2)

The 3D Gross-Pitaevski equation

$$\frac{\pi^{2}}{2m}\Delta\psi + V_{trap}(r)\psi(r) + g^{(3D)}|\psi(r)|^{2}\psi(r) = i\hbar\frac{\partial\psi}{\partial t}$$
§2. Interacting particles in (quasi) 2D

$$g^{(2D)} = energy \times volume = \frac{4\pi\hbar^{2}}{m}a \quad a: scattering length$$
Two-body problem: $\phi(r) \sim r^{ik}r' + f(k) \frac{r^{ik}r}{r}$
 $f(k): scattering amplitude \qquad \lim_{k\to 0} f(k) = -a$
How a 3D pseudopotential
is transformed in 2D
aD interaction energy:
 $\mu_{in} = \frac{S(N-1)}{2}g^{(2D)} \int |\psi(r)|^{4}d^{2}r, \qquad \text{with } g^{(2D)} = \frac{4\pi\hbar^{2}a}{m}$
 $g^{(2D)} = energy \times volume = \frac{4\pi\hbar^{2}}{m}a$
 $g^{(2D)} = energy \times volume = \frac{4\pi\hbar^{2}}{m}a$
 $g^{(2D)} = energy \times area = \frac{\pi^{2}}{m}\tilde{g}$
where \tilde{g} is dimension-tess

Kinetic energy

$$E = \frac{\hbar^2}{2m} \int |\vec{\nabla}\psi|^2 \, d^2r \simeq \frac{\hbar^2 n_0}{2m} \int |\vec{\nabla}\theta|^2 \, d^2r$$

To proceed, we now make a Fourier expansion of the phase

Energy: $E = \frac{\hbar^2 n_0}{2m} \int |\vec{\nabla}\theta|^2 d^2r = \frac{\hbar^2 n_0}{2m} L^2 \sum_{\vec{i}} k^2 |C_{\vec{k}}|^2$

Thermal equilibrium for each mode:

$$\frac{\hbar^2 n_0}{2m} L^2 k^2 |C_{\vec{k}}|^2 = \frac{1}{2} k_B T$$

The correlation function of the phase

We introduce the imaginary part $C''_{\vec{k}}$ of the Fourier coefficient $C_{\vec{k}}$ $\langle (\theta(\vec{r}/2) - \theta(-\vec{r}/2))^2 \rangle = 8 \sum_{\vec{k}} \langle |C''_{\vec{k}}|^2 \rangle \sin^2(\vec{k} \cdot \vec{r}/2)$

Using the thermal average for $\ C_{ec k}$ and going to an integral, we get

$$\langle (\theta(\vec{r}/2) - \theta(-\vec{r}/2))^2 \rangle = \frac{2}{\pi n_0 \lambda^2} \iint \frac{\sin^2(\vec{k} \cdot \vec{r}/2)}{k^2} d^2 k$$
$$\simeq \frac{1}{\pi n_0 \lambda^2} \iint \frac{1}{k^2} d^2 k$$
$$= \frac{2}{n_0 \lambda^2} \int \frac{dk}{k}$$

Upper bound of the integral: $1/\xi$ or $1/\lambda$ Lower bound of the integral: 1/r

Summary for the correlation function of the phase

Assuming that the phase varies "slowly" enough for the Fourier expansion to be valid

$$\langle (\theta(\vec{r}) - \theta(0))^2 \rangle \simeq \frac{2}{n_0 \lambda^2} \ln(r/\xi) \qquad r \gg \xi$$

Characteristic of 2D [Peierls 1935, Mermin – Wagner - Hohenberg 1966]

The correlation function of the phase (2)

Result of the calculation:

$$\langle (\theta(\vec{r}/2) - \theta(-\vec{r}/2))^2 \rangle \simeq \frac{2}{n_0 \lambda^2} \int \frac{dk}{k} = \frac{2}{n_0 \lambda^2} \ln(r/\xi)$$

whereas one gets in 3D

$$\langle (\theta(\vec{r}/2) - \theta(-\vec{r}/2))^2 \rangle \simeq \frac{4}{n_0 \lambda^2} \int dk = \frac{1}{n_0 \lambda^2 \xi}$$

For a degenerate 3D gas: $n_0\lambda^3 > 1$ and $n_0\xi^3 \sim \frac{1}{(n_0a^3)^{1/2}}$ so that in the dilute regime $n_0\xi^3 \gg 1$

Therefore $\langle (heta(ec{r}/2) - heta(-ec{r}/2))^2
angle \ll 1$ in 3D for any r

Calculation of the g_1 function

We still neglect density fluctuations

$$g_1(r) = \langle \psi^*(\vec{r}) \ \psi(0) \rangle = n_0 \langle e^{i(\theta(\vec{r}) - \theta(0))} \rangle$$

Gaussian fluctuations for the phase: $\langle e^{iG} \rangle = e^{-\langle G^2 \rangle/2}$

Using
$$\langle (\theta(\vec{r}) - \theta(0))^2 \rangle \simeq \frac{2}{n_0 \lambda^2} \ln(r/\xi)$$

we obtain finally:

$$g_1(r) = n_0 \left(\frac{\xi}{r}\right)^{1/(n_0\lambda^2)}$$

Valid at low temperature, where the Fourier expansion of the phase is valid

Summary for this first part on the static 2D Bose gas

	uniform	Harmonic trap
Ideal	No BEC	$\begin{array}{c} BEC \\ N > N_c \end{array}$
Interacting	No BEC (algebraic decay of g ₁) but a superfluid transition	?
	Origin?	