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1 Introduction

• When we deal with a system of identical particles, it becomes inconvenient to write
the many-body wavefunction in the form

ψ(r1,r2,r3,..., rN ).

• Instead, we make use of the fact that identical quantum mechanical particles are
indistinguishable, and express the state in terms of the occupation numbers ni of a
complete set of single particle states.

2 Free Particles

• We consider particles in a cubic volume of side length L. This will be our quantisation
volume V = L3 for normalisation, and we impose periodic boundary conditions.

• In this volume, the momentum is quantised as

p =
2π
L

(m1,m2,m3)~

where mi are integers.

• The state of the system is then characterised by the number of particles np having
momentum p:

|ψ〉 = |np1 , np2 , ..., npi , ...〉 =
∏

i

|npi〉

• We choose the normalisation of the states as

〈n′p1
, n′p2

, ..., n′pi
, ... |np1 , np2 , ..., npi , ...〉 = δn′

p1
,np1

δn′
p1

,np2
...δn′

pi
,npi

...

• These states for all combinations of {npi} form a complete basis for our many-particle
system.

2.1 Identical Bosons

• We now define the annihilation operator for mode p as

b̂p |...np...〉 =
√
np |...(np − 1)...〉

• The adjoint of this operator is then the creation operator b†p, and it can be shown
that

b̂†p |...np...〉 =
√
np + 1 |...(np + 1)...〉
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• The relevant commutator relations are given by

[b̂p, b̂
†
p′ ] = δp,p′

[b̂p, b̂p′ ] = [b̂†p, b̂
†
p′ ] = 0

• Because
b̂†pb̂
†
p′ |φ〉 = b̂†p′ b̂

†
p |φ〉

these states are symmetric under interchange of particles, and we are dealing with a
system of Bosons.

• These states are called Fock states, or number states, because they are eigenstates of
the particle number operator

N̂p = b̂†pb̂p

N̂p |...np...〉 = np |...np...〉

• {Np} forms a complete set of commuting observables, and thus all other possible
many-body states can be constructed from superpositions of Fock states.

• Using the number operator, we can construct the momentum operator as

P̂ =
∑
p

pN̂p =
∑
p

p b̂†pb̂p

• The kinetic energy operator is then similarly written as

ĤKE =
∑
p

EpN̂p =
∑
p

p2

2m
b̂†pb̂p

so that the Schrödinger equation for non-interacting particles reads

ĤKE |ψ〉 = i~
∂

∂t
|ψ〉

• Note the similarities between this formalism, and the formalism for the harmonic
oscillator with creation and annihilation operators for the excitations. Here, each
state behaves as an independent harmonic oscillator, and the number of particles in
the state are the excitation level of that oscillator.

2.2 Identical Fermions

• The state for Fermions must be antisymmetric under interchange of particles, and
therefore the fermion creation and annihilation operators must obey the relations

ĉ†pĉ
†
p′ = −ĉ†p′ ĉ

†
p, ĉpĉp′ = −ĉp′ ĉp

and
ĉpĉ
†
p′ + ĉ†p′ ĉp = δp,p′

• These are so-called anticommutation relations, defined as

{A,B} = [A,B]+ = AB +BA
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• We can thus write the relations for Fermionic operators as

[ĉp, ĉ
†
p′ ]+ = δp,p′

[ĉp, ĉp′ ]+ = [ĉ†p, ĉ
†
p′ ]+ = 0

• Note that these operators obey the Pauli exclusion principle, as

ĉpĉp = −ĉpĉp, ⇒ ĉ2p = 0,

and thus
N̂2

p = ĉ†pĉpĉ
†
pĉp = ĉ†pĉp − ĉ†pĉ†pĉpĉp = ĉ†pĉp = N̂p

so that the only allowed eigenvalues for N̂p for Fermions are 0 and 1.

• As for Bosons, the momentum and kinetic energy operators are given by

P̂ =
∑
p

p ĉ†pĉp, ĤKE =
∑
p

p2

2m
ĉ†pĉp

3 Field Operators

• We define the field operators

ψ̂(r) =
1√
V

∑
p

ei(k.r−ωpt)âp

ψ̂†(r) =
1√
V

∑
p

e−i(k.r−ωpt)â†p

where k = p/~, ωp = Ep/~ = p2/(2m~).

• This operator obeys the commuator (or equivalent anticommutator for fermions)

[ψ̂(r), ψ̂†(r′)] = δ(r− r′)

• These operators can be interpreted as the creation and annihilation operators for a
state in which a particle is located at the point r, and are the Fourier transforms of
the momentum space operators.

|r〉 = ψ̂†(r) |0〉

• We can compute the commutators

[ĤKE , ψ̂
†(r)] = − ~2

2m
∇2ψ̂†(r)

[ĤKE , ψ̂(r)] =
~2

2m
∇2ψ̂(r)

• In the Heisenberg picture, the equation of motion for the field operator of a free
particle is

i~
∂ψ̂

∂t
= [ψ̂, Ĥ] = [ψ̂, ĤKE ] = − ~2

2m
∇2ψ̂
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• This has the same form as the usual Schrödinger equation for a single particle, except
that ψ is now an operator. This is why this formulation of many-body quantum
mechanics is known as second quantisation: This is the same theory that would result
from taking the single particle wavefunction to be a classical field, and then imposing
commutation relations on that field.

• Many useful forms involving the field operators can be proven using the wavefunction
for a particle of momentum p in a box of volume V ,

〈r|p〉 =
1√
V

ei(k.r−ωpt)

together with the identity∫
V
d3r eik.r =

{
V, k = 0
0, k 6= 0

= V δk,0

• For example,

ĤKE =
∫
d3r ψ̂†(r)

(
− ~2

2m
∇2

)
ψ̂(r)

P̂ =
∫
d3r ψ̂†(r) (−i~∇) ψ̂(r)

N̂ =
∫
d3r ψ̂†(r) ψ̂(r)

• With an external field V1(r), the Hamiltonian is written

Ĥ0 =
∫
d3r ψ̂†(r)

[
− ~2

2m
∇2 + V1(r)

]
ψ̂(r)

• Interactions between two atoms described by a potential V2(r1−r2) produce a Hamil-
tonian of the form Ĥ = Ĥ0 + Ĥint, with

Ĥint =
1
2

∫
d3r

∫
d3r′ ψ̂†(r, t) ψ̂†(r′, t)V2(r′ − r) ψ̂(r′, t) ψ̂(r, t)
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