Cold Atoms and Optical Lattices Problems

A. J. Daley

Problem 1: Quasimomentum representation of the Bose-Hubbard model: In one dimension, the relationship between the creation operator for quasimomentum modes, \hat{a}_{k}^{\dagger} and the creation operator for Wannier function modes, \hat{b}_{i}^{\dagger} is given by

$$
\begin{equation*}
\hat{a}_{q}(x)=\sqrt{\frac{a}{2 \pi}} \sum_{l} \hat{b}_{l} \mathrm{e}^{-\mathrm{i} x_{l} q} \tag{1}
\end{equation*}
$$

where a is the lattice spacing, and $x_{l} \propto l a$ is the position co-ordinate at the centre of site l.
Expressing the system Hamiltonian in terms of quasimomentum operators often aids understanding of basic processes on a lattice, and can be performed in a straight-forward manner with the help of the identity

$$
\begin{equation*}
\sum_{l} \exp \left[\operatorname{ial}\left(q-q^{\prime}\right)\right]=\frac{2 \pi}{a} \delta\left(q-q^{\prime}+2 \pi N / a\right) \tag{2}
\end{equation*}
$$

where N is an integer, and remembering that the quasimomentum is always chosen to fall in the first Brillouin zone, $q \in[-\pi / a, \pi / a]$.

1. Kinetic Energy term
(a) Tight binding Hamiltonian: Show that the kinetic energy term of the Bose-Hubbard model, $H_{K E}=$ $-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}$ can be rewritten using quasimomentum operators as $H_{K E}=\int_{-\pi / a}^{\pi / a} d k E(k) \hat{a}_{k}^{\dagger} \hat{a}_{k}$, with the dispersion relation in the lowest Bloch band given by $E(k)=-2 J \cos (k a)$.
(b) Beyond tight binding: If the shape of the lowest Bloch band is not exactly a cosine, then (as it will be symmetric about $k=0$) we can write the band shape as a (Fourier) cosine series, $E(k)=\sum_{n} A_{k} \cos (n k a)$. How would this affect the kinetic energy term written in terms of Wannier function modes?
2. Two-body interation term
(a) Transform the interaction term $H_{I}=(U / 2) \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)=(U / 2) \sum_{i} b_{i}^{\dagger} b_{i}^{\dagger} \hat{b}_{i} \hat{b}_{i}$ into quasimomentum representation.
(b) In what sense is the quasimomentum conserved in two-body collisions on a lattice?
3. Trapping potential term
(a) Assume that ε_{i} corresponds to an additional superlattice potential, where $\varepsilon_{l}=\cos [(\pi / 4) a l]$. Transform the corresponding Hamiltonian term $H_{T} \sum_{i} \varepsilon_{i} \hat{b}_{i}^{\dagger} \hat{b}_{i}$ to quasimomentum representation.
(b) Explain physically what the effect of this term is in quasimomentum space.
4. Linear gradient potential and Introduction to Bloch oscillations:
(a) Consider a situation where we apply a gradient potential to the lattice (or equivalently, accelerate the lattice), so that $\varepsilon_{l}=\Omega(t) l$, with $\Omega(t)=\Omega$ for $t \geq 0$, and $\Omega(t)=0$ for $t<0$ otherwise. Consider times $t \ll 2 \pi / J, t \ll 2 \pi / U$, so that other terms in the Hamiltonian do not play an important role. Show that we effectively apply the operator

$$
\begin{equation*}
\Pi_{l} \exp \left(-i \Omega t l \hat{n}_{l}\right) \tag{3}
\end{equation*}
$$

to the initial state at $t=0$. Show that if the initial state is $\left(b_{0}^{\dagger}\right)^{N}|v a c\rangle$, we will obtain the state $\left(b_{k}^{\dagger}\right)^{N}|v a c\rangle$, where $k=\Omega t / a+2 \pi N$, and N is chosen so that $k \in[-\pi / a, \pi / a]$. What happens when the quasimomentum reaches $k=\pi / a$?
(b) Compute the group velocity for free atoms moving in the lowest band, $v(k)=\partial E(k) / \partial k$. What is $v(k= \pm \pi / 2)$? Discuss the motion of particles in the system when $J \neq 0$.

Problem 2: Particle pairs on a Lattice: We would like to solve the Schrödinger equation for particles moving in an optical lattice along one dimension, described by the Bose-Hubbard model:

$$
\begin{equation*}
H=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\sum_{i} \varepsilon_{i} \hat{n}_{i}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right) \tag{4}
\end{equation*}
$$

1. Consider a single particle on a lattice, described by the kinetic energy part of the Bose-Hubbard Hamiltonian, with no external trapping potential, $\varepsilon_{i}=0$ (and no interactions!). If we expand the wavefunction in terms of Wannier functions as

$$
\begin{equation*}
\psi(x)=\sum_{i} \psi_{i} w_{0}\left(x-x_{i}\right) \tag{5}
\end{equation*}
$$

then we obtain the time-independent Schrödinger equation

$$
\begin{equation*}
-J \psi_{i+1}-J \psi_{i-1}=E \psi_{i} \tag{6}
\end{equation*}
$$

This takes the form of a difference equation, with E the energy, and J the tunnelling amplitude for particles moving between neighbouring sites.
(a) Solve this equation, by substituting the discrete wavefunction $\psi_{x}=A \exp (-\mathrm{i} k a x)+B \exp (+\mathrm{i} k a x)$, where x is an integer, and a is a lattice spacing, or otherwise.
(b) Determine $E(k)$, and identify k with the lattice quasimomentum.
2. Consider a single particle on a lattice, described by the kinetic energy part of the Bose Hubbard model, but with an additional energy shift on site $0, \varepsilon_{0}=V_{0}, V_{0}<0$, with $\varepsilon_{i \neq 0}=0$. This corresponds to the with time-independent Schrödinger equation

$$
\begin{equation*}
-J \psi_{i+1}-J \psi_{i-1}+V_{0} \delta_{i, 0} \psi_{i}=E \psi_{i} \tag{7}
\end{equation*}
$$

where $\delta_{i, j}$ is a Kronecker delta. This difference equation is the discrete analog to the problem of a δ-potential in continuous space.
(a) Write down the general solution to this difference equation for ψ_{x} in the regions $x \leq 0$ and $x \geq 0$ for the case that the solution is bound $(E<-2 J)$. [Hint: Similarly to the analogous problem of a single δ potential in continuous space, the solutions will decay here].
(b) Derive a condition for the relationship between the wavefunction to the left and the right of the boundary, $\psi_{x<0}$, and $\psi_{x>0}$ from the Schrödinger equation with $i=0$ (i.e., including a non-zero contribution from the Kronecker delta).
(c) Using this, and the condition of continuity, write the full solution to the Schrödinger equation for $E<-2 J$. What is the energy of the bound state?
(d) Show that solutions also exist for $-2 J<E<2 J$.
3. Now consider two particles moving on a uniform lattice, with interaction energy $U, U<0$, when the two particles are on the same site. The Schrödinger equation is given by

$$
\begin{equation*}
\left[-J\left(\tilde{\Delta}_{x}+\tilde{\Delta}_{y}\right)+U \delta_{x, y}\right] \Psi(x, y)=E \Psi(\mathbf{x}, \mathbf{y}) \tag{8}
\end{equation*}
$$

where the operator

$$
\begin{equation*}
\tilde{\Delta}_{x} \Psi(x, y)=[\Psi(x+1, y)+\Psi(x-1, \mathbf{y})] \tag{9}
\end{equation*}
$$

(a) Rewrite this equation using relative and centre of mass coordinates $r=x-y, R=(x+y) / 2$, and show that using the ansatz

$$
\begin{equation*}
\Psi(x, y)=\exp (i K R) \psi_{K}(r) \tag{10}
\end{equation*}
$$

that the equation can be reduced to a Schrödinger equation in the relative co-ordinate. Here, K denotes the centre of mass quasi-momentum.
(b) Show that this model reduces to the same as that in (2), but with a tunneling parameter dependent on K. Deduce from the solution in (2) the bound state energy $E_{b}(K)$ as a function of K. Sketch the form of the full energy spectrum of the solutions (bound and unbound) as a function of K, and explain what they mean physically.
(c) Using the result from 2c, compute the form of the bound state energy $E_{b}(K)$ solution for $U \gg J$. How does this form compare to the energy of a single particle from (1)? Can you find an effective tunnelling parameter for bound pairs moving through the lattice in this limit?

