Cold Atoms and Optical Lattices Problems

A. J. Daley

Problem 1: Quasimomentum representation of the Bose-Hubbard model: In one dimension, the
relationship between the creation operator for quasimomentum modes, &;L and the creation operator for Wannier

iq(z) = \/; 2 b, (1)

where a is the lattice spacing, and x; « la is the position co-ordinate at the centre of site [.
Expressing the system Hamiltonian in terms of quasimomentum operators often aids understanding of basic
processes on a lattice, and can be performed in a straight-forward manner with the help of the identity

function modes, l;I is given by

S explial(a — /)] = 5(a —  +27N/a), 2
l

where N is an integer, and remembering that the quasimomentum is always chosen to fall in the first Brillouin
zone, q € [—w/a,m/a).

1. Kinetic Energy term

(a) Tight binding Hamiltonian: Show that the kinetic energy term of the Bose-Hubbard model, Hxp =
—J Z@j) l;;rl;] can be rewritten using quasimomentum operators as Hxp = f:/:/la dkE(k)dL&k, with the

dispersion relation in the lowest Bloch band given by E(k) = —2J cos(ka).

(b) Beyond tight binding: If the shape of the lowest Bloch band is not exactly a cosine, then (as it will be sym-
metric about k& = 0) we can write the band shape as a (Fourier) cosine series, E(k) =) Ay cos(nka).
How would this affect the kinetic energy term written in terms of Wannier function modes?

2. Two-body interation term
(a) Transform the interaction term H; = (U/2) >, ni(7s — 1) = (U/2) >, blbﬁ)ﬁ)i into quasimomentum
representation.

(b) In what sense is the quasimomentum conserved in two-body collisions on a lattice?
3. Trapping potential term

(a) Assume that &; corresponds to an additional superlattice potential, where €; = cos[(7/4)al]. Transform
the corresponding Hamiltonian term Hrp ), sibjbi to quasimomentum representation.

(b) Explain physically what the effect of this term is in quasimomentum space.
4. Linear gradient potential and Introduction to Bloch oscillations:

(a) Consider a situation where we apply a gradient potential to the lattice (or equivalently, accelerate the
lattice), so that e, = Q(¢)I, with Q(t) = Q for ¢ > 0, and Q(¢) = 0 for ¢ < 0 otherwise. Consider times
t < 2n/J,t < 2w/U, so that other terms in the Hamiltonian do not play an important role. Show that
we effectively apply the operator
Hl exp(—iﬂtlﬁl) (3)

to the initial state at ¢ = 0. Show that if the initial state is (b})"|vac), we will obtain the state

(bL)N|vac>, where k = Qt/a + 27N, and N is chosen so that k € [—7/a, 7/a]. What happens when the
quasimomentum reaches k = w/a?

(b) Compute the group velocity for free atoms moving in the lowest band, v(k) = 9E(k)/0k. What is
v(k = £7/2)7 Discuss the motion of particles in the system when J # 0.



Problem 2: Particle pairs on a Lattice: We would like to solve the Schrodinger equation for particles
moving in an optical lattice along one dimension, described by the Bose-Hubbard model:

H:—JZBjB]-+Zemi+%Zm(m—1). (4)
(i.3) i i

1. Consider a single particle on a lattice, described by the kinetic energy part of the Bose-Hubbard Hamiltonian,
with no external trapping potential, £; = 0 (and no interactions!). If we expand the wavefunction in terms of

Wannier functions as
d(a) =Y vwo(w — i), (5)

then we obtain the time-independent Schrédinger equation

—JYip1 — Ji—1 = Ev;. (6)

This takes the form of a difference equation, with E the energy, and J the tunnelling amplitude for particles
moving between neighbouring sites.

(a) Solve this equation, by substituting the discrete wavefunction ¢, = A exp(—ikaz)+ B exp(+ikaz), where
x is an integer, and a is a lattice spacing, or otherwise.

(b) Determine E(k), and identify k with the lattice quasimomentum.

2. Consider a single particle on a lattice, described by the kinetic energy part of the Bose Hubbard model, but
with an additional energy shift on site 0, g = Vo, Vo < 0, with €;20 = 0. This corresponds to the with
time-independent Schrodinger equation

—Jip1 — i + Vods ot = By, (7)

where §; ; is a Kronecker delta. This difference equation is the discrete analog to the problem of a §-potential
in continuous space.

(a) Write down the general solution to this difference equation for ¢, in the regions < 0 and = > 0 for
the case that the solution is bound (F < —2J). [Hint: Similarly to the analogous problem of a single §
potential in continuous space, the solutions will decay here].

(b) Derive a condition for the relationship between the wavefunction to the left and the right of the boundary,
Yy<0, and 1,~o from the Schrodinger equation with ¢ = 0 (i.e., including a non-zero contribution from
the Kronecker delta).

(¢) Using this, and the condition of continuity, write the full solution to the Schréodinger equation for
E < —2J. What is the energy of the bound state?

(d) Show that solutions also exist for —2J < E < 2J.

3. Now consider two particles moving on a uniform lattice, with interaction energy U, U < 0, when the two
particles are on the same site. The Schrédinger equation is given by

[—J (Az n Ay) n U&z,y} U(z,y) = EV(x,y), (8)

where the operator ~
AU (z,y)=P(z+ 1,9)+P(z—1,y)]. 9)

(a) Rewrite this equation using relative and centre of mass coordinates r = x —y, R = (z 4+ y)/2, and show
that using the ansatz
U(z,y) = exp(iK R)Yx (r), (10)
that the equation can be reduced to a Schrédinger equation in the relative co-ordinate. Here, K denotes
the centre of mass quasi-momentum.

(b) Show that this model reduces to the same as that in (2), but with a tunneling parameter dependent on
K. Deduce from the solution in (2) the bound state energy Ej(K) as a function of K. Sketch the form
of the full energy spectrum of the solutions (bound and unbound) as a function of K, and explain what
they mean physically.

(¢) Using the result from 2¢, compute the form of the bound state energy Fj(K) solution for U > J. How
does this form compare to the energy of a single particle from (1)? Can you find an effective tunnelling
parameter for bound pairs moving through the lattice in this limit?



