
Cold Atoms and Optical Lattices Problems

A. J. Daley

Problem 1: Quasimomentum representation of the Bose-Hubbard model: In one dimension, the
relationship between the creation operator for quasimomentum modes, â†k and the creation operator for Wannier
function modes, b̂†i is given by

âq(x) =
√

a

2π

∑
l

b̂le−ixlq, (1)

where a is the lattice spacing, and xl ∝ la is the position co-ordinate at the centre of site l.
Expressing the system Hamiltonian in terms of quasimomentum operators often aids understanding of basic

processes on a lattice, and can be performed in a straight-forward manner with the help of the identity∑
l

exp[ial(q − q′)] =
2π
a
δ(q − q′ + 2πN/a), (2)

where N is an integer, and remembering that the quasimomentum is always chosen to fall in the first Brillouin
zone, q ∈ [−π/a, π/a].

1. Kinetic Energy term

(a) Tight binding Hamiltonian: Show that the kinetic energy term of the Bose-Hubbard model, HKE =
−J

∑
〈i,j〉 b̂

†
i b̂j can be rewritten using quasimomentum operators as HKE =

∫ π/a
−π/a dkE(k)â†kâk, with the

dispersion relation in the lowest Bloch band given by E(k) = −2J cos(ka).

(b) Beyond tight binding: If the shape of the lowest Bloch band is not exactly a cosine, then (as it will be sym-
metric about k = 0) we can write the band shape as a (Fourier) cosine series, E(k) =

∑
nAk cos(nka).

How would this affect the kinetic energy term written in terms of Wannier function modes?

2. Two-body interation term

(a) Transform the interaction term HI = (U/2)
∑
i n̂i(n̂i − 1) = (U/2)

∑
i b
†
i b
†
i b̂ib̂i into quasimomentum

representation.

(b) In what sense is the quasimomentum conserved in two-body collisions on a lattice?

3. Trapping potential term

(a) Assume that εi corresponds to an additional superlattice potential, where εl = cos[(π/4)al]. Transform
the corresponding Hamiltonian term HT

∑
i εib̂

†
i b̂i to quasimomentum representation.

(b) Explain physically what the effect of this term is in quasimomentum space.

4. Linear gradient potential and Introduction to Bloch oscillations:

(a) Consider a situation where we apply a gradient potential to the lattice (or equivalently, accelerate the
lattice), so that εl = Ω(t)l, with Ω(t) = Ω for t ≥ 0, and Ω(t) = 0 for t < 0 otherwise. Consider times
t� 2π/J, t� 2π/U , so that other terms in the Hamiltonian do not play an important role. Show that
we effectively apply the operator

Πl exp(−iΩtln̂l) (3)

to the initial state at t = 0. Show that if the initial state is (b†0)N |vac〉, we will obtain the state
(b†k)N |vac〉, where k = Ωt/a+ 2πN , and N is chosen so that k ∈ [−π/a, π/a]. What happens when the
quasimomentum reaches k = π/a?

(b) Compute the group velocity for free atoms moving in the lowest band, v(k) = ∂E(k)/∂k. What is
v(k = ±π/2)? Discuss the motion of particles in the system when J 6= 0.
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Problem 2: Particle pairs on a Lattice: We would like to solve the Schrödinger equation for particles
moving in an optical lattice along one dimension, described by the Bose-Hubbard model:

H = −J
∑
〈i,j〉

b̂†i b̂j +
∑
i

εin̂i +
U

2

∑
i

n̂i(n̂i − 1). (4)

1. Consider a single particle on a lattice, described by the kinetic energy part of the Bose-Hubbard Hamiltonian,
with no external trapping potential, εi = 0 (and no interactions!). If we expand the wavefunction in terms of
Wannier functions as

ψ(x) =
∑
i

ψiw0(x− xi), (5)

then we obtain the time-independent Schrödinger equation

−Jψi+1 − Jψi−1 = Eψi. (6)

This takes the form of a difference equation, with E the energy, and J the tunnelling amplitude for particles
moving between neighbouring sites.

(a) Solve this equation, by substituting the discrete wavefunction ψx = A exp(−ikax)+B exp(+ikax), where
x is an integer, and a is a lattice spacing, or otherwise.

(b) Determine E(k), and identify k with the lattice quasimomentum.

2. Consider a single particle on a lattice, described by the kinetic energy part of the Bose Hubbard model, but
with an additional energy shift on site 0, ε0 = V0, V0 < 0, with εi6=0 = 0. This corresponds to the with
time-independent Schrödinger equation

−Jψi+1 − Jψi−1 + V0δi,0ψi = Eψi, (7)

where δi,j is a Kronecker delta. This difference equation is the discrete analog to the problem of a δ-potential
in continuous space.

(a) Write down the general solution to this difference equation for ψx in the regions x ≤ 0 and x ≥ 0 for
the case that the solution is bound (E < −2J). [Hint: Similarly to the analogous problem of a single δ
potential in continuous space, the solutions will decay here].

(b) Derive a condition for the relationship between the wavefunction to the left and the right of the boundary,
ψx<0, and ψx>0 from the Schrödinger equation with i = 0 (i.e., including a non-zero contribution from
the Kronecker delta).

(c) Using this, and the condition of continuity, write the full solution to the Schrödinger equation for
E < −2J . What is the energy of the bound state?

(d) Show that solutions also exist for −2J < E < 2J .

3. Now consider two particles moving on a uniform lattice, with interaction energy U , U < 0, when the two
particles are on the same site. The Schrödinger equation is given by[

−J
(

∆̃x + ∆̃y

)
+ Uδx,y

]
Ψ(x, y) = E Ψ(x,y), (8)

where the operator
∆̃xΨ(x, y)=[Ψ(x+ 1, y)+Ψ(x− 1,y)] . (9)

(a) Rewrite this equation using relative and centre of mass coordinates r = x− y, R = (x+ y)/2, and show
that using the ansatz

Ψ(x, y) = exp(iKR)ψK(r), (10)

that the equation can be reduced to a Schrödinger equation in the relative co-ordinate. Here, K denotes
the centre of mass quasi-momentum.

(b) Show that this model reduces to the same as that in (2), but with a tunneling parameter dependent on
K. Deduce from the solution in (2) the bound state energy Eb(K) as a function of K. Sketch the form
of the full energy spectrum of the solutions (bound and unbound) as a function of K, and explain what
they mean physically.

(c) Using the result from 2c, compute the form of the bound state energy Eb(K) solution for U � J . How
does this form compare to the energy of a single particle from (1)? Can you find an effective tunnelling
parameter for bound pairs moving through the lattice in this limit?
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