## Cold Atoms in Optical Lattices 2

## Andrew Daley

I＠I
Institute for Theoretical Physics， University of Innsbruck and Quantum Information Austrian Academy of Sciences
universität innsbruck

## Outline of Lectures

## Now:

- Optical Lattices
- Band Structure, Bloch \& Wannier functions
- Bose-Hubbard model

Later:

- Phase diagram of the Bose-Hubbard model: Superfluid, Mott-Insulator
- Single-Particle density matrix \& correlations


## Wednesday:

- Microscopic model for interactions
- Zero-range pseudopotential and its properties

Friday:

- Transport of atoms in optical lattices in 1D (Andreev Reflections, superfluidity)
- Dynamics of three-body loss in an optical lattice



## Bose-Hubbard Model: Summary

$$
\hat{H}=\int \mathrm{d} \mathbf{x} \hat{\Psi}^{\dagger}(\mathbf{x})\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{x})\right) \hat{\Psi}(\mathbf{x})+\frac{g}{2} \int \mathrm{~d} \mathbf{x} \hat{\Psi}^{\dagger}(\mathbf{x}) \hat{\Psi}^{\dagger}(\mathbf{x}) \hat{\Psi}(\mathbf{x}) \hat{\Psi}(\mathbf{x})
$$



Wannier functions


$$
\psi(\vec{x})=\sum_{\alpha} w\left(\vec{x}-\vec{x}_{\alpha}\right) b_{\alpha}
$$

$$
\begin{aligned}
J & =-\int \mathrm{d} x w_{0}(x)\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{0} \sin ^{2}\left(k_{l} x\right)\right) w_{0}(x-a), \\
U & =g \int \mathrm{~d} \mathbf{x}\left|w_{0}(\mathbf{x})\right|^{4}, \\
\epsilon_{i} & =\int \mathrm{d} \mathbf{x}\left|w_{0}\left(\mathbf{x}-\mathbf{x}_{i}\right)\right|^{2}\left(V\left(\mathbf{x}-\mathbf{x}_{i}\right)\right),
\end{aligned}
$$

## Assume:

- Only lowest band
- Only nearest neighbour tunneling
- Only onsite interactions

$$
\longrightarrow \quad H=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\sum_{i} \epsilon_{i} \hat{n}_{i}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right) \quad k_{B} T, J, U \ll \hbar \omega
$$

## Microscopic Model for Cold Bosons

- In terms of second quantised field operators $\hat{\psi}(\mathbf{r})$, the many-body Hamiltonian for a Bose gas, including the effects of an external trapping potential and twobody interactions may be written as
$\hat{H}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{1}{2} \int d^{3} r \int d^{3} r^{\prime} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \hat{\psi}\left(\mathbf{r}^{\prime}\right) \hat{\psi}(\mathbf{r})$
- Here, $V_{\text {ext }}(\mathbf{r})$ is an external potential (e.g., a magnetic trapping potential, or potential due to an AC-Stark shift from interaction with laser light).
- $V\left(\mathbf{r}^{\prime}-\mathbf{r}\right)$ is the two-body interaction Hamiltonian. Treating only two-body interactions is valid provided that the gas is sufficiently dilute that higher order interactions are not relevant on the timescale of the experiment.
- For low energy collisions between distinguishable particles or Bosons, we can write

$$
\hat{H}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{g}{2} \int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})
$$

- Note: The second-quantised field operators obey the commutation relation

$$
\left[\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

$$
\hat{H}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{g}{2} \int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})
$$

- That these operators represent Bosons is an approximation: our atoms are actually composed of Fermions. In fact, the commutator is actually

$$
\left[\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)-D\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

where the correction $D\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ is small provided that $\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \gg b_{0}$, where $b_{0}$ is the typical extent of the electronic wavefunctions for a single atom.

- Thus, these corrections play a small role provided that the typical size of the atoms (The Bohr radius, $\sim 0.05 \mathrm{~nm}$ ) is small compared with the typical separation between atoms in the condensate (typically $>10 \mathrm{~nm}$, even in an optical lattice).
- EXERCISE: Try computing $D\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$ for the Hydrogen atom, $\hat{\psi}_{H}(\mathbf{R}) \approx \int d^{3} r \phi(\mathbf{r}) \hat{\psi}_{e}(\mathbf{R}+\mathbf{r}) \hat{\psi}_{p}(\mathbf{R})$ (where we take $m_{e} / m_{p} \approx 0$ )


## Interactions in a dilute Bose Gas

- In thermal equilibrium typical BECs in atomic gases would be solid (crystalline)
- Density of gas is sufficiently small that 3-body collisions are rare, and gas is metastable with lifetimes of the order of seconds
- Also because 3-body collisions are rare, interactions may be treated as twobody scattering.
- We see this metastability from the Born-Oppenheimer curve for the interaction potential, where the unbound state is a metastable state.



## Why use a pseudopotential?

- In the limit of low energies, the scattering properties are universal, and depend essentially on 1 parameter, the scattering length $a$. The details of the scattering potential are, in this sense not important. The scattering length will be measured experimentally, and this is the only data really required to describe 2-body interactions in the system.
- At the same time, it is difficult to determine the real potential $V(r)$ precisely, and difficult to perform calculations with it.
- Any small error in $V(r)$ could significantly change the scattering properties, when really the most relevant information is simply the value for the scattering length produced by the potential.
- The weakly interacting Bose gases we deal with are metastable. We thus cannot perform calculations assuming thermal equilibrium using the real potential.
- Because $V(r)$ is strongly repulsive at short distances and has many bound states, the Born approximation (1st order perturbation theory) is not valid when used with the real potential.
- We thus replace exact interaction potential with a potential having the same scattering properties at low energy (i.e., the same scattering length), but that is treatable in the Born approximation and easier in general to work with mathematically.
- The pseudopotential with only the one necessary parameter is the zero-range pseudopotential, originally used by Fermi.

$$
\langle\mathbf{r}| V(\mathbf{r})|\psi(\mathbf{r})\rangle=g \delta(\mathbf{r})\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0}
$$

with

$$
g=\frac{2 \pi \hbar^{2} a}{m_{r}}=\frac{4 \pi \hbar^{2} a}{m}
$$

References:

- E. Fermi, La Ricerca Scientifica, VII-II (1936), 1352.
- K. Huang and C. N. Yang, Phys. Rev. 105 (1957), 767.
- K. Huang, Statistical Mechanics, Wiley, New York, 1963.
- "Bose-Einstein Condensation in Atomic Gases: simple theoretical results"

Yvan Castin, http://www.arxiv.org/abs/cond-mat/0105058

- R. Stock, A. Siberfarb, E. L. Bolda and I. H. Deutsch, PRL 94 (2005), 023202.
- A. Derevianko, PRA 72 (2005), 044701.
- Z. Idziaszek and T. Calarco: PRL 96 (2006), 013201.
- L. Pricoupenko, PRA 73 (2006), 012701.
- F. Stampfer and P. Wagner, J. Mathematical Analysis and Applications 342 (2008), 202


## Results from Scattering Theory

- We can show that at large distances from the scattering centre, $r=|\mathbf{r}| \gg b$, where $b$ is the range of the potential, the outgoing scattering wavefunctions for a local potential $V(\mathbf{r})$ are written as the sum of an incoming plane wave and an outgoing spherical wave,

$$
\begin{aligned}
& \psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}+f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \frac{\mathrm{e}^{i k r}}{r} \\
& f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi_{\mathbf{k}}^{(+)}\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

with $m_{r}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ the reduced mass,

$$
r=|\mathbf{r}|, \quad k=|\mathbf{k}|=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

and $\mathbf{k}^{\prime}=k \frac{\mathbf{r}}{|\mathbf{r}|}$.

- For a spherically symmetric potential, $V(\mathbf{r})=V(r)$ and

$$
\begin{gathered}
f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=f(k, \theta) \\
\psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\quad \mathrm{e}^{\mathbf{i} \mathbf{k} \cdot \mathbf{r}}+f(k, \theta) \frac{\mathrm{e}^{i k r}}{r}
\end{gathered}
$$



$$
\begin{aligned}
& \psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}+f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \frac{\mathrm{e}^{i k r}}{r} \\
& f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi_{\mathbf{k}}^{(+)}\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

## Born Approximation

- It is clear that one can iterate this solution in the sense of a perturbation expansion in the strength of the potential $V(\mathbf{r})$. The first order expansion, in which we substitute the incoming plane wave $\psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathbf{i k} \cdot \mathbf{r}}$ into the expression for the scattering amplitude yields:

$$
\begin{aligned}
f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) & =-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi_{\mathbf{k}}^{(+)}\left(\mathbf{r}^{\prime}\right) \\
& \approx-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right)+\frac{m_{r}^{2}}{4 \pi^{2} \hbar^{4}} \int d \mathbf{r}^{\prime} \int d \mathbf{r}^{\prime \prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot\left(\mathbf{r}^{\prime}+\mathbf{r}^{\prime \prime}\right)} V\left(\mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime}\right) \psi_{\mathbf{k}}^{(+)}\left(\mathbf{r}^{\prime \prime}\right) \\
& \approx-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

- This first order expansion is known as the Born approximation.


## Partial Wave expansion

- If the potential $V(\mathbf{r})=V(r)$ is spherically symmetric, then the Hamiltonian commutes with the total angular momentum operator, $\hat{L}$ and $\hat{L}^{2}$.
- We can expand the wavefunction as a sum of states of definite angular momentum as

$$
\psi(\mathbf{r})=\sum_{l=0}^{\infty} \sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta) \frac{\chi_{k l}(r)}{r}
$$

where we have chosen the incoming axis to be the $z$-direction, $P_{l}(x)$ is a Legendre Polynomial and the scattering amplitude can be expressed as

$$
f(k, \theta)=\sum_{l=0}^{\infty}(2 l+1) f_{l}(k) P_{l}(\cos \theta),
$$

and the radial functions are solutions of the radial Schrödinger equation

$$
\frac{d^{2} \chi_{k l}}{d r^{2}}-\frac{l(l+1)}{r^{2}} \chi_{k l}+\frac{2 m_{r}}{\hbar^{2}}[E-V(r)] \chi_{k l}=0
$$

with $E=\hbar^{2} k^{2} /\left(2 m_{r}\right)$.

- For $V(r)=0$, the general solution to the radial Schrödinger equation,

$$
\frac{d^{2} \chi_{k l}}{d r^{2}}-\frac{l(l+1)}{r^{2}} \chi_{k l}+\frac{2 m_{r}}{\hbar^{2}}[E-V(r)] \chi_{k l}=0
$$

is given in terms of the so-called spherical Bessel and Von Neumann functions as

$$
\chi_{k l}=A_{l}\left[\hat{j}_{l}(k r) \cos \delta_{l}+\hat{n}_{l}(k r) \sin \delta_{l}\right]
$$

which reduces at large distances to

$$
\chi_{k l}(r)=A_{l}\left[\sin (k r-\pi l / 2) \cos \delta_{l}+\cos (k r-\pi l / 2) \sin \delta_{l}\right]=A_{l} \sin \left(k r-\frac{\pi l}{2}+\delta_{l}\right)
$$

where $\delta_{l}(k)$ are the scattering phase shifts.

- These scattering phase shifts describe the full details of the scattering process, and are in general dependent on both the scattering potential and incident energy.



## Scattering from a Hard Sphere

- We consider the simple example of scattering from a hard sphere,

$$
V(r)=\left\{\begin{array}{cc}
\infty, & r \leq a \\
0, & r>a
\end{array}\right.
$$

- The general solution to the radial Schrödinger equation is given by

$$
\chi_{l}(r)=\left\{\begin{array}{cc}
0, & r \leq a \\
A_{l}\left[\hat{j}_{l}(k r) \cos \delta_{l}+\hat{n}_{l}(k r) \sin \delta_{l}\right], & r>a
\end{array}\right.
$$

- Imposing continutity, we obtain $\chi_{l}(a)=0$,

$$
\Rightarrow \tan \delta_{l}(k)=-\frac{\hat{j}_{l}(k a)}{\hat{n}_{l}(k a)}
$$

- For s-wave scattering, taking $k a \ll 1$, we obtain

$$
\delta_{0}(k)=-\frac{\sin (k a)}{\cos (k a)}=-k a
$$




- In general at low energies,

$$
\delta_{l}(k)=-\frac{\hat{j}_{l}(k a)}{\hat{n}_{l}(k a)}=\frac{(k a)^{l+1}}{(2 l+1)!!} \frac{1}{(k a)^{-l}(2 l-1)!!} \sim(k a)^{2 l+1}
$$

from which the dominance of s-wave scattering is clear.

- Note that as $a \rightarrow 0, \delta_{l} \rightarrow 0$, and thus in the limit of a zero range delta function (in 3D), the scattering potential becomes transparent.

$$
\frac{d^{2} \chi_{k l}}{d r^{2}}-\frac{l(l+1)}{r^{2}} \chi_{k l}+\frac{2 m_{r}}{\hbar^{2}}[E-V(r)] \chi_{k l}=0
$$

## Low-Energy Scattering

- By matching the phase shifts $\delta_{l}$ from the solutions to the radial Schrödinger equation with the

$$
f(k, \theta)=\sum_{l=0}^{\infty} \frac{2 l+1}{k \cot \delta_{l}-i k} P_{l}(\cos \theta)
$$

- Contribution of higher partial waves is important at high incident energies, but for a short range potential, $\delta_{l} \propto k^{2 l+1}$, and contributions to the scattering amplitude approach zero as $k^{l}$ when $k \rightarrow 0$. This is a result of the centrifugal barrier in the radial Schrödinger equation.
- Hence, at low energies (typically $T<100 \mu \mathrm{~K}$ ), the scattering for distinguishable particles or identical Bosons is entirely dominated by contributions from s-wave, $l=0$. (For Fermions, it is dominated by p -wave, $l=1$ ).

$$
f(k, \theta) \approx \frac{1}{k \cot \delta_{0}-i k}
$$

- At sufficiently low energies, the s-wave phase shift can be expanded in powers of $k$. This effective-range expansion is given by

$$
k \cot \delta_{0}(k)=-1 / a+r_{b} k^{2} / 2-P_{s} k^{4} / 4+\ldots
$$

where $r \sim b$ for a Van der Waals potential, and $a$ is called the scattering length.

$$
f(k, \theta) \approx \frac{1}{k \cot \delta_{0}-i k}
$$

$$
k \cot \delta_{0}(k)=-1 / a+r_{b} k^{2} / 2-P_{s} k^{4} / 4+\ldots
$$

- For small $k$, we thus write $f(k, \theta)$ as

$$
f(k)=\frac{1}{-1 / a-i k+r_{b} k^{2} / 2+\ldots}
$$

- As $k \rightarrow 0, f(k) \rightarrow-a$.
- Note that in this limit,

$$
a \approx-\frac{1}{k \cot \delta_{0}(k)}
$$

diverging scattering length, $a \rightarrow \pm \infty$ can thus be understood in terms of a phase shift that becomes close to $\pm \pi / 2$.

## The Zero-Range Pseudopotential

- We see at low energies that the description of the scattering process reduces to a single parameter. Thus, we can introduce a pseudopotential if it produces these same low energy scattering properties.
- The pseudopotential with only the one necessary parameter is the zero-range pseudopotential, originally used by Fermi.

$$
\langle\mathbf{r}| V(\mathbf{r})|\psi(\mathbf{r})\rangle=g \delta(\mathbf{r})\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0}
$$

with

$$
g=\frac{2 \pi \hbar^{2} a}{m_{r}}=\frac{4 \pi \hbar^{2} a}{m}
$$

- The effect of regularisation here is to remove any part of the wavefunction that diverges as $1 / r$. Any part of the wavefunction that does not diverge as $1 / r$ is unaffected by regularisation.
- Note that if we took only a $\delta$-function, then the potential would give rise to no scattering at all in three dimensions, as can be seen from a hard sphere in the limit $b \rightarrow 0$.
- The regularisation comes from the need to introduce the appropriate boundary conditions for $r \rightarrow \infty$.


## Origin of the zero-range pseudopotential

- The regularisation operator comes from the inclusion of scattering boundary conditions, as can be clearly seen in the case of the hard sphere potential (see Huang, Statistical mechanics, pp. 231-238)
- We consider again the hard sphere potential,

$$
V(r)=\left\{\begin{array}{cc}
\infty, & r>a \\
0, & r<a
\end{array}\right.
$$

for which we would like to solve the Schrödinger equation

$$
\frac{\hbar^{2}}{2 m_{r}}\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r})=V(\mathbf{r}) \psi(\mathbf{r})
$$



$$
\begin{aligned}
& V(r) \\
& \frac{\hbar^{2}}{2 m_{r}}\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r})=V(\mathbf{r}) \psi(\mathbf{r}) \\
& V(r)=\left\{\begin{array}{cc}
\infty, & r>a \\
0, & r<a
\end{array}\right.
\end{aligned}
$$

- In the limit $k \rightarrow 0$, this reduces to

$$
\begin{array}{cc}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=0 & r>a \\
\psi(r)=0, & r<a
\end{array}
$$

so that

$$
\psi(r)=\left\{\begin{array}{cc}
C\left(1-\frac{a}{r}\right), & r>a \\
0, & r<a
\end{array}\right.
$$



$$
\frac{\hbar^{2}}{2 m_{r}}\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r})=V(\mathbf{r}) \psi(\mathbf{r})
$$

$$
\psi(r)=\left\{\begin{array}{cc}
C\left(1-\frac{a}{r}\right), & r>a \\
0, & r<a
\end{array}\right.
$$

- If we define an extended wavefunction, so that

$$
\left(\nabla^{2}+k^{2}\right) \psi_{e x}(\mathbf{r})=0
$$

everywhere except at $r=0$, with boundary condition

$$
\psi_{e x}(a)=0
$$

then, for $k \rightarrow 0$ we obtain in the limit $r \rightarrow 0$

$$
\psi_{e x}(r) \rightarrow C_{0}\left(1-\frac{a}{r}\right)
$$

- $C_{0}$ depends on the boundary condition at $r \rightarrow \infty$, but we can avoid using this boundary condition explicitly if we choose

$$
C_{0}=\left[\frac{\partial}{\partial r}\left(r \psi_{e x}\right)\right]_{r=0}
$$



$$
V(r) \underbrace{\uparrow}
$$

## Scattering properties of the zero-range pseudopotential

- We can compute the resulting outgoing state exactly using this potential. Writing $C_{\psi}=\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0}$, we obtain

$$
\langle\mathbf{r}| V(\mathbf{r})|\psi(\mathbf{r})\rangle=g \delta(\mathbf{r})\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0}
$$

$$
\begin{aligned}
f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) & =-\frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi_{\mathbf{k}}^{(+)}\left(\mathbf{r}^{\prime}\right) \\
& =-g \frac{2 m_{r}}{4 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} \mathrm{e}^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}} \delta\left(\mathbf{r}^{\prime}\right)\left[\frac{\partial}{\partial r}\left(r \psi_{\mathbf{k}}^{(+)}(\mathbf{r})\right)\right]_{r=0} \\
& =-a C_{\psi^{+}}
\end{aligned}
$$

as $g=4 \pi \hbar^{2} a / m=2 \pi \hbar^{2} a / m_{r}$, so

$$
C_{\psi^{+}}=\frac{1}{1+i k a}
$$

$$
\begin{aligned}
& \psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathbf{i} \mathbf{k} \cdot \mathbf{r}}-a C_{\psi^{+}} \frac{\mathrm{e}^{i k r}}{r} \\
& r \psi_{\mathbf{k}}^{(+)}(\mathbf{r})=r \mathrm{e}^{\mathbf{i} \mathbf{k} . \mathbf{r}}-r a C_{\psi^{+}} \frac{\mathrm{e}^{i k r}}{r} \\
& {\left[\frac{\partial}{\partial r}\left(r \psi_{\mathbf{k}}^{(+)}(\mathbf{r})\right)\right]_{r=0} }=\left[\frac{\partial}{\partial r}\left(r \mathrm{e}^{\mathbf{i} \mathbf{k} \cdot \mathbf{r}}-a C_{\psi^{+}} e^{i k r}\right)\right]_{r=0} \\
& C_{\psi^{+}}=\left[\mathrm{e}^{\mathbf{i} \mathbf{k} . \mathbf{r}}+i k r \mathrm{e}^{i \mathbf{k} . \mathbf{r}}-i k a C_{\psi^{+}} e^{i k r}\right]_{r=0} \\
& C_{\psi^{+}}=1-i k a C_{\psi^{+}}
\end{aligned}
$$

thus,

$$
f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-\frac{a}{1+i k a}=\frac{1}{-1 / a-i k}
$$

$$
C_{\psi^{+}}=\frac{1}{1+i k a}
$$

so that

$$
f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-\frac{a}{1+i k a}=\frac{1}{-1 / a-i k}
$$

which is the correct s-wave scattering amplitude that we obtained previously.

- Thus, we can describe scattering properties by replacing $V(r)$ with this pseudopotential.
- This is valid whenever s-wave scattering dominates, and our scattering amplitude,

$$
f(k)=\frac{1}{-1 / a-i k+r_{b} k^{2} / 2+\ldots} \approx \frac{1}{-1 / a-i k} .
$$

Thus, the pseudopotential is valid in the limit where $k b \ll 1$. It is not required that $k a \ll 1$.

- Therefore, the pseudopotential may be used near a Feshbach resonance, where $a$ diverges, but $b$ remains constant.
$\psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathbf{i} \mathbf{k} \cdot \mathbf{r}}-a C_{\psi^{+}} \frac{\mathrm{e}^{i k r}}{r}$

$$
C_{\psi}=\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0}
$$

## Zero-Range Pseudopotential and the Born Series

- The requirement for the use of the Born approximation to be valid with the pseudopotential (as is required for mean-field theories to be used) is, indeed $k a \ll 1$ :
- The Born expansion reduces to iterations of the equation

$$
C_{\psi^{+}}=1-i k a C_{\psi^{+}},
$$

in order to specify the corresponding scattering states,

$$
\psi_{\vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}}-a C_{\psi^{+}} \frac{e^{i k r}}{r} .
$$

The Born approximation is given by the first order iteration, i.e.,

$$
C_{1}=1-i k a C_{0}=1 .
$$

Similarly, higher order approximations are given by:

$$
\begin{aligned}
& C_{2}=1-i k a C_{1}=1-i k a \\
& C_{3}=1-i k a C_{2}=1-i k a+(i k a)^{2}
\end{aligned}
$$

and the Born expansion is a geometrical series of the exact result $C_{\psi^{+}}=1 /(1+$ $i k a)$ in powers of $i k a$.

$$
\begin{array}{rlrl}
\langle\mathbf{r}| V(\mathbf{r})|\psi(\mathbf{r})\rangle & =g \delta(\mathbf{r})\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0} & C_{\psi} & =\left[\frac{\partial}{\partial r}(r \psi(\mathbf{r}))\right]_{r=0} \\
\psi_{\mathbf{k}}^{(+)}(\mathbf{r})=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}-a C_{\psi^{+}} \frac{\mathrm{e}^{i k r}}{r} & C_{1} & =1-i k a C_{0}=1 . \\
& C_{2} & =1-i k a C_{1}=1-i k a \\
C_{3} & =1-i k a C_{2}=1-i k a+(i k a)^{2}
\end{array}
$$

- The Born approximation is thus valid when the first order result is a small correction to the zeroth order result, which requires

$$
k|a| \ll 1
$$

For the scattering state, we thus require

$$
r \gg a .
$$

- Substituting the Pseudopotential for $V(\mathbf{r})$ in the many body Hamiltonian for the case where the Born approximation is valid (and thus the regularisation in the pseudopotential gives the constant 1), we thus obtain from

$$
\begin{gathered}
\hat{H}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{1}{2} \int d^{3} r \int d^{3} r^{\prime} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \hat{\psi}\left(\mathbf{r}^{\prime}\right) \hat{\psi}(\mathbf{r}) \\
\hat{H}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{e x t}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{g}{2} \int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})
\end{gathered}
$$

## Bound states of the zero-range pseudopotential

- For $a<0$ the zero-range pseudopotential has no bound states.
- For $a>0$, there exists exactly one bound state,

$$
\psi_{\text {bound }}(\vec{r})=\frac{1}{\sqrt{2 \pi a}} \frac{e^{-r / a}}{r} .
$$

with energy

$$
E_{b o u n d}=-\frac{\hbar^{2}}{m a^{2}}
$$

- This is counter-intuitive, and the opposite result to that found for a delta function potential in 1D (where a bound state exists only for $a<0$ ).
- Despite this fact, the potential is indeed repulsive for $a>0$, and attractive for $a<0$.
- This paradox arises from the regularising operator, which indeed makes the pseudo-potential qualitatively different from a delta potential (reminder: a delta potential in 3D does not give rise to scattering).


## Summary: Many-body Hamiltonian

- The many-body Hamiltonian for the dilute, weakly interacting Bose gas may be written in terms of bosonic operators, which obey

$$
\left[\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

as

$$
\hat{H} \approx \int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{0}(\mathbf{r})\right] \hat{\psi}(\mathbf{r})+\frac{g}{2} \int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})
$$

with $g=\frac{4 \pi \hbar^{2} a_{s}}{m}$, where $a_{s}$ is the scattering length.

- This is valid under the assumptions:
- The gas is sufficiently dilute that:
* Only two-body interactions are important
* We can treat the composite atoms as Bosons
- The energy/temperature are sufficiently small that two-body scattering reduces to s-wave processes, parameterised by the scattering length.
- That the scattering length $a_{s}$ is sufficiently small that we can ignore corrections to $g$ outside the Born approximation.
- These assumptions are typically satisfied when we load atoms from a BEC into an optical lattice. Thus, the same second-quantised Hamiltonian is valid.

