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Now:
• Optical Lattices
• Band Structure, Bloch & Wannier functions
• Bose-Hubbard model

Later:
• Phase diagram of the Bose-Hubbard model:
   Superfluid, Mott-Insulator
• Single-Particle density matrix & correlations

Wednesday:
• Microscopic model for interactions
• Zero-range pseudopotential and its properties

Friday:
• Transport of atoms in optical lattices in 1D 
   (Andreev Reflections, superfluidity)
• Dynamics of three-body loss in an optical lattice

Problem Classes:
• Today: Quasimomentum in the Bose-Hubbard model
• Tomorrow: Two particles on a lattice

Outline of Lectures



          

Bose-Hubbard Model: Summary

Wannier 
functions

H = −J
∑

〈i,j〉

b̂†i b̂j +
∑

i

εin̂i +
U

2

∑

i

n̂i(n̂i − 1) kBT, J, U ! !ω

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev. Lett. 81, 3108 (1998)

• This produces onsite terms of the form

εi =
∫

dx |w0(x− xi)|2 (V (x− xi)) b̂†0,ib̂0,i

and offsite terms of the form

−
∫

dx w0(x)
(
− !2

2m
∇2 + V0 sin2(klx)

)
w0(x− la)b̂†0,ib̂0,i+l,

where a is the distance between sites, and l is an integer.

• Approximation 2: That the tunnelling matrix elements between neighbouring
sites l = 1 are much larger than those between next-nearest neighbours, l >
1, and that the remaining terms should be neglected. Then we write for the
remaining terms,

J = −
∫

dxw0(x)
(
− !2

2m
∇2 + V0 sin2(klx)

)
w0(x− a)

• The Second Term
g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

produces interaction terms of the form

Uijkl ∝
∫

dxw0(x− xi)w0(x− xj)w0(x− xk)w0(x− xl)b̂†0,ib̂
†
0,j b̂0,k b̂0,l

• Approximation 3: That the offsite interactions e.g., U1010 or tunneling, e.g., U0001

are small compared with U = U0000 and can be neglected.

• Then, our many-body Hamiltonian reduces to the Bose-Hubbard model

Ĥ = −J
∑

〈i,j〉

b̂†i b̂j +
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

εin̂i,

with

J = −
∫

dx w0(x)
(
− !2

2m
∇2 + V0 sin2(klx)

)
w0(x− a),

U = g

∫
dx |w0(x)|4,

εi =
∫

dx |w0(x− xi)|2 (V (x− xi)) ,

• All of these conditions are fulfilled provided that the lattice is deeper than V0 ∼
2ER.

• Note that U/J can be varied by changing the depth of the lattice or by a Fesh-
bach resonance.

• By taking the Fourier transform of the Bose-Hubbard Hamiltonian, we see that
the hopping term in position space corresponds to the normal tight-binding
model dispersion relation. Thus, J can be most easily computed as a quar-
ter the energy range for the Bloch band.

b̂j =
∞∑

k=−∞
e−ikaj âk

Assume:
- Only lowest band
- Only nearest neighbour tunneling
- Only onsite interactions

• These Wannier functions are known as the maximally localised Wannier func-
tions, and we will use this choice for the Wannier functions in the rest of our
discussions.

• If u(n)
q (x) is expanded as

u(n)
q (x) =

1√
2π

∞∑

j=−∞
c(n,q)
j ei2klxj

the maximally localised Wannier functions can be produced if all cn,q
m are chosen

to be purely real for the even bands, n = 0, 2, 4, . . . , and imaginary for the odd
bands n = 1, 3, 5, . . . , and are smoothly varying as a function of q.

• Wannier functions for deeply bound bands are very close to the harmonic oscil-
lator wavefunctions, and for many analytical estimates of onsite properties the
Wannier functions may be replaced by harmonic oscillator wavefunctions if the
lattice is sufficiently deep.

• The major difference between the two is that the Wannier functions are ex-
ponentially localised, |wn(x)| ∼ exp(−hnx), whereas the harmonic oscillator
wavefunctions decay more rapidly in the tails as exp[−x2/(2a0)2].

The Bose-Hubbard Model

• In terms of bosonic creation and annihilation operators b̂†i and b̂i that obey the
standard commutator relations, the Bose-Hubbard model is given (! = 1) by

Ĥ = −J
∑

〈i,j〉

b̂†i b̂j +
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

εin̂i,

• 〈i, j〉 denotes a sum over all combinations of neighbouring sites

• n̂i = b̂†i b̂i and εi is the local energy offset of each site.

• εi can include, for example, the effects of background trapping potentials, su-
perlattice, or fixed disorder.

Derivation of the Bose-Hubbard Hamiltonian

• The Bose-Hubbard Hamiltonian can be derived directly from the microscopic
second-quantised Hamiltonian a cold atomic gas

Ĥ =
∫

dxΨ̂†(x)
(
− !2

2m
∇2 + V (x)

)
Ψ̂(x) +

g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

• We expand the field operators in terms of Wannier functions,

Ψ̂(x) =
∑

i.n

wn(x− xi) b̂n,i,

where for a 3D cubic lattice the Wannier function wn(x), x = (x, y, z) is a product
of the 1D Wannier functions, wn(x) = wnx(x)wny (y)wnz (z).

• Approximation 1: That the Temperature T , and the interaction energies U〈n̂〉/2
are much less than the trapping frequency ωT , which gives the separation be-
tween the Bloch Bands, so that we may restrict the system to Wannier states in
the lowest band, eliminating the others in perturbation theory.

• Then we are left with terms involving w0(x) only.

• Consider the First term,
∫

dxΨ̂†(x)
(
− !2

2m
∇2 + V (x)

)
Ψ̂(x)
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Microscopic Model for Cold Bosons

• In terms of second quantised field operators ψ̂(r), the many-body Hamiltonian
for a Bose gas, including the effects of an external trapping potential and two-
body interactions may be written as

Ĥ =
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + Vext(r)

]
ψ̂(r)+

1
2

∫
d3r

∫
d3r′ ψ̂†(r) ψ̂†(r′)V (r′−r) ψ̂(r′) ψ̂(r)

• Here, Vext(r) is an external potential (e.g., a magnetic trapping potential, or
potential due to an AC-Stark shift from interaction with laser light).

• V (r′ − r) is the two-body interaction Hamiltonian. Treating only two-body in-
teractions is valid provided that the gas is sufficiently dilute that higher order
interactions are not relevant on the timescale of the experiment.

• For low energy collisions between distinguishable particles or Bosons, we can
write

Ĥ =
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + Vext(r)

]
ψ̂(r) +

g

2

∫
d3r ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r)

• Note: The second-quantised field operators obey the commutation relation

[ψ̂(r), ψ̂†(r′)] = δ(r− r′)

• That these operators represent Bosons is an approximation: our atoms are
actually composed of Fermions. In fact, the commutator is actually

[ψ̂(r), ψ̂†(r′)] = δ(r− r′)−D(r− r′)

where the correction D(r − r′) is small provided that |r − r′| # b0, where b0 is
the typical extent of the electronic wavefunctions for a single atom.

• Thus, these corrections play a small role provided that the typical size of the
atoms (The Bohr radius, ∼0.05 nm) is small compared with the typical sepa-
ration between atoms in the condensate (typically >10nm, even in an optical
lattice).

• EXERCISE: Try computing D(r−r′) for the Hydrogen atom, ψ̂H(R) ≈
∫

d3r φ(r) ψ̂e(R + r)ψ̂p(R)
(where we take me/mp ≈ 0)

Interactions in a dilute Bose Gas

• In thermal equilibrium typical BECs in atomic gases would be solid (crystalline)

• Density of gas is sufficiently small that 3-body collisions are rare, and gas is
metastable with lifetimes of the order of seconds

• Also because 3-body collisions are rare, interactions may be treated as two-
body scattering.

• We see this metastability from the Born-Oppenheimer curve for the interaction
potential, where the unbound state is a metastable state.
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potential, where the unbound state is a metastable state.
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Lecture 4: Interactions between atoms: Scattering Theory

Microscopic Description

• In terms of second quantised field operators ψ̂(r), the many-body Hamiltonian
for a Bose gas, including the effects of an external trapping potential and two-
body interactions may be written as

Ĥ =
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + Vext(r)

]
ψ̂(r)+

1
2

∫
d3r

∫
d3r′ ψ̂†(r) ψ̂†(r′)V (r′−r) ψ̂(r′) ψ̂(r)

• Here, Vext(r) is an external potential (e.g., a magnetic trapping potential, or
potential due to an AC-Stark shift from interaction with laser light).

• V (r′ − r) is the two-body interaction Hamiltonian. Treating only two-body in-
teractions is valid provided that the gas is sufficiently dilute that higher order
interactions are not relevant on the timescale of the experiment.

• Question: What is the best potential to use in order to describe two-body inter-
actions in this model?

Interactions in a dilute Bose Gas

• In thermal equilibrium typical BECs in atomic gases would be solid (crystalline)

• Density of gas is sufficiently small that 3-body collisions are rare, and gas is
metastable with lifetimes of the order of seconds

• Also because 3-body collisions are rare, interactions may be treated as two-
body scattering.

• We see this metastability from the Born-Oppenheimer curve for the interaction
potential, where the unbound state is a metastable state.

Why use a pseudopotential?

• In the limit of low energies, the scattering properties are universal, and depend
essentially on 1 parameter, the scattering length a. The details of the scat-
tering potential are, in this sense not important. The scattering length will be
measured experimentally, and this is the only data really required to describe
2-body interactions in the system.

• At the same time, it is difficult to determine the real potential V (r) precisely, and
difficult to perform calculations with it.

• Any small error in V (r) could significantly change the scattering properties,
when really the most relevant information is simply the value for the scattering
length produced by the potential.

• The weakly interacting Bose gases we deal with are metastable. We thus can-
not perform calculations assuming thermal equilibrium using the real potential.

• Because V (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

Range:
Hard core
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• Because V (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

• We thus replace exact interaction potential with a potential having the same
scattering properties at low energy (i.e., the same scattering length), but that is
treatable in the Born approximation and easier in general to work with mathe-
matically.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

Results from Scattering Theory

• We can show that at large distances from the scattering centre, r = |r| # b,
where b is the range of the potential, the outgoing scattering wavefunctions for
a local potential V (r) are written as the sum of an incoming plane wave and an
outgoing spherical wave,

ψ(+)
k (r)=eik.r+ f(k,k′)

eikr

r

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

with mr = m1m2/(m1 + m2) the reduced mass,

r = |r|, k = |k| =
√

2mE

!2

and k′ = k r
|r| .

• For a spherically symmetric potential, V (r) =V (r) and

f(k,k′) = f(k, θ)

where cos θ = k.k′/k2 is the angle between the incoming and outgoing waves.

ψ(+)
k (r) = eik.r+ f(k, θ)

eikr

r
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ψ(+)
k (r)=eik.r+ f(k,k′)

eikr

r

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

with mr = m1m2/(m1 + m2) the reduced mass,

r = |r|, k = |k| =
√

2mE

!2

and k′ = k r
|r| .

• For a spherically symmetric potential, V (r) =V (r) and

f(k,k′) = f(k, θ)

where cos θ = k.k′/k2 is the angle between the incoming and outgoing waves.

ψ(+)
k (r) = eik.r+ f(k, θ)

eikr

r

’

Why use a pseudopotential?

• In the limit of low energies, the scattering properties are universal, and depend
essentially on 1 parameter, the scattering length a. The details of the scat-
tering potential are, in this sense not important. The scattering length will be
measured experimentally, and this is the only data really required to describe
2-body interactions in the system.

• At the same time, it is difficult to determine the real potential V (r) precisely, and
difficult to perform calculations with it.

• Any small error in V (r) could significantly change the scattering properties,
when really the most relevant information is simply the value for the scattering
length produced by the potential.

• The weakly interacting Bose gases we deal with are metastable. We thus can-
not perform calculations assuming thermal equilibrium using the real potential.

• Because V (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

• We thus replace exact interaction potential with a potential having the same
scattering properties at low energy (i.e., the same scattering length), but that is
treatable in the Born approximation and easier in general to work with mathe-
matically.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a
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=

4π!2a

m

Results from Scattering Theory

• We can show that at large distances from the scattering centre, r = |r| # b,
where b is the range of the potential, the outgoing scattering wavefunctions for
a local potential V (r) are written as the sum of an incoming plane wave and an
outgoing spherical wave,

ψ(+)
k (r)=eik.r+ f(k,k′)

eikr

r

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

with mr = m1m2/(m1 + m2) the reduced mass,

r = |r|, k = |k| =
√

2mE

!2

and k′ = k r
|r| .

• For a spherically symmetric potential, V (r) =V (r) and

f(k,k′) = f(k, θ)

where cos θ = k.k′/k2 is the angle between the incoming and outgoing waves.

ψ(+)
k (r) = eik.r+ f(k, θ)

eikr

r

Why use a pseudopotential?

• In the limit of low energies, the scattering properties are universal, and depend
essentially on 1 parameter, the scattering length a. The details of the scat-
tering potential are, in this sense not important. The scattering length will be
measured experimentally, and this is the only data really required to describe
2-body interactions in the system.

• At the same time, it is difficult to determine the real potential V (r) precisely, and
difficult to perform calculations with it.

• Any small error in V (r) could significantly change the scattering properties,
when really the most relevant information is simply the value for the scattering
length produced by the potential.

• The weakly interacting Bose gases we deal with are metastable. We thus can-
not perform calculations assuming thermal equilibrium using the real potential.

• Because V (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

• We thus replace exact interaction potential with a potential having the same
scattering properties at low energy (i.e., the same scattering length), but that is
treatable in the Born approximation and easier in general to work with mathe-
matically.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

Results from Scattering Theory

• We can show that at large distances from the scattering centre, r = |r| # b,
where b is the range of the potential, the outgoing scattering wavefunctions for
a local potential V (r) are written as the sum of an incoming plane wave and an
outgoing spherical wave,

ψ(+)
k (r)=eik.r+ f(k,k′)

eikr

r

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

with mr = m1m2/(m1 + m2) the reduced mass,

r = |r|, k = |k| =
√

2mE

!2

and k′ = k r
|r| .

• For a spherically symmetric potential, V (r) =V (r) and

f(k,k′) = f(k, θ)

where cos θ = k.k′/k2 is the angle between the incoming and outgoing waves.

ψ(+)
k (r) = eik.r+ f(k, θ)

eikr

r



Why use a pseudopotential?

• In the limit of low energies, the scattering properties are universal, and depend
essentially on 1 parameter, the scattering length a. The details of the scat-
tering potential are, in this sense not important. The scattering length will be
measured experimentally, and this is the only data really required to describe
2-body interactions in the system.

• At the same time, it is difficult to determine the real potential V (r) precisely, and
difficult to perform calculations with it.

• Any small error in V (r) could significantly change the scattering properties,
when really the most relevant information is simply the value for the scattering
length produced by the potential.

• The weakly interacting Bose gases we deal with are metastable. We thus can-
not perform calculations assuming thermal equilibrium using the real potential.

• Because V (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

• We thus replace exact interaction potential with a potential having the same
scattering properties at low energy (i.e., the same scattering length), but that is
treatable in the Born approximation and easier in general to work with mathe-
matically.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

Results from Scattering Theory

• We can show that at large distances from the scattering centre, r = |r| # b,
where b is the range of the potential, the outgoing scattering wavefunctions for
a local potential V (r) are written as the sum of an incoming plane wave and an
outgoing spherical wave,

ψ(+)
k (r)=eik.r+ f(k,k′)

eikr

r

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

with mr = m1m2/(m1 + m2) the reduced mass,

r = |r|, k = |k| =
√

2mE

!2

and k′ = k r
|r| .

• For a spherically symmetric potential, V (r) =V (r) and

f(k,k′) = f(k, θ)

where cos θ = k.k′/k2 is the angle between the incoming and outgoing waves.

ψ(+)
k (r) = eik.r+ f(k, θ)

eikr

r

Born Approximation

• It is clear that one can iterate this solution in the sense of a perturbation ex-
pansion in the strength of the potential V (r). The first order expansion, in which
we substitute the incoming plane wave ψ(+)

k (r)= eik.r into the expression for the
scattering amplitude yields:

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′)ψ(+)
k (r′)

≈ − 2mr

4π!2

∫
dr′ e−i(k′−k).r′

V (r′) +
m2

r

4π2!4

∫
dr′

∫
dr′′e−ik′.(r′+r′′) V (r′′) V (r′) ψ(+)

k (r′′)

≈ − 2mr

4π!2

∫
dr′ e−i(k′−k).r′

V (r′)

• This first order expansion is known as the Born approximation.

!2

2mr
(∇2 + k2) G0(r) = δ(r)

Partial Wave expansion

• If the potential V (r) = V (r) is spherically symmetric, then the Hamiltonian com-
mutes with the total angular momentum operator, L̂ and L̂2.

• We can expand the wavefunction as a sum of states of definite angular momen-
tum as

ψ(r) =
∞∑

l=0

√
2l + 1

4π
Pl(cos θ)

χkl(r)
r

where we have chosen the incoming axis to be the z-direction, Pl(x) is a Leg-
endre Polynomial and the scattering amplitude can be expressed as

f(k, θ) =
∞∑

l=0

(2l + 1) fl(k)Pl(cos θ),

and the radial functions are solutions of the radial Schrödinger equation

d2χkl

dr2
− l(l + 1)

r2
χkl +

2mr

!2
[E − V (r)]χkl = 0

with E = !2k2/(2mr).

• For V (r) = 0, the general solution to the radial Schrödinger equation,

d2χkl

dr2
− l(l + 1)

r2
χkl +

2mr

!2
[E − V (r)]χkl = 0

is given in terms of the so-called spherical Bessel and Von Neumann functions
as

χkl = Al[ĵl(kr) cos δl + n̂l(kr) sin δl]

which reduces at large distances to

χkl(r) = Al[sin(kr − πl/2) cos δl + cos(kr − πl/2) sin δl] = Al sin
(

kr − πl

2
+ δl

)

where δl(k) are the scattering phase shifts.

• These scattering phase shifts describe the full details of the scattering process,
and are in general dependent on both the scattering potential and incident en-
ergy.
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Solution with Potential



• Scattering length is also the extrapolated intercept of the wavefunction tail on
the r axis: for r ! b, k → 0,we have

d2χk0

dr2
= 0

and the general solution is
χk0 = c(1− κr)

If kr $ 1, we can expand

χk0(r) = Al sin (kr + δ0) = Al [sin(kr) cos(δ0) + cos(kr) sin(δ0)]→ Al [kr cos(δ0) + sin(δ0)] ,

and find that
κ = −k cot δ0 → 1/a

• The total scattering cross-section in this limit is given by

σ(k) =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl ≡
∞∑

l=0

σl(k) ≈ σ0(k) = 4π|f(k)|2 ≈ 4πa2

for distinguishable particles, or

σ(k) ≈ σ0(k) = 2π|f(k) + f(k)|2 ≈ 8πa2

for identical Bosons. For Fermions, the s-wave contribution to the scattering
cross-section is exactly zero.

Scattering from a Hard Sphere

• We consider the simple example of scattering from a hard sphere,

V (r) =
{
∞, r ≤ a
0, r > a

• The general solution to the radial Schrödinger equation is given by

χl(r) =
{

0, r ≤ a
Al[ĵl(kr) cos δl + n̂l(kr) sin δl], r > a

• Imposing continutity, we obtain χl(a) = 0,

⇒ tan δl(k) = − ĵl(ka)
n̂l(ka)

• For s-wave scattering, taking ka$ 1, we obtain

δ0(k) = − sin(ka)
cos(ka)

= −ka

• In general at low energies,

δl(k) = − ĵl(ka)
n̂l(ka)

=
(ka)l+1

(2l + 1)!!
1

(ka)−l(2l − 1)!!
∼ (ka)2l+1

from which the dominance of s-wave scattering is clear.

• Note that as a → 0, δl → 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.
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Scattering from a Hard Sphere

• We consider the simple example of scattering from a hard sphere,

V (r) =
{
∞, r ≤ a
0, r > a

• The general solution to the radial Schrödinger equation is given by

χl(r) =
{

0, r ≤ a
Al[ĵl(kr) cos δl + n̂l(kr) sin δl], r > a

• Imposing continuity, we obtain χl(a) = 0,

⇒ tan δl(k) = − ĵl(ka)
n̂l(ka)

• For s-wave scattering we obtain

tan δ0(k) = − sin(ka)
cos(ka)

⇒ δ0 = −ka + nπ

• In general at low energies,

δl(k) = − ĵl(ka)
n̂l(ka)

=
(ka)l+1

(2l + 1)!!
1

(ka)−l(2l − 1)!!
∼ (ka)2l+1

from which the dominance of s-wave scattering is clear.

• Note that as a → 0, δl → 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.

Low-Energy Scattering

• By matching the phase shifts δl from the solutions to the radial Schrödinger
equation with the

f(k, θ) =
∞∑

l=0

2l + 1
k cot δl − ik

Pl(cos θ)

• Contribution of higher partial waves is important at high incident energies, but
for a short range potential, δl ∝ k2l+1, and contributions to the scattering ampli-
tude approach zero as kl when k → 0. This is a result of the centrifugal barrier
in the radial Schrödinger equation.

• Hence, at low energies, the scattering for distinguishable particles or identi-
cal Bosons is entirely dominated by contributions from s-wave, l = 0. (For
Fermions, it is dominated by p-wave, l = 1).

f(k, θ) ≈ 1
k cot δ0 − ik

• At sufficiently low energies (typically T < 100µK, the s-wave phase shift can be
expanded in powers of k. This effective-range expansion is given by

k cot δ0(k) = −1/a + rbk
2/2− Psk

4/4 + ...

where r ∼ b for a Van der Waals potential, and a is called the scattering length.

• For small k, we thus write f(k, θ) as

f (k) =
1

−1/a− ik + rbk2/2 + ...

Born Approximation

• It is clear that one can iterate this solution in the sense of a perturbation ex-
pansion in the strength of the potential V (r). The first order expansion, in which
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scattering amplitude yields:

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′)ψ(+)
k (r′)

≈ − 2mr

4π!2

∫
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m2

r

4π2!4

∫
dr′
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• This first order expansion is known as the Born approximation.

!2

2mr
(∇2 + k2) G0(r) = δ(r)

Partial Wave expansion
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ψ(r) =
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√
2l + 1

4π
Pl(cos θ)

χkl(r)
r

where we have chosen the incoming axis to be the z-direction, Pl(x) is a Leg-
endre Polynomial and the scattering amplitude can be expressed as

f(k, θ) =
∞∑

l=0

(2l + 1) fl(k)Pl(cos θ),

and the radial functions are solutions of the radial Schrödinger equation

d2χkl

dr2
− l(l + 1)

r2
χkl +

2mr

!2
[E − V (r)]χkl = 0

with E = !2k2/(2mr).

• For V (r) = 0, the general solution to the radial Schrödinger equation,

d2χkl

dr2
− l(l + 1)

r2
χkl +

2mr

!2
[E − V (r)]χkl = 0

is given in terms of the so-called spherical Bessel and Von Neumann functions
as

χkl = Al[ĵl(kr) cos δl + n̂l(kr) sin δl]

which reduces at large distances to
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(

kr − πl

2
+ δl

)

where δl(k) are the scattering phase shifts.

• These scattering phase shifts describe the full details of the scattering process,
and are in general dependent on both the scattering potential and incident en-
ergy.

Scattering from a Hard Sphere

• We consider the simple example of scattering from a hard sphere,

V (r) =
{
∞, r ≤ a
0, r > a

• The general solution to the radial Schrödinger equation is given by

χl(r) =
{

0, r ≤ a
Al[ĵl(kr) cos δl + n̂l(kr) sin δl], r > a

• Imposing continuity, we obtain χl(a) = 0,
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n̂l(ka)

• For s-wave scattering we obtain

tan δ0(k) = − sin(ka)
cos(ka)

⇒ δ0 = −ka + nπ

• In general at low energies,

δl(k) = − ĵl(ka)
n̂l(ka)

=
(ka)l+1

(2l + 1)!!
1

(ka)−l(2l − 1)!!
∼ (ka)2l+1

from which the dominance of s-wave scattering is clear.

• Note that as a → 0, δl → 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.

Low-Energy Scattering

• By matching the phase shifts δl from the solutions to the radial Schrödinger
equation with the

f(k, θ) =
∞∑

l=0

2l + 1
k cot δl − ik

Pl(cos θ)

• Contribution of higher partial waves is important at high incident energies, but
for a short range potential, δl ∝ k2l+1, and contributions to the scattering ampli-
tude approach zero as kl when k → 0. This is a result of the centrifugal barrier
in the radial Schrödinger equation.

• Hence, at low energies (typically T < 100µK), the scattering for distinguishable
particles or identical Bosons is entirely dominated by contributions from s-wave,
l = 0. (For Fermions, it is dominated by p-wave, l = 1).

f(k, θ) ≈ 1
k cot δ0 − ik

• At sufficiently low energies, the s-wave phase shift can be expanded in powers
of k. This effective-range expansion is given by

k cot δ0(k) = −1/a + rbk
2/2− Psk

4/4 + ...

where r ∼ b for a Van der Waals potential, and a is called the scattering length.

• For small k, we thus write f(k, θ) as

f (k) =
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n̂l(ka)

=
(ka)l+1

(2l + 1)!!
1

(ka)−l(2l − 1)!!
∼ (ka)2l+1

from which the dominance of s-wave scattering is clear.

• Note that as a → 0, δl → 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.

Low-Energy Scattering

• By matching the phase shifts δl from the solutions to the radial Schrödinger
equation with the

f(k, θ) =
∞∑

l=0

2l + 1
k cot δl − ik

Pl(cos θ)

• Contribution of higher partial waves is important at high incident energies, but
for a short range potential, δl ∝ k2l+1, and contributions to the scattering ampli-
tude approach zero as kl when k → 0. This is a result of the centrifugal barrier
in the radial Schrödinger equation.

• Hence, at low energies (typically T < 100µK), the scattering for distinguishable
particles or identical Bosons is entirely dominated by contributions from s-wave,
l = 0. (For Fermions, it is dominated by p-wave, l = 1).

f(k, θ) ≈ 1
k cot δ0 − ik

• At sufficiently low energies, the s-wave phase shift can be expanded in powers
of k. This effective-range expansion is given by

k cot δ0(k) = −1/a + rbk
2/2− Psk

4/4 + ...

where r ∼ b for a Van der Waals potential, and a is called the scattering length.

• For small k, we thus write f(k, θ) as

f (k) =
1

−1/a− ik + rbk2/2 + ...



          

Scattering from a Hard Sphere

• We consider the simple example of scattering from a hard sphere,

V (r) =
{
∞, r ≤ a
0, r > a

• The general solution to the radial Schrödinger equation is given by

χl(r) =
{

0, r ≤ a
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n̂l(ka)

=
(ka)l+1

(2l + 1)!!
1

(ka)−l(2l − 1)!!
∼ (ka)2l+1

from which the dominance of s-wave scattering is clear.

• Note that as a → 0, δl → 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.

Low-Energy Scattering

• By matching the phase shifts δl from the solutions to the radial Schrödinger
equation with the

f(k, θ) =
∞∑

l=0

2l + 1
k cot δl − ik

Pl(cos θ)

• Contribution of higher partial waves is important at high incident energies, but
for a short range potential, δl ∝ k2l+1, and contributions to the scattering ampli-
tude approach zero as kl when k → 0. This is a result of the centrifugal barrier
in the radial Schrödinger equation.

• Hence, at low energies, the scattering for distinguishable particles or identi-
cal Bosons is entirely dominated by contributions from s-wave, l = 0. (For
Fermions, it is dominated by p-wave, l = 1).

f(k, θ) ≈ 1
k cot δ0 − ik

• At sufficiently low energies (typically T < 100µK, the s-wave phase shift can be
expanded in powers of k. This effective-range expansion is given by

k cot δ0(k) = −1/a + rbk
2/2− Psk

4/4 + ...

where r ∼ b for a Van der Waals potential, and a is called the scattering length.

• For small k, we thus write f(k, θ) as

f (k) =
1

−1/a− ik + rbk2/2 + ...

Scattering from a Hard Sphere

• We consider the simple example of scattering from a hard sphere,

V (r) =
{
∞, r ≤ a
0, r > a

• The general solution to the radial Schrödinger equation is given by

χl(r) =
{

0, r ≤ a
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• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)



          

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)



          

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)



          

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)

• In the limit k → 0, this reduces to

1
r2

d
dr

(
r2 dψ

dr

)
= 0 r > a

ψ(r) = 0, r < a

so that
ψ(r) =

{
C

(
1− a

r

)
, r > a

0, r < a

• If we define an extended wavefunction, so that

(∇2 + k2) ψex(r)=0

everywhere except at r = 0, with boundary condition

ψex(a)=0

then, for k → 0 we obtain in the limit r → 0

ψex(r)→ C0

(
1− a

r

)

• C0 depends on the boundary condition at r → ∞, but we can avoid using this
boundary condition explicitly if we choose

C0 =
[

∂

∂r
(rψex)

]

r=0

• We can then eliminate the boundary condition ψex(a)=0 by examining the be-
haviour of ψex(r) as r → 0.

• Remembering that the Green’s function for the 3D Laplacian is the function 1/r,
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• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.
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• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)
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• As k → 0, f(k) → −a.

• Note that in this limit,
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diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.
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• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)
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• Thus, we can describe scattering properties by replacing V (r) with this pseu-
dopotential.

• This is valid whenever s-wave scattering dominates, and our scattering ampli-
tude,
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.

Thus, the pseudopotential is valid in the limit where kb # 1. It is not required
that ka# 1.

• Therefore, the pseudopotential may be used near a Feshbach resonance, where
a diverges, but b remains constant.

Zero-Range Pseudopotential and the Born Series

• The requirement for the use of the Born approximation to be valid with the pseu-
dopotential (as is required for mean-field theories to be used) is, indeed ka# 1 :
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• Therefore, the pseudopotential may be used near a Feshbach resonance, where
a diverges, but b remains constant.

Zero-Range Pseudopotential and the Born Series

• The requirement for the use of the Born approximation to be valid with the pseu-
dopotential (as is required for mean-field theories to be used) is, indeed ka# 1 :

• The Born expansion reduces to iterations of the equation

C = 1− ikaC,

in order to specify the corresponding scattering states,

ψ"k($r ) = ei"k·"r − aC
eikr

r
.

The Born approximation is given by the first order iteration, i.e.,

C1 = 1− ikaC0 = 1.

Similarly, higher order approximations are given by:

C2 = 1− ikaC1 = 1− ika

C3 = 1− ikaC2 = 1− ika + (ika)2

and the Born expansion is a geometrical series of the exact result C = 1/(1 +
ika) in powers of ika.

• In the limit k → 0, this reduces to

1
r2

d
dr

(
r2 dψ

dr

)
= 0 r > a

ψ(r) = 0, r < a

so that
ψ(r) =

{
C

(
1− a

r

)
, r > a

0, r < a

• If we define an extended wavefunction, so that

(∇2 + k2) ψex(r)=0

everywhere except at r = 0, with boundary condition

ψex(a)=0

then, for k → 0 we obtain in the limit r → 0

ψex(r)→ C0

(
1− a

r

)

• C0 depends on the boundary condition at r → ∞, but we can avoid using this
boundary condition explicitly if we choose

C0 =
[

∂

∂r
(rψex)

]

r=0

• We can then eliminate the boundary condition ψex(a)=0 by examining the be-
haviour of ψex(r) as r → 0.

• Remembering that the Green’s function for the 3D Laplacian is the function 1/r,

∇2 1
r

= 4πδ(r)

we can then make the replacement

∇2ψex(r)→ 4πaδ(r)C0 = 4πaδ(r)
[

∂

∂r
(rψex)

]

r=0

so that the wavefunction everywhere satisfies the equation

(∇2 + k2) ψex(r) = 4πaδ(r)
[

∂

∂r
(rψex)

]

r=0

or
!2

2mr
(∇2 + k2) ψex(r) =

2π!2a

mr
δ(r)

[
∂

∂r
(rψex)

]

r=0

Scattering properties of the zero-range pseudopotential

• We can compute the resulting outgoing state exactly using this potential. Writing
Cψ =

[
∂
∂r (r ψ(r))

]
r=0

, we obtain

f(k,k′) = − 2mr

4π!2

∫
dr′ e−ik′.r′

V (r′) ψ(+)
k (r′)

= −g
2mr

4π!2

∫
dr′ e−ik′.r′
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∂r
(r ψ(+)

k (r))
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ψ(+)
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rψ(+)
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(r ψ(+)
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∂r
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or
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1 + ika

so that
f(k,k′) = − a

1 + ika
=

1
−1/a− ik
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Thus, the pseudopotential is valid in the limit where kb # 1. It is not required
that ka# 1.

• Therefore, the pseudopotential may be used near a Feshbach resonance, where
a diverges, but b remains constant.

Zero-Range Pseudopotential and the Born Series

• The requirement for the use of the Born approximation to be valid with the pseu-
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• Therefore, the pseudopotential may be used near a Feshbach resonance, where
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• The requirement for the use of the Born approximation to be valid with the pseu-
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• The Born expansion reduces to iterations of the equation
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eikr

r
.

The Born approximation is given by the first order iteration, i.e.,
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• The Born expansion reduces to iterations of the equation
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The Born approximation is given by the first order iteration, i.e.,
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Similarly, higher order approximations are given by:
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and the Born expansion is a geometrical series of the exact result Cψ+ = 1/(1+
ika) in powers of ika.• The Born approximation is thus valid when the first order result is a small cor-

rection to the zeroth order result, which requires

k|a|! 1.

For the scattering state, we thus require

r " a.

• Substituting the Pseudopotential for V (r)in the many body Hamiltonian for the
case where the Born approximation is valid (and thus the regularisation in the
pseudopotential gives the constant 1), we thus obtain from

Ĥ =
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + Vext(r)

]
ψ̂(r)+

1
2

∫
d3r

∫
d3r′ ψ̂†(r) ψ̂†(r′)V (r′−r) ψ̂(r′) ψ̂(r)

Ĥ =
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + Vext(r)

]
ψ̂(r) +

g

2

∫
d3r ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r)

Bound states of the zero-range pseudopotential

• For a < 0 the zero-range pseudopotential has no bound states.

• For a > 0, there exists exactly one bound state,

ψbound("r ) =
1√
2πa

e−r/a

r
.

with energy

Ebound = − !2

ma2
.

• This is counter-intuitive, and the opposite result to that found for a delta function
potential in 1D (where a bound state exists only for a < 0).

• Despite this fact, the potential is indeed repulsive for a > 0, and attractive for
a < 0.

• This paradox arises from the regularising operator, which indeed makes the
pseudo-potential qualitatively different from a delta potential (reminder: a delta
potential in 3D does not give rise to scattering).

• As k → 0, f(k) → −a.

• Note that in this limit,
a ≈ − 1

k cot δ0(k)

diverging scattering length, a → ±∞ can thus be understood in terms of a
phase shift that becomes close to ±π/2.

The Zero-Range Pseudopotential

• We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

• The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

〈r|V (r) |ψ(r)〉 = g δ(r)
[

∂

∂r
(r ψ(r))

]

r=0

with
g =

2π!2a

mr
=

4π!2a

m

• Wigner, Bethe and Peierls (1933–35)

• Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, La Ricerca Scien-
tifica, VII-II (1936), 13–52.

• Huang, K., and C. N. Yang: Quantum-mechanical many-body problem with
hard-sphere interaction, Phys. Rev. 105 (1957), 767–775.

• Huang, K.: Statistical Mechanics, Wiley, New York, 1963.

• The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

• Note that if we took only a δ-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b → 0.

• The regularisation comes from the need to introduce the appropriate boundary
conditions for r →∞.

Origin of the zero-range pseudopotential

• The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

• We consider again the hard sphere potential,

V (r) =
{
∞, r > a
0, r < a

for which we would like to solve the Schrödinger equation

!2

2mr
(∇2 + k2) ψ(r)=V (r) ψ(r)



          

• The Born approximation is thus valid when the first order result is a small cor-
rection to the zeroth order result, which requires

k|a|! 1.

For the scattering state, we thus require

r " a.

Which leads to the requirement

ρ1/3|a|! 1.

• In typical experiments, ρ1/3|a| ∼ 0.1 or substantially smaller.

Bound states of the zero-range pseudopotential

• For a < 0 the zero-range pseudopotential has no bound states.

• For a > 0, there exists exactly one bound state,

ψbound(#r ) =
1√
2πa

e−r/a

r
.

with energy

Ebound = − !2

ma2
.

• This is counter-intuitive, and the opposite result to that found for a delta function
potential in 1D (where a bound state exists only for a < 0).

• Despite this fact, the potential is indeed repulsive for a > 0, and attractive for
a < 0.

• This paradox arises from the regularising operator, which indeed makes the
pseudo-potential qualitatively different from a delta potential (reminder: a delta
potential in 3D does not give rise to scattering).



          

Many-Body Hamiltonian

• The many-body Hamiltonian for the dilute, weakly interacting Bose gas may be
written in terms of bosonic operators, which obey

[ψ̂(r), ψ̂†(r′)] = δ(r− r′)

as

Ĥ ≈
∫

d3r ψ̂†(r)
[
− !2

2m
∇2 + V0(r)

]
ψ̂(r) +

g

2

∫
d3r ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r)

with g = 4π!2as
m , where as is the scattering length.

• This is valid under the assumptions:
- The gas is sufficiently dilute that:

∗ Only two-body interactions are important
∗ We can treat the composite atoms as Bosons

- The energy/temperature are sufficiently small that two-body scattering re-
duces to s-wave processes, parameterised by the scattering length.

- That the scattering length as is sufficiently small that we can ignore cor-
rections to g outside the Born approximation.

• These assumptions are typically satisfied when we load atoms from a BEC into
an optical lattice. Thus, the same second-quantised Hamiltonian is valid.

• Our Gross-Pitaevskii and Bogoliubov approximations are no longer valid in gen-
eral in the presence of a 3D lattice (although they may sometimes be applied to
very shallow lattices or very weak interactions).

• Interest in atoms in optical lattices arose at the end of the 1990s when it was
shown that this system could, with particular assumptions,

be mapped onto a Bose-Hubbard model.

• In order to understand this mapping, we must first review the single-particle
physics in this system.

Band Structure

• In 1D, the coherent dynamics of a single atom in the standing wave is described
by the Hamiltonian

Ĥ =
p̂2

2m
+ V0 sin2(klx).

Bloch Functions

• The eigenstates of this Hamiltonian are then the Bloch eigenstates, which have
the form

φ(n)
q (x) = eiqxun

q (x),

where q is the quasimomentum of the eigenstate, q ∈ [−π/a,π/a], and u(n)
q (x)

are the eigenstates of the Hamiltonian

Hq =
(p + q)2

2m
+ V0 sin2(klx),

and have the same periodicity as the potential (u(n)
q (x + a) = u(n)

q (x)).

• The Bloch eigenstates are normalised so that

2π

a

∫ a

0
|φ(n)

q (x)|2dx = 1.

Summary: Many-body Hamiltonian


