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Outline of Lectures

Now:

* Optical Lattices | | \ @/ \ / \..//1\

e Band Structure, Bloch & Wannier functions
* Bose-Hubbard model

Later:

* Phase diagram of the Bose-Hubbard model:
Superfluid, Mott-Insulator
* Single-Particle density matrix & correlations

Wednesday:

* Microscopic model for interactions

* Zero-range pseudopotential and its properties
Friday:

* Transport of atoms in optical lattices in 1D
(Andreev Reflections, superfluidity)
* Dynamics of three-body loss in an optical lattice

Problem Classes:

* Today: Quasimomentum in the Bose-Hubbard model
* Tomorrow: Two particles on a lattice




Bose-Hubbard Model: Summary
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D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev. Lett. 81, 3108 (1998)



Microscopic Model for Cold Bosons

In terms of second quantised field operators 1(r), the many-body Hamiltonian
for a Bose gas, including the effects of an external trapping potential and two-
body interactions may be written as

= /Olg?anr [_2V2+Vea¢t ] /d3 /d3fr’w

Here, V..:(r) is an external potential (e.g., a magnetic trapping potential, or
potential due to an AC-Stark shift from interaction with laser light).

V(r" — r) is the two-body interaction Hamiltonian. Treating only two-body in-
teractions is valid provided that the gas is sufficiently dilute that higher order
Interactions are not relevant on the timescale of the experiment.

For low energy collisions between distinguishable particles or Bosons, we can
write

= [ @) |- V)] 606+ [ 0108 0) d00) D0

Note: The second-quantised field operators obey the commutation relation

[4b(x), 4T (r')] =
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e That these operators represent Bosons is an approximation: our atoms are
actually composed of Fermions. In fact, the commutator is actually

[(r), " (x")] = 6(r —t') = D(r — ')

where the correction D(r — r’) is small provided that |[r — r’| > by, where by is
the typical extent of the electronic wavefunctions for a single atom.

Thus, these corrections play a small role provided that the typical size of the
atoms (The Bohr radius, ~0.05 nm) is small compared with the typical sepa-
ration between atoms in the condensate (typically >10nm, even in an optical
lattice).

o EXERCISE: Try computing D(r—r’) for the Hydrogen atom, ¢z (R) ~ [ d®r ¢(r) ¢e(R 4 1r)1p,(R)
(where we take m./m, =~ 0)




Interactions in a dilute Bose Gas

In thermal equilibrium typical BECs in atomic gases would be solid (crystalline)

Density of gas is sufficiently small that 3-body collisions are rare, and gas is
metastable with lifetimes of the order of seconds

Also because 3-body collisions are rare, interactions may be treated as two-
body scattering.

We see this metastability from the Born-Oppenheimer curve for the interaction
potential, where the unbound state is a metastable state.
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Why use a pseudopotential?

In the limit of low energies, the scattering properties are universal, and depend
essentially on 1 parameter, the scattering length a. The details of the scat-
tering potential are, in this sense not important. The scattering length will be
measured experimentally, and this is the only data really required to describe
2-body interactions in the system.

At the same time, it is difficult to determine the real potential V (r) precisely, and
difficult to perform calculations with it.

Any small error in V(r) could significantly change the scattering properties,
when really the most relevant information is simply the value for the scattering
length produced by the potential.

The weakly interacting Bose gases we deal with are metastable. We thus can-
not perform calculations assuming thermal equilibrium using the real potential.

Because V' (r) is strongly repulsive at short distances and has many bound
states, the Born approximation (1st order perturbation theory) is not valid when
used with the real potential.

We thus replace exact interaction potential with a potential having the same
scattering properties at low energy (i.e., the same scattering length), but that is
treatable in the Born approximation and easier in general to work with mathe-
matically.




e The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.
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Results from Scattering Theory

e We can show that at large distances from the scattering centre, » = |r| > b,
where b is the range of the potential, the outgoing scattering wavefunctions for
a local potential V' (r) are written as the sum of an incoming plane wave and an
outgoing spherical wave,
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with m,, = mims/(m1 + m2) the reduced mass,

and k' = k-%.
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e For a spherically symmetric potential, V(r) =V (r) and

f(k7 k,) — f(kv ‘9)
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Born Approximation

e It is clear that one can iterate this solution in the sense of a perturbation ex-
pansion in the strength of the potential V' (r). The first order expansion, in which

we substitute the incoming plane wave wl(f) (r)= e'¥T into the expression for the
scattering amplitude yields:
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e This first order expansion is known as the Born approximation.




Partial Wave expansion

o If the potential V' (r) = V(r) is spherically symmetric, then the Hamiltonian com-
mutes with the total angular momentum operator, L and LZ.

We can expand the wavefunction as a sum of states of definite angular momen-

tum as
= /2 1
g H_ Pi( COSH) X )
-

[=0

where we have chosen the incoming axis to be the z-direction, P;(x) is a Leg-
endre Polynomial and the scattering amplitude can be expressed as

oo

f(k,0) => (20 41) fi(k)Pi(cos ),

[=0

and the radial functions are solutions of the radial Schrodinger equation

dQXkl l(l -+ 1)

dr2 2 Xkt +

with E = i2k2 /(2m..).




e For V(r) = 0, the general solution to the radial Schrodinger equation,

l(l;; 1)sz + [E—=V(r)xm =0

IS given in terms of the so-called spherical Bessel and Von Neumann functions

asS
Xkl = A [jl(kfr) cos 6; + 1y (kr) sin §;]

which reduces at large distances to

[
Xk (r) = Ajlsin(kr — wl/2) cos d; + cos(kr — wl/2) sin §;] = A; sin (kr L 51)
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where ¢§;(k) are the scattering phase shifts.

These scattering phase shifts describe the full details of the scattering process,
and are in general dependent on both the scattering potential and incident en-

ergy. .

Solution without
potential
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Scattering from a Hard Sphere

e We consider the simple example of scattering from a hard sphere,

0o, r<a
Vir) {O r>a

e The general solution to the radial Schrodinger equation is given by

(r) = 0, r<a
X = 4 51 (kr) cos 8; + fy(kr)sind;], 7> a

e Imposing continutity, we obtain y;(a) = 0,

= tan d;(k) = —




_ (ka)* 1 20+1
~ 20+ D! (ka)L(20— D)1 (ka)™™

from which the dominance of s-wave scattering is clear.

e Note that as a — 0, §; — 0, and thus in the limit of a zero range delta function
(in 3D), the scattering potential becomes transparent.




Low-Energy Scattering

By matching the phase shifts §; from the solutions to the radial Schrodinger
equation with the

—  2l+1
k,0) = P 0
f(k,0) lz:;kcotél—ik H(cos )

Contribution of higher partial waves is important at high incident energies, but
for a short range potential, §; o k21, and contributions to the scattering ampli-
tude approach zero as k' when k£ — 0. This is a result of the centrifugal barrier

in the radial Schrodinger equation.

Hence, at low energies (typically T' < 100uK), the scattering for distinguishable
particles or identical Bosons is entirely dominated by contributions from s-wave,
[ = 0. (For Fermions, it is dominated by p-wave, [ = 1).

1
k cot 0g — 1k

f(k,0) ~

At sufficiently low energies, the s-wave phase shift can be expanded in powers
of k. This effective-range expansion is given by

kcotdp(k) = —1/a + mpk?/2 — Pk* /4 + ...

where r ~ b for a Van der Waals potential, and «a is called the scattering length.
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k. 0) =~
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kcotdo(k) = —1/a + mk?/2 — Pk* /4 + ...

e For small £, we thus write f(k,0) as

1
- —1/a— ik +ryk?/2 + ...

f (k)

e Ask — 0, f(k) — —a.

e Note that in this limit, ,

~ kcot 8o (k)

a =~

diverging scattering length, a« — 400 can thus be understood in terms of a
phase shift that becomes close to +7 /2.




The Zero-Range Pseudopotential

e We see at low energies that the description of the scattering process reduces
to a single parameter. Thus, we can introduce a pseudopotential if it produces
these same low energy scattering properties.

e The pseudopotential with only the one necessary parameter is the zero-range
pseudopotential, originally used by Fermi.

w1V ) = 950) | o (o)
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e The effect of regularisation here is to remove any part of the wavefunction that
diverges as 1/r. Any part of the wavefunction that does not diverge as 1/r is
unaffected by regularisation.

e Note that if we took only a §-function, then the potential would give rise to no
scattering at all in three dimensions, as can be seen from a hard sphere in the
limit b — 0.

e The regularisation comes from the need to introduce the appropriate boundary
conditions for r — oo.




Origin of the zero-range pseudopotential

e The regularisation operator comes from the inclusion of scattering boundary
conditions, as can be clearly seen in the case of the hard sphere potential (see
Huang, Statistical mechanics, pp. 231-238)

e We consider again the hard sphere potential,

oo, T>a
V(T)_{ 0, r<a

for which we would like to solve the Schrodinger equation
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e Inthe limit £ — 0, this reduces to

so that
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a = Y—(So\k
e |f we define an extended wavefunction, so that

(VZ + k%) thes (r)=0
everywhere except at » = 0, with boundary condition
tex(a)=0
then, for £ — 0 we obtain in the limit » — 0

Yeu(r) — Co (1 — ﬁ)

r

e ('y depends on the boundary condition at r — oo, but we can avoid using this
boundary condition explicitly if we choose

Co = [ (rve)]|

r=0
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thea (1) = Co (1 - ;) Co= li(rwex)] r=0

e We can then eliminate the boundary condition ., (a)=0 by examining the be-
haviour of .. (r) as r — 0.

e Remembering that the Green’s function for the 3D Laplacian is the function 1 /7,

v21
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= 47 (r)

we can then make the replacement

VZYer (1) — 4mad(r)Cy = 4mad(r) [i(rwex)]

r=0




V2¢6x(r) — 4mad(r)Co = 4mad(r) [;a(rww)]

r=0

so that the wavefunction everywhere satisfies the equation

(V2 4 ) () = 470d(0) | ()|
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Scattering properties of the zero-range pseudopotential

e We can compute the resulting outgoing state exactly using this potential. Writing

Vi) ) = 9(r) | - 60e)

Cy = [%(fr w(r))]rzo , we obtain
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so that

a

Kk K) = — _
[k X) 1 +ika —1/a—ik

which is the correct s-wave scattering amplitude that we obtained previously.

Thus, we can describe scattering properties by replacing V (r) with this pseu-
dopotential.

This is valid whenever s-wave scattering dominates, and our scattering ampli-

tude,
1 1

k) = ~ -
T = e T 2+ “ija— ik

Thus, the pseudopotential is valid in the limit where kb < 1. It is not required
that ka < 1.

Therefore, the pseudopotential may be used near a Feshbach resonance, where
a diverges, but b remains constant.




Zero-Range Pseudopotential and the Born Series

e The requirement for the use of the Born approximation to be valid with the pseu-
dopotential (as is required for mean-field theories to be used) is, indeed ka < 1 :

e The Born expansion reduces to iterations of the equation
C¢+ =1 — ika0¢+,
In order to specify the corresponding scattering states,

ezkr

Y (F) = €7 — aCye

-

The Born approximation is given by the first order iteration, i.e.,
Cl =1 —ikaC() = 1.

Similarly, higher order approximations are given by:

Co=1—1kaCy =1 —ika
Cy =1—ikaCy =1 — ika + (ika)?

and the Born expansion is a geometrical series of the exact result C,+ = 1/(1+
ika) in powers of ika.




Cy =[5 (ry()],_,

C1 =1—1kaCy = 1.
Cy=1—1kaCy =1 —tka

Cs =1 —ikaCy =1 — ika + (ika)?

e The Born approximation is thus valid when the first order result is a small cor-
rection to the zeroth order result, which requires

kla| < 1.
For the scattering state, we thus require

r > Q.

e Substituting the Pseudopotential for V(r)in the many body Hamiltonian for the
case where the Born approximation is valid (and thus the regularisation in the
pseudopotential gives the constant 1), we thus obtain from

H = /d%ﬁ [—V2+V6xt ] /d3 /d?’r’wT




Bound states of the zero-range pseudopotential

For a < 0 the zero-range pseudopotential has no bound states.
For a > 0, there exists exactly one bound state,

~ 1 e—r/a
wbound(rr ) —

2ma T

with energy
h2
Ebound — T 5~
ma
This is counter-intuitive, and the opposite result to that found for a delta function
potential in 1D (where a bound state exists only for a < 0).

Despite this fact, the potential is indeed repulsive for a > 0, and attractive for
a < 0.

This paradox arises from the regularising operator, which indeed makes the
pseudo-potential qualitatively different from a delta potential (reminder: a delta
potential in 3D does not give rise to scattering).




Summary: Many-body Hamiltonian

e The many-body Hamiltonian for the dilute, weakly interacting Bose gas may be
written in terms of bosonic operators, which obey

A A

[(r), T (x)] = 6(r — ')
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with g = %, where a; Is the scattering length.

e This is valid under the assumptions:
- The gas is sufficiently dilute that:
x Only two-body interactions are important
x We can treat the composite atoms as Bosons
- The energy/temperature are sufficiently small that two-body scattering re-
duces to s-wave processes, parameterised by the scattering length.

- That the scattering length a4 is sufficiently small that we can ignore cor-
rections to g outside the Born approximation.

e These assumptions are typically satisfied when we load atoms from a BEC into
an optical lattice. Thus, the same second-quantised Hamiltonian is valid.




