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Degenerate Bose/Fermi Gases in the laboratory:

2.2 mW

Cs BEC Innsbruck = -omW

Degenerate  Bose-Einstein
Fermi Gas Condensate
* Features:
— Control via magnetic field / laser light
— Microscopically well understood systems




Microscopic Control: Magnetic Traps (Zeeman Shift):
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Microscopic Control: Optical Traps (AC-Stark Shift)

off-resonant QO
laser

AC Stark shift V(:Ij) — a(w)l — VO SiHQ(kx)




Microscopic Control: Interactions:

(see lecture on wednesday)

Microscopic understanding of interactions:
* Dilute gas - three body interactions weak
* Low-energy two-body interactions

* Simple microscopic description

Microscopic Control: Feshbach Resonance

optical trap

internuclear separation |r|

Scattering length
(strength of interactions)




Goal: Use this control to study strongly interacting systems

* Fermions near a Feshbach resonance

e Low-dimensional Gases

e ()

 Load BEC/Degenerate Fermi Gas into a 3D optical lattice




Cold atoms in an optical lattice and Strongly Correlated Systems:

- U
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J~ 100 Hz

Control:

* Modify Lattice structure, effective dimensionality
* Engineer interesting models from solid state physics
with great control over system parameters

Clean system:

* No (uncontrollable) disorder
* Weak dissipation (>1s) (cf. phonons in solid state)

Measurements:
* (quasi-)momentum distribution, noise correlations by releasing atoms.

* Spectroscopy (e.g., lattice modulations / Bragg scattering).
Experiments:
e Bosons, Superfluid-Mott Insulator transition (M. Greiner, |. Bloch et al., Munich, 2001)

e Fermions, (T. Esslinger et al., Zurich 2004)

e Munich, Mainz, Zurich, MIT, Harvard, Maryland, Innsbruck, Hamburg, Florence, Pisa,
Oxford, Austin,




Outline of Lectures

Now:

* Optical Lattices | | \ @/ \ / \..//1\

e Band Structure, Bloch & Wannier functions
* Bose-Hubbard model

Later:

* Phase diagram of the Bose-Hubbard model:
Superfluid, Mott-Insulator
* Single-Particle density matrix & correlations

Wednesday:

* Microscopic model for interactions

* Zero-range pseudopotential and its properties
Friday:

* Transport of atoms in optical lattices in 1D
(Andreev Reflections, superfluidity)
* Dynamics of three-body loss in an optical lattice

See also:

* Simon Folling - more on Bosons in an optical lattice, experiments
* Michael Kohl - Fermions in an optical lattice
* Dieter Jaksch - Dynamics in 1D, immersion in a superfluid




Optical Lattice Potentials:

weaker




1D, 2D and 3D lattice configurations

F
—0

square lattice

triangular lattice




Band Structure

e In 1D, the coherent dynamics of a single atom in the standing wave is described

by the Hamiltonian
~2

]:] — p_ + Vo SiHZ(leZ).
2m
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Bloch Theorem

e As the Hamiltonian is invariant under translation by one lattice period, a, it com-
mutes with the translation operator:

T =P Ty(x) = ¢(z + a)

e As T'is unitary, it has eigenfunctions

Tgboz (z) = €' ¢q (),

with real a € |—m, 7).




A

Toa(z) = emgba(aj),
with real a € |—m, 7).

e Because |
do(x +a) = e %Py (x)
we can write

Ga(r) = € ua(z),

where u,(x) is a periodic function with period a.

e Because [H,T] = 0, we can then find simultaneous eigenstates of H and 7,

Hopq(z) = ESOq(x)a (1)

Toq(x) = €e%pq(),
Bloch Functions

e The eigenstates of this Hamiltonian are then the Bloch eigenstates, which have
the form

o5 (x) = e 7ug (w),

where ¢ is the quasimomentum of the eigenstate, ¢ € |—7/a, 7 /al, and ug”) ()
are the eigenstates of the Hamiltonian

(p+ q)?
2m

H, = + Vo sin? (kyx),

and have the same periodicity as the potential (ué”)(a; + a)




(p+ q)*
2m

H, =

+ Vo sin? (kjz),

o Whilst u,(x) are, in general, complicated functions, they are relatively simple to
compute numerically, e.g., by writing the Fourier expansion

1 = (n.q) 2k i
_ ,q) |2k
u((]n)( ) — Z c; ol lacg’
j=—00
which allows us to reduce to a linear eigenvalue equation in the complex coef-
ficients c;,

_ n (n7Q)
= EYe;

( (2§ +q/k)?Er+Vp/2, j=17
Hj; =0 i—J' >1

\

e This problem can be diagonalised numerically restricting j € {—I[,...,l}, and
we find for the lowest few bands that good results are obtain for relatively small
[ ~ 10.

e The Bloch eigenstates are normalised so that

2 [
T 1o )Pz =1,
a Jo
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» Depending on the depth of the lattice, particles in the lowest bands, with E{™ <

Vo are in bound states of the potential, whilst the higher bands Eé”) > V| corre-
spond to free particles.




Lowest Two Bloch Bands,
V=5 Er

2.5
E/Ep

FE ~ —2J cos(qa)
0

) - -0. 0
qa/m qa/m

e The lowest two bands are separated in energy by
— hw ~ hwr
approximately given by the trapping frequency from the Harmonic oscillator ap-
proximation, wy.

e When we derive the Bose-Hubbard model we will assume that the temperature
and all other energy scales in the system are smaller than wr, allowing us to
restrict the system to the lowest Bloch band.




. . H_(p+q)2 V °2k (n) —
Wannier Functions ¢ =5 tVosini(kz), @Y (x) =e

e |t is often very convenient to express the Bloch functions in terms of Wannier
functions, which also form a complete set of orthogonal basis states. The Wan-
nier functions are given in 1D by

a T/a .
wn(x—a?i):\/%/ / dqug(:v)e_qui,

where z; are the minima of the standing wave. Each set of Wannier functions
for a given n can be used to express the Bloch functions in that band,

a

u (@) = /5=

e The Wannier functions have the advantage of being localised on particular sites,
which makes them useful for describing local interactions between particles.




(p+q)?

fﬂl:: 2m

w/a
- a —1qT;
+Vosin®(ki), ¢ (2) = € ug(a), wn<w—x@->=\/g/ | daug(z)eien

e The Wannier functions are not uniquely defined by the integral over the Bloch

functions, as each wavefunction gbg”)(x) IS arbitrary up to a complex phase.
However, as shown by Kohn [Phys. Rev. 115, 809 (1959)], there exists for each
band only one real Wannier function w,,(z) that is:

- Either symmetric or antisymmetric about either x = 0 or z = a/2, and

- Falls off exponentially, i.e., |w,(x)| ~ exp(—h,x) for some h,, > 0 as
r — OQ.

These Wannier functions are known as the maximally localised Wannier func-
tions, and we will use this choice for the Wannier functions in the rest of our
discussions.

If ul™ (x) is expanded as

1 00
C("'%Q)eﬂklmj

\ 2T J

j=—oc

uf(z) =

the maximally localised Wannier functions can be produced if all ¢/*:¢ are chosen
to be purely real for the even bands, n = 0,2.4, ..., and imaginary for the odd
bands n =1,3,5,..., and are smoothly varying as a function of q.




(p+q)?

Hq = 2m

+ Vs Sin2(klx),




w/a
- a —1qT;
+Vosin®(ki), ¢ (2) = € ug(a), wn<m—x@->=\/g/ | daug(z)eien

WOV YI YT

e Wannier functions for deeply bound bands are very close to the harmonic oscil-
lator wavefunctions, and for many analytical estimates of onsite properties the

Wannier functions may be replaced by harmonic oscillator wavefunctions if the
lattice is sufficiently deep.

e The major difference between the two is that the Wannier functions are ex-

ponentially localised, |w,(z)| ~ exp(—h,x), whereas the harmonic oscillator
wavefunctions decay more rapidly in the tails as exp[—xz?/(2ag)?].




Background: Second Quantisation

e When we deal with a system of identical particles, it becomes inconvenient to
write the many-body wavefunction in the form

Y1 rars . T).

Instead, we make use of the fact that identical quantum mechanical particles
are indistinguishable, and express the state in terms of the occupation numbers
n; of a complete set of single particle states, e.g., momentum states for free

particles

|9) = ‘nplﬁnpw vy Topy s ) = H ‘npz>
)

|dentical Bosons

e We now define the annihilation operator for mode p as
bp |...1p...) = /T |-..(np — 1)...)

o The adjoint of this operator is then the creation operator b1, and it can be shown

that
b;f) l..np...) = /np +1]...(np +1)...)




e The relevant commutator relations are given by

e Because

these states are symmetric under interchange of particles, and we are dealing
with a system of Bosons.

e These states are called Fock states, or number states, because they are eigen-
states of the particle number operator

A

Ny = bl,bp

Np |..np...) =np |..np...)




e {N,} forms a complete set of commuting observables, and thus all other possi-
ble many-body states can be constructed from superpositions of Fock states.

e Using the number operator, we can construct the momentum operator as
P =S pNy = phibp
| & | &

e The kinetic energy operator is then similarly written as

e Note the similarities between this formalism, and the formalism for the harmonic
oscillator with creation and annihilation operators for the excitations. Here, each
state behaves as an independent harmonic oscillator, and the number of parti-
cles in the state are the excitation level of that oscillator.




|dentical Fermions

The state for Fermions must be antisymmetric under interchange of particles,
and therefore the fermion creation and annihilation operators must obey the
relations T

AT A A

Cpcp/ — _Cp/Cp, CpCp/ — _CP’CP

and

A A /\T A _
CpCphy T Co'Cp = Op,p’

These are so-called anticommutation relations, defined as

{A,B} = [A,B], = AB + BA

We can thus write the relations for Fermionic operators as

Cp; é;r)’]+ = Op,p

[ép»ép’]Jr — [é;,é;,h =0

Note that these operators obey the Pauli exclusion principle, as

A A _ A A /\2 .
CpCp = —CpCp, = Cp =0,
and thus
V2 —ataata —oate _otatea —ata — K
NG = ¢ CpChlp = CCp — CpCLCpCp = CpCp = Np

so that the only allowed eigenvalues for Np for Fermions are 0 and 1.




Field Operators

e We define the field operators

A

1 .
w I') _ _Zez(k.r—wpt)dp
VV 4

where k = p/h, w, = E,/h = p?/(2mh).

e This operator obeys the commuator (or equivalent anticommutator for fermions)
[d(r), T ()] = 6(x — ')

e These operators can be interpreted as the creation and annihilation operators
for a state in which a particle is located at the point r, and are the Fourier
transforms of the momentum space operators.

r) = ¢f(r) [0)




e Many useful forms involving the field operators can be proven using the wave-
function for a particle of momentum p in a box of volume V,

|
<I‘| p> _ _ez(k.r—wpt)

N

together with the identity

/dBTeikr V]C_O
y 0, k#0

e For example,
IA{KE:/CZSTZET(I‘) (
P [ i) (-
N = [ @il @) o)

e Interactions between two atoms described by a potential V>(r; — rz) produce a
Hamiltonian of the form H = H, + Hmt, with

Fi = — / dr / B G (e, 1) DT (2 6) V(e — 1) (', 1) (x, 1)




Many-body Hamiltonian:

e The many-body Hamiltonian for the dilute, weakly interacting Bose gas may be
written in terms of bosonic operators, which obey

A

[ (r), 9T (")] = 6(r — ')

i [ @it | v i) 60+ 4 [ @ 50w b i

with g = 47°as \where q, is the scattering length.

e This is valid under the assumptions:
- The gas is sufficiently dilute that:
x Only two-body interactions are important
+x We can treat the composite atoms as Bosons
- The energy/temperature are sufficiently small that two-body scattering re-
duces to s-wave processes, parameterised by the scattering length.
- That the scattering length a, is sufficiently small that we can ignore cor-
rections to g outside the Born approximation.

e These assumptions are typically satisfied when we load atoms from a BEC into
an optical lattice. Thus, the same second-quantised Hamiltonian is valid.




&

The Bose-Hubbard Model "/\J4 1

Wannier
functions

" $4.J°
* Our system is described by a Bose-Hubbard Model T 0 7 qd

H=-J Z b:b]-l—zezflz + %UZﬁz(’flz — 1)

<1,7> ()

D. Jaksch, C. Bruder, J. |. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev. Lett. 81, 3108 (1998)
M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and I. Bloch, Nature 415 39 (2002) [& 419 51 (2002)]
D. Jaksch and P. Zoller, "The Cold Atom Hubbard Toolbox", Annals of Physics 315, 52 (2005).




B o= 7 b+ o S a1+ 3 e
(i,5) ' g

e (i,7) denotes a sum over all combinations of neighbouring sites

o 71; = b b; and ¢; is the local energy offset of each site.

e ¢, can include, for example, the effects of background trapping potentials, su-
perlattice, or fixed disorder.

Derivation of the Bose-Hubbard Hamiltonian

e The Bose-Hubbard Hamiltonian can be derived directly from the microscopic
second-quantised Hamiltonian a cold atomic gas

H= /dxqﬁ (—V2 +V(x )) U(x) + g /dX\iJT(X)\iJT(X)\iJ(X)\iJ(X)
e We expand the field operators in terms of Wannier functions,
— Z wn(X — Xi) Bn,ia

where for a 3D cubic lattice the Wannier function w,, (x), x = (z, y, z) is a product
of the 1D Wannier functions, w,, (x) = w,, (2)wn, (y)wn, (2).




2

; / dx ¥ (x) (—;VQ +V(x)

m

@(X) — Z wn(x — Xi) Bn,i

e Approximation 1: That the Temperature T, and the interaction energies U (n)/2
are much less than the trapping frequency ws, which gives the separation be-
tween the Bloch Bands, so that we may restrict the system to Wannier states in
the lowest band, eliminating the others in perturbation theory.

e Then we are left with terms involving wq(x) only.

Eq

'y
w../\]4J1

Wannier
functions

[———#J°
-7 0 T qd




jzg /dxqﬁ (—V2 +V(x )) b(x) + 2

e Consider the First term,

/ axc () (_hw L V(x >) B (x)

2m

e This produces onsite terms of the form

€ = /dX lwo(x — x)]? (V(x —x;)) 333,7;?30,1- \ N N\ N

and offsite terms of the form \/ \/ \/

h? ISP
— /dx wo () (—V + Vp sin (klx)) wo(xr — l&)bg)ibg,i_kl,

2m

where « is the distance between sites, and [ is an integer.

e Approximation 2: That the tunnelling matrix elements between neighbouring
sites [ = 1 are much larger than those between next-nearest neighbours, [ >
1, and that the remaining terms should be neglected. Then we write for the
remaining terms,

J—_ /d:c wo(z) (-FLQVZ 4 Vj sin (kla;)) wo( — a)

2m




[ dvwo () (—L-v2 4 Vo sin2(k — )b}, bo,
0(x) Vot Vosin=(kix) Jwo(x — la)bg ;Do i1,

T

T

T

— J0 (1 Site)
— ‘Jo (2 Sites)
i JO (3 Sites)
S, J1




e The Second Term
g / dx T ()W (x) ¥ (x) ¥ (x)

produces interaction terms of the form

A

Us i o< / dx wo (x — x;)wo (x — x;)wo (x — X )wo(x — x1)b ;b8 bo ko,

e Approximation 3: That the offsite interactions e.g., U1g10 Or tunneling, e.g., Uypo1
are small compared with U = Uypgo and can be neglected.




Uik o< Idx wo(X — X;)wo(X — X;) )wo (X — X )wo(X — X[)l;z),il;gzjl;(),kl;@[

o U00 Onsite
— U00 Neighbour (0001)
—— U00 Neighbour (0101)
——— U01 Onsite




A = /dxqﬁ (—V2+V( )) \if(x)+g/

e Then, our many-body Hamiltonian reduces to the Bose-Hubbard model

H——JZbTb + — an - — 1 +Zemz,

2m

U =g [ axun(l’,
; — / dx [wo (x — x;)[2 (V(x — x,)) .

J—_ /dx wo(x) <—hzv2 4V sin (klx)) wo(z — a),

2m

[+ / dxwo(x — X;) (—WVQ + Vo sin (/cm:)) wo(x — xz-)]

e All of these conditions are fulfilled provided that the lattice is deeper than V; ~
5 Er

* Note that U/J can be varied by changing the depth of the lattice, or altering g via a
Feshbach resonance.




Bose-Hubbard Model: Summary

../-\J4J1

Wannier
functions

 ——
-Tr 0 T qd

) U(x) + g / dx 0T (x) T (x) ¥ (x)T(x)

h2

Assume: J=- / dz wo () <_—V2 + Vo sin (klfﬂ)) wo(xr — a),

2m
- Only lowest band B )
- Only nearest neighbour tunneling U=y /dx [wo(x)]",

- Only onsite interactions . — /dx wo(x — %)% (V(x — x;))

:_JZbTb +Zemz+ Zm kT, J, U < hw

D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys Rev. Lett. 81, 3108 (1998)



Basic Properties of the Bose-Hubbard Model

e Bose-Hubbard Model has a very interesting phase diagram, exhibiting a phase
transition for commensurate filling (number of particles N is integer multiple of

number of lattice sites M). I
T — pip. 1 = A (s —
H-—J(Z)bﬂg%— 5 an(nZ 1)+Zemz
©,J v v

* Superfluid J>>U Phase Diagram

| ~—e————

delocalized atoms: BEC

(bJ{ +... 4 b}rW)N [vac)

e Mott Insulator Phase: J<<U

bInl ... b}tw\va@

"Eock states” \ regular filling with exactly 1, 2 or 3 atoms per
lattice site




=73 bl 4 o S i~ 1)+ Y e
(4,9) i v

e In the limit (U/J) — 0, the ground state of the system is superfluid, and the
atoms are delocalised around the lattice. For a lattice of M sites, this ideal
superfluid state can be written as

v (35

| ————

which for N, M — oo at fixed N/M tends to
M
/N -
‘\IJSF> — 1:[1 |:eXp ( Mbj) 0>z:| ,
which is locally a coherent state with Poisson number statistics.

e In 3D, this state is an ideal BEC in which all N atoms are in the Bloch state

85 (@), T T
—J Z b;b; = —QJZCOS(qa)a a
(%,3) q




=73 bl 4 o S i~ 1)+ Y e
(,9) i v

e As U/J increases, a regime exists in which the onsite interactions make it less
favourable to particles to hop to neighbouring sites.

Provided that the number of particles and lattice sites are commensurate, a
phase transition then occurs to the Mott Insulator (MI) regime, in which particles
are essentially localised at particular sites in the sense that their mean square
displacement is finite.

In the limit J/U — 0, this state corresponds to a fixed number of atoms on each
site,
Uarr) = | [ 17,

where n = (n) = N/M is the average filling factor. The MI regime appears as
lobes in the phase diagram corresponding to an integer fixed filling factor.




| [e][o[[e][e]]e]

Superfluid states at (T=0) exhibit off-diagonal long-range order (or quasi-long
range order in 1D), with the off diagonal elements of the single particle density
matrix, (b/b;) decaying polynomially with |i — j|.

For finite J/U, the off diagonal elements of the single particle density matrix,
(b1b,), decay exponentially for a Ml state as a function of |i — j|.




Single Particle Density Matrix:

<bjbj}.,mﬂ.~~~-.

Superfluid (SF)
Ground State
U=1, J=1,

30 Sites, 66 Particles,

Mott Insulator (MI)
Ground State
U=15, J=1,

30 Sites,

30 Particles

e, =0

S
e
S o\’
)

e S
o

5
\?x'; <

Linear decay, on
log-log scale

Non-linear behaviour
o, due to boundary effects

| (box boundary
conditions) T~

= N L " L L 1

PN NS W——
1 3 5 7 9 11 13 15

c=15, shows decay of off- k
diagonal elements.
Polynomial for SF
Exponential for Ml

Linear decay, on

“—  log-linear scale




SEE LECTURE BY S. FOLLING
Observation via momentum distribution:

e In a homogeneous system, the momentum distribution of atoms can be given
as a function of the single particle density matrix at separation [,

pi(l) = (bbirr)

with i = (iy,4,,1,), @s

n(k) = nlw(k)[*)_e™Fpi(R)
R

where n is the density, and w(k) is the Fourier transform of the corresponding
Wannier Function.

e The superfluid phase can be distinguished because as | — oo, p1(l) — ng/n,
where ng is the condensate density. Thus, the momentum distribution has a

peak at reciprocal lattice vectors k = G, G.R = 27z, where z Is an integer.

There,
nk=G)= N.nomj((})\2

which scales as the number of particles, V.




SEE LECTURE BY S. FOLLING

M. Greiner, |. Bloch, T. Hansch et al., Nature 2002
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Figure 2 Absorption images of multiple matter wave interference patterns. These were
obtained after suddenly releasing the atoms from an optical lattice potential with different
potential depths |4 after atime of flight of 15 ms. Values of Iy were: a,0 £; b, 3E; ¢, 7 £,;
d10E;e 13 E;f 14, 9,16 £.;and h, 20 E,.

e For the Ml phase, in the limit U >> J, p;(R) = 0 for |R| > 1, and thus no such

peaks occur.

e For U ~ J, but in the MI phase, it is still possible to observe peaks in the
momentum distribution at k = G, as the single particle denstiy matrix has non-
zero off-diagonal elements, but the intensity of these peaks does not scale as

N.




Time-dependent study of the Mott Insulator-Superfluid transition:

H=-J Z bb +Zeznz + DZn

<1,7>
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Gutzwiller mean field: SEE PROBLEMS FROM D. JAKSCH

A

e Gutzwiller ansatz: (Hgy) — u{IN) — Minimise to find ground state

- product state
* Not number conserving

i

ﬁ\

superfluid: Mott:
coherent state Fock state

O 1 2 3 n

£ — i =]

e Mean field Hamiltonian: sum of local Hamiltonians

Hup = Y —JZ(bw +¢*b)+ UZnZ | =Y h

U (717)
with mean field (SF order parameter) v; = (V| b; |V) = (¢;] b; |¢4)




e Atfixed integer n, the transition point in 2D or 3D is well described by mean-field
theories, with (U/J). = 5.8z forn =1 and (U/J). = 4nz for n > 1, where z
Is the number of nearest neighbours for each lattice site (in a 3D cubic lattice,
n = 6).

e In 1D, the deviations from mean-field results are large, and (U/J). = 3.37 for
n=1and (U/J). =22nforn > 1.




e If n is fixed and non-integer (e.g., the line (n) = 1 4 ¢ ), then even in the limit
U < J, there is a fraction of atoms which can remain superfluid on top of a
frozen Mott-Insulator core (which will exist for n > 1) provided J > 0.

e These atoms need not be affected by increasing U/J, as they can gain kinetic
energy by delocalising over the lattice without two of them being present at the

same site.




e In an external Harmonic trap, ¢; = Q? with a fixed number of particles, the local
chemical

potential, u, varies across the trap, decreasing from the centre to the edges,

= po — V(r)

e As a result, regions exhibiting alternately the superfluid and M| phases appear

e This layer structure has recently been observed by two experimental groups
(Mainz, MIT)




Figure 8.3.  Single particle density matriz, (ZA)IIA)J-), for the ground state of the
1D Bose-Hubbard model with N = 20 particles, U/J = 20, €;/J = 0.1(i — ip)?.




Figure 8.4.  Single particle density matriz, (le;j), for the ground state of the
1D Bose-Hubbard model with N = 35 particles, U/J =20, €;/J = 0.1(i — ip)>.




Figure 8.5.  Single particle density matriz, (l;fﬁj), for the ground state of the
1D Bose-Hubbard model with N = 50 particles, U/J = 20, €;/J = 0.1(i — z'o)2.




Discussion

Example Applications

e Many other Hamiltonians can be implemented:
For strong interactions, we have only 0 or 1 atom at a lattice site

In perturbation theory this allows implementation of many spin models

Dipolar molecules in optical lattices would have long range interactions, and
allow many possibilities for engineering different lattice models

e Such models are often extremely important in condensed matter systems

Many descriptions of superconductivity, including models for high-Tc

superconductors are related to lattice models with the same form as the
Hubbard model

Adding random potentials allows the study of disordered systems
(Bose-Hubbard model was originally studied in this context).

Kondo problem, Luttinger Liquids, Exotic phases, Topological order, ...




Related Models

e In a similar manner, one can show that the microscopic Hamiltonian for two
fermionic spin species reduces to the original Hubbard model,
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with fermionic operators ¢;, which obey the standard anti-commutator relations,

and o € {7, |}. This is a simple example of the many two-species models that
can be engineered with atoms in optical lattices.

A

-
Relationship to high Tc

superconductivity for U>0:
strange metal

— Fermi liquid
Non-Fermi liquid

Néel order

superconductivity




e Can also, e.g., trap Bose-Fermi mixtures, and can produce spin-dependent or
species-dependent lattices to tune U and J independently for different species.

e |tis also possible to create multi-band Hubbard models, of the form
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New Insight into Lattice Models

The available control over the system means that these Hamiltonians can be
engineered in experiments with unprecedented control over most relevant parameters.

There are also many techniques available to make measurements on these systems
(e.g., release of atoms from the lattice allows measurement of momentum and
quasimomentum distributions).

This allows investigations of these models that would be impossible if the same system
were realised in traditional condensed matter experiments.

In this sense, atoms in optical lattices can act as a specialised quantum computer for
simulation of lattice models.

This may allow many "computations" to be performed on lattice models linked with
important phenomena in condensed matter physics to be probed on a level that was
previously impossible.




Coherent Phenomena and quantum computing

e These systems are strongly isolated from their environments: Typical parameters (J, U)
are of the order of 100-10000Hz, whereas decoherence timescales are of the order of
several seconds to tens of seconds (mainly from spontaneous emissions).

These systems can thus be used to probe the coherent properties of these models

In addition, the same setup offers many possibilities to engineer entanglement and has
potential applications in quantum computing.

Entanglement of a large array of atoms via controlled collisions has already been
performed in an experiment

A 1D version of the so-called cluster state required for measurement-based quantum
computing schemes (such as the one-way quantum computer) has been demonstrated.




Applications to Quantum Information Processing:

Array of singly occupied sites
Qubits encoded in long-lived internal states.

Entanglement, e.g., via controlled
collisions in a spin-dependent lattice:

Cluster State,
1-way QC




