
The AC-Stark Shift
Consider a many-level atom in its ground state |g〉 interacting with a classical laser field ~E(t) = ~εE0(t) exp(iωt)+

c.c, which has frequency ω, polarisation vector ~ε and electric field amplitude E0(t) at the position of the atom
x = 0, which we assume to be fixed, or at least very slowly varying on the timescales under consideration. Assume
that E0(t) is slowly varying on the timescale given by ω.

The Hamiltonian for this system can be expressed as Ĥ = Ĥ0 + ĤI . Here Ĥ0 is the Hamiltonian for the atom,
including all fine structure terms etc., and we can write the eigenstates of Ĥ0

Ĥ0 |k〉 = ~ωk |k〉 .

The interaction between the field and the atom is given by

ĤI = −µ̂. ~E(t)

where we can express the operator µ̂ = −e~d in terms of the dipole matrix elements

~µ =
∑
n,k

|n〉 〈k| 〈n| ~µ |k〉 =
∑
n,k

|n〉 〈k| ~µnk.

(~µ is sometimes also written as ~d).
Our goal is to calculate the energy shift of the ground state due to the applied electromagnetic field (the so-called

AC Stark shift). If we expand the state in terms of the unperturbed eigenstates, |ψ(t)〉 =
∑

n an(t) exp(−iωnt) |n〉,
then we are interested in the coefficient of he ground state, ag(t). In particular, if the coupling is weak so that
|ag(t)| ≈ 1 for all times t, we would like to write ag = exp(iφ(t)), and extract the time dependence of the phase
φ(t), averaged over a single period 2π/ω. The steps required are:

1. Explain why the first-order correction to the energy shift is equal to zero.

2. Use time-dependent perturbation theory to write the expansion for the coefficient of |g〉, ag(t) to second order
in HI . Assume at time t = 0, |ag(t = 0)| = 1, and that all other states are unoccupied.

3. Using the fact that E0(t) is slowly varying with respect to ω, perform the innermost time integral.

4. Perform the second time integral so as to compute the average 〈φ̇〉 over one period t = 2π/ω. Explain why
certain terms do not contribute to the final expression, and show that the AC Stark shift is given by:

∆E = −~〈φ̇〉 = − 1
2~
|E0(t)|2

∑
n

(
1

ωn − ωg + ω
+

1
ωn − ωg − ω

)
|~µng · ~ε|2

5. How does this expression simplify when the frequency ω is tuned very close to one transition, e.g., ωm − ωg?
Under what conditions can we make a rotating wave approximation?

1


