The AC-Stark Shift

Consider a many-level atom in its ground state $|g\rangle$ interacting with a classical laser field $\vec{E}(t)=\vec{\varepsilon} E_{0}(t) \exp (i \omega t)+$ $c . c$, which has frequency ω, polarisation vector $\vec{\varepsilon}$ and electric field amplitude $E_{0}(t)$ at the position of the atom $x=0$, which we assume to be fixed, or at least very slowly varying on the timescales under consideration. Assume that $E_{0}(t)$ is slowly varying on the timescale given by ω.

The Hamiltonian for this system can be expressed as $\hat{H}=\hat{H}_{0}+\hat{H}_{I}$. Here \hat{H}_{0} is the Hamiltonian for the atom, including all fine structure terms etc., and we can write the eigenstates of \hat{H}_{0}

$$
\hat{H}_{0}|k\rangle=\hbar \omega_{k}|k\rangle
$$

The interaction between the field and the atom is given by

$$
\hat{H}_{I}=-\hat{\mu} \cdot \vec{E}(t)
$$

where we can express the operator $\hat{\mu}=-e \vec{d}$ in terms of the dipole matrix elements

$$
\vec{\mu}=\sum_{n, k}|n\rangle\langle k|\langle n| \vec{\mu}|k\rangle=\sum_{n, k}|n\rangle\langle k| \vec{\mu}_{n k}
$$

($\vec{\mu}$ is sometimes also written as \vec{d}).
Our goal is to calculate the energy shift of the ground state due to the applied electromagnetic field (the so-called AC Stark shift). If we expand the state in terms of the unperturbed eigenstates, $|\psi(t)\rangle=\sum_{n} a_{n}(t) \exp \left(-i \omega_{n} t\right)|n\rangle$, then we are interested in the coefficient of he ground state, $a_{g}(t)$. In particular, if the coupling is weak so that $\left|a_{g}(t)\right| \approx 1$ for all times t, we would like to write $a_{g}=\exp (i \phi(t))$, and extract the time dependence of the phase $\phi(t)$, averaged over a single period $2 \pi / \omega$. The steps required are:

1. Explain why the first-order correction to the energy shift is equal to zero.
2. Use time-dependent perturbation theory to write the expansion for the coefficient of $|g\rangle, a_{g}(t)$ to second order in H_{I}. Assume at time $t=0,\left|a_{g}(t=0)\right|=1$, and that all other states are unoccupied.
3. Using the fact that $E_{0}(t)$ is slowly varying with respect to ω, perform the innermost time integral.
4. Perform the second time integral so as to compute the average $\langle\dot{\phi}\rangle$ over one period $t=2 \pi / \omega$. Explain why certain terms do not contribute to the final expression, and show that the AC Stark shift is given by:

$$
\Delta E=-\hbar\langle\dot{\phi}\rangle=-\frac{1}{2 \hbar}\left|E_{0}(t)\right|^{2} \sum_{n}\left(\frac{1}{\omega_{n}-\omega_{g}+\omega}+\frac{1}{\omega_{n}-\omega_{g}-\omega}\right)\left|\vec{\mu}_{n g} \cdot \vec{\varepsilon}\right|^{2}
$$

5. How does this expression simplify when the frequency ω is tuned very close to one transition, e.g., $\omega_{m}-\omega_{g}$? Under what conditions can we make a rotating wave approximation?
