
6  Non-zero risk in the real world 
HANDOUT 6 OF 7 

6.1 The other side of derivatives 

In Chapter 2 we looked at how an investor might use derivatives to manage risk. In order for the 

Black-Scholes pricing theory to work, we needed to make several major assumptions about how 

financial markets behave. Here we re-visit the whole question of risk and derivatives for real-world 

markets, without automatically making these assumptions. Consequently the formalism in this Chapter 

is more complicated than Chapter 2: we therefore present it in a pedagogical manner while 

emphasizing the practical steps that one needs to take to implement it. The formalism is built upon the 

landmark work of Bouchaud and Sornette1. It is possible to take things even further: one can 

generalize this approach to address the crucial issue of managing portfolios in the presence of non-zero 

transaction costs -- but this is beyond the scope of the present course.  

We start by re-examining the whole topic of derivative pricing and risk. Consider the following 

example scenario:   

Hence the investor holding the portfolio of assets A and the put-options, can be sure that his portfolio 

will not lose more than the original option value. However, the position for the writer of those options 

is reversed: the maximum possible achievable profit is the original option value while a large loss 

could be faced. This can be seen from the payoff function for the put-option2:  

An investor predicts that the price of asset A will increase significantly over the next three 
months. He therefore buys a large amount of the asset, hoping to sell it back at a profit after 
that period. The investor can insure his position by also buying an equal quantity of put-
options dated three months in the future, with a strike price equal to today’s asset value. 
Even if the investor is wrong and asset A falls in value, he will be able to ‘unwind’ his 
unfavourable position by selling the assets to the option writer at the same value as he 
bought them. Hence the investor will only suffer a loss equal to the original put-option value, 
which is essentially his insurance premium on the investment.

 ! " ! "payoff , max ,0T T TV x X X x# # $  (6.1) 

                                                 
1 J.P. Bouchaud and D. Sornette, Journal de Physique I, 4, 863 (1994). See also [BP]. 
2 Recall from Chapter 2 that we denote the value of an option at time  since the contract was written as V . Hence, V  is 

the option premium and V  the option payout. Also as before,  is the option ‘exercise’ or ‘strike’ price and T  is the 

maturity. 
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Figure 6-1: Put-option payoff at expiry for the option contract holder and writer. 
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In the event that the price of the underlying asset at expiry is less than the strike price ( Tx X% ), 

 shows that the writer of the option could be faced with a large payout to the holder. Let’s denote 

! "0|tp x x  as the conditional probability distribution function such that ! "0|t tp x x dx

t

 is the probability 

that the underlying asset price3 at time  is in the range t t tx x dx& ' , given that the asset price at the 

time of writing the contract was 0x . We can then calculate the distribution of the option writer’s profit 

or loss on the contract at expiry, i.e. his ‘variation of wealth’ TW( , as follows. We know that the option 

writer gets to keep the initial option value (the insurance premium) whatever the asset price does. 

Additionally he has to pay out ! ",T TV x  ifX Tx X) . Hence, using Equation (6.1): 
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The PDF for variations of the option writer’s wealth is given by: 
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3  (6.3) 

A histogram showing an example of ! "Tp W(  is shown in Figure 6-2: 

 

                                                 
3 To simplify the appearance of formulae in this Chapter, we will use tx  instead of  ! "x t  to denote the asset price at time 

. Hence t ! "tx x t4 .  
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Figure 6-2: Histogram representing the probability distribution function (PDF) of the variation of wealth ! "Tp W(

 100T #

 

resulting from a Monte-Carlo simulation of writing 5000 put options with parameters  

with an interest-rate .  The PDF of the underlying asset’s price movement4 

0 8,  10,x X# #

, 1t t$0r # p R. /1 2  was taken to be 

lognormal with volatility 5%5 # . 

 

6.2 Hedging to reduce risk 

As demonstrated above, the position of an option writer is one in which large potential losses may 

arise. This is why option writers hedge their position by strategically buying a certain quantity ! ",tx t6  

of the underlying asset. Take the example scenario in which the investor buys put-options: 

A bank has sold to an investor a large quantity  of put-options on asset A with a strike 
price equal to the initial asset value 

n
$100X x# #

1t
n

. The options were sold at V  each. 
The asset price falls to at time , and the bank starts to worry it will have to payout 
on the option. It thus short-sells 

0 $1#

1
$9tx #

6 #  of asset A as a hedge. By the expiry time of the 
option, asset A has fallen to a va $5Txlue of #  and the payout to the investor 

. The option writer has made a loss on each of the options of the value 
minus the payout V V

is thus 
$5T TV X x# $ #

0 $4T$ # $ , but has also made a profit on each of  the hedging assets of 

. Overall the option writer has neither made a profit nor a loss: his * +1
$4T tx x$ $ #

variation in wealth 0TW( # . If the bank had not hedged, its loss would have been $4$ per
 

This demonstrates how hedging can reduce the option writer’s potential loss, essentially his risk. In 

this case the bank made only one re-hedging at time t , deciding that they would prepare themselves 1

                                                 

/2
4 The PDF  is the probability density function of returns, where the return is defined in Equation (1.3). , 1t tp R $.1
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for what they considered to be a certain payout to the investor at the time of expiry. However, in 

general a bank would never be so sure about the outcome of an asset movement, hence it would be 

more reasonable to accrue the hedging position in smaller chunks, selling and buying the underlying 

sset when it became more or less likely that the payout would have to be made to the investor. 

 

 

a

6.3 Zero risk? 

By making assumptions about how an underlying financial asset will move, the Black-Scholes analysis 

of Chapter 2 shows how in theory it is possible to never lose any capital through writing an option, i.e.

the variation of the option writer’s wealth always remains zero: 0TW( #  and hence ‘zero-ris

the confidence of this outcome behind them, banks are able to justify their exposure to huge 

derivatives portfolios – and the more derivatives contracts, the more commissions. So what then 

k’. With 

are 

the ic i e zero risk? Let’s recall the main assumptions: 

ding 

me 

 

.4.3. Su

 mag ngredients of this theory that guarante

1. Continuous time: continuous tra

2. Efficient markets: no arbitrage 

3. Underlying assets follow a random walk 

These assumptions are questionable for the reasons discussed earlier in this book. However the one 

which stands out most in the context of hedging is the first -- the assumption of continuous time and 

hence continuous trading -- since it implies the use of a strategy for continuous re-hedging. This does 

not simply mean re-hedging every time the asset price moves: it actually means re-hedging every ti

time itself moves, which is impossible. In addition, the presence of transaction costs gives rise to a 

financial barrier to high-frequency trading: the greater the number of re-hedgings, the greater the cost 

to the bank. Presumably there will be a trade off that banks have to make: the more they re-hedge, the 

closer they will approach the zero-risk limit -- however the cost of their transactions will imply more 

expensive options which in turn implies fewer customers. The third assumption -- that of a lognormal5

random walk of the asset price -- is closely related to the assumption of continuous time employed in 

Section 2 ppose that in an infinitesimal time dt , the asset return dx x  has a probability density 

function ! "p dx x  that is highly non-Gaussian. Then arbitrarily small but finite time interval t in any ( , 

there will have been an infinite number of trials of ! "p dx  Central Limit Theorem dis n x . The cussed

                                                

 i

 
5 Equation (2.36) which was used to derive the Black-Scholes equation, is a log-normal random walk as opposed to 

Equation (2.34) which is a random walk. The only difference lies in the variable performing the random walk. In the first 

case, the variable is dx x  which is the price return (Equation (1.3) in the continuous-time limit). In the second case, the 

variable is just . The distinction is unimportant. Typically dx  and hence the price-return dx x! dx x  behaves like the 

price-change . dx

Financial Market Complexity:  Oxford University   Copyright 2003    Neil F. Johnson          6-4



Section 2.2.3.4 implies that for virtually every choice of ! "p dx x , the resulting distribution ! "p x x(  

e 

isk derivative 

ement 

cal 

ve

should be Gaussian. However, as discussed in Chapter 2 and demonstrated in Chapter 3, th

distribution of real asset price returns can be non-Gaussian up to very large time intervals t( . 

Moreover asset returns can show a non-negligible degree of higher-order temporal correlations. The 

failure of th

zing the option 

0V  is 

e random walk assumption must therefore also impact on this result of zero-r

ortfolios. 

l 

ill present such a back-to-basics approach which focuses on minimi

riter’s risk.  

e start with the option writer’s variation of wealth at the time

r 

 a of

p

 

6.4 Pricing and hedging with real-world asset movements 

The fundamental question is: If we cannot achieve zero-risk, then how much risk do we actually have - 

and how can it be minimized? With news concerning large financial losses and inadequate risk-contro

arriving increasingly often in the media, and the requirements of the international Basel II agre

needing to be implemented, these are questions which banks are increasingly keen to answer. 

However, it is not obvious how to answer such questions. Perhaps adding on corrections to Black-

Scholes? Unfortunately it is not easy to do perturbation theory around zero – and zero is the magi

value of risk underpinning Black-Scholes. What is clear is that one must avoid making the same 

implicit initial assumptions as Black-Scholes, by instead going ‘back to basics’. In the following 

sections, we w

w

 

6.4.1 Variation of wealth 

W  of the contract expiry: 

T W( # value $ payout +  hedging profit  (6.4) 

The value  term comes from the cost of the option contract (the premium) which is paid by the holde

to the writer at the time of writing, 0t # . The option cost is kept by the option writer irrespecti  of 

any subsequent underlying asset mo ement and is thus not  function v  0tx 7

ked at t r

. The option cost 

an he risk-free interest rate  until time of expiryb  T , giving: 

 value ! "* +0 0 , , 1 TV x X T r# '  (6.5) 

The payout  term comes from  payout which the option writer must give to the option h t 

point of expiry of the option t T# , and is thus the final value of the option contract. This payout  

must be paid to the opti

 the older a the 

on holder irrespective of any preceeding underlying asset movem

ot n of

ent and is thus 

a functio  t Tx 7n

payout ! ",T T TV V x X# #  (6.6) 

. 
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The  term comes from the profit or loss realised on the  hedging profit t6  underlying assets which are 

held by the option writer at time t  for the purposes of hedging. If the writer has not managed to obtain 

any information about where the asset price will be in the future based on past prices, then the quantity 

of assets he chooses to hold for hedging will only be a function of time and the current asset price, 

i.e. ! "t t tx6 6# . Without loss of generality, we formulate the problem in discrete time by writing t i8#  

with i  etc.: later we will comment on the limiting case of 1,2,3# " 08 &  corresponding to the Black-

Scholes assumption of continuous-time. Between two consecutive times t 8$  and , the option writer 

holds 

t

t 86 $  hedging assets: the profit on these assets is therefore * +tt tx x8 86 $ $$ . However, the capital 

t tx8 86 $ $

t t

 held in the underlying asset could have been gaining interest at rate . The interest lost in this 

period is thus 

r

* +1 ttx r 8 x8 86 $' $ 8 86$ $

t

$ . Gathering together these contributions, we have the hedging 

profit from 8$  to t  equal to: 

 * + * +* +* + * +* +1 1 1t t t t t t tx x x r x r x8 8
8 8 8 86 6$ $ $ $$ $ ' $ # $ ' 8$  

At each timestep t , the option writer banks this hedging profit at the risk-free rate until expiry, giving 

a net variation in wealth due to hedging as: 

  hedging profit * + * + * +* + * +1 1
1

1 1
T

T i
ii i

i
x r x r

8
8 8

88 86 $

$ $
#

# $ ' '9  (6.7) 

Combining Equations (6.4), (6.5), (6.6), and (6.7) gives us an equation for the variation in the option 

writer’s wealth at expiry: 

* + * + * + * +* +* +0 1 1
1

1 1
T

T T
T T ii i

i
W V r V x r x r

8

1 i8 8
88 86 $

$ $
#

( # ' $ ' $ ' '9  (6.8) 

So far we have made no assumptions about the actual movement of the underlying asset: tx could 

represent any arbitrary process. At the end of this Chapter we will include an additional contribution 

from the cost of transacting the underlying at each timestep t i8# . This contribution aside, Equation 

(6.8) is general.  

If we had made the Black-Scholes assumption of continuous time, which implies taking the limit 

08 & , then the summation would turn into an integral and Equation (6.8) would become: 

 * +
0

0

T
r T trT t

T T t t
dxW V e V rx e d
dt

6 $: ;( # $ ' $< =
> ?3 t  (6.9) 

However, we do not wish to make this assumption: the formalism does not require it and, amongst 

other things, we wish to investigate the effects of discrete hedging on the risk of writing an option. 

Discrete hedging simply refers to the process of changing the number of assets held to hedge the 

option, at discrete time intervals. Note that as written, Equation (6.8) treats the intervals between 

successive re-hedges as being of equal length 8 , but this need not mean the hedge must change at each 
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time t i8#  because we can easily have * +1i i8 86 6 $# . Hence the regularity of the discreteness in time 

does not limit the applicability of the formalism. 

X

6-3: Fi
0t T# &

 of a r

ach re  during the asset pr

e

 We can now use Equation (6.8) to examine the risk of option writing under different schemes of 

hedging, different underlying asset movements and different option types (e.g. different payout 

functions). As an illustration, let us examine the distribution of variation in wealth for different values 

of the trading time 8 . As for , we simulate repeatedly the process of writing and (this time) 

hedging an option on an asset that moves with a random walk. We keep constant the option parameters 

such as the initial asset value 0x , the strike price , the expiry time T  and the volatility of the 

underlying asset’s movement 5 . Instead it is the ‘realization’ of the underlying asset’s price @ A
0t t T

x
# &

 

which changes, each time we simulate the option writing and hedging process. ‘Realization’ refers to 

the specific evolution in time, which in this case is random (lognormal5). Figure 6-3 shows an example 

of five different lognormal asset price realizations: 

Figure 6-2

 

Figure ve different ‘realizations’ 

pr
ic

e 
x

t[]

time t

@ Atx andom (lognormal) underlying asset price movement. 

 

or e -hedging timeF  t i8# tx , the hedge ! "i ix8 86

f the r

 is calculated 

t using the Black-Scholes delta-hedging recipe (recall Section 2.4.3). At the end o ealization, i.e. a

t T# , we use Equation (6.8) to calculate the overall variation of the option writer’s wealth TW( . This 

ss is repeated, and a histogram constructed of all the TWproc (  values. Figure 6-4 below shows an 

example of such a ‘Monte-Carlo’ simulation. Each of the histograms was constructed for 5000 

realizations of the underlying asset price movement. The four different histograms correspond to

different values for the trading time

 four 

8 : 

 

ice realization 
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Figure 6-4: Histograms showing the  PDF  ! "Tp W(  due to writing an option with different frequencies of re-

hedging. These results were produced using a Monte-Carlo simulation of 5000 underlying asset price random walks. 

The option contract considered was a European put with 0 8,  10,  100days,  0x X T r# # # # . The option was 

priced and hedged in accordance with the Black-Scholes theory (Chapter 2). The PDF of the underlying’s movement 

 was taken to be lognormal with , 1t tp R $.1 /2 5%5 # . 

Figure 6-4

 

 shows that as the trading time decreases (i.e. the frequency of re-hedging increases) the 

spread in the variation of wealth decreases. This means less risk for the option writer. Let us now 

examine this dependence of the risk on trading time more closely by constructing a graph of the 

standard deviation of the distribution for the variation in wealth ! "TW5 (  as a function of the trading 

time8 : 
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Figure 6-5: The standard deviation of the variation of the option writer’s wealth ! "TW5 (  as a function of the 

trading time 8 . The option contract considered was a European put with 0 8  100daysT,  10,x X# # #  and 

. The PDF of the underlying’s movement 0r # , 1t tp R $. /1 2  was taken to be lognormal with 5%5 # . 

 

Figure 6-5 shows very clearly that as we decrease the trading time (i.e. increase our frequency of re-

hedging) the spread in the distribution of TW(  drops markedly. In fact, the dependence of the standard 

deviation ! "TW5 (  on trading time 8  essentially follows a square-root dependence: 

 ! "TW5 8( C  (6.10) 

Equation (6.10) carries the implication that as the trading time reduces to zero (i.e. 08 & ) the spread 

in the distribution of wealth variation ! "TW5 (  also reduces to zero. This essentially recovers the 

Black-Scholes result, where continuous re-hedging using the delta-hedging strategy removes all of the 

stochastic variation from the option writer’s portfolio, yielding zero risk. This is expected: our Monte-

Carlo simulation was consistent with the Black-Scholes theory in that we modelled the underlying 

asset’s price movement as a random walk, with , 1t tp R $. /1 2  being lognormal. 

We know that the random walk model for the underlying asset price movement, is not in 

general a good one (recall Chapter 3). What would happen if we made another choice for , 1t tp R $. /1 2 ? 

Will the Black-Scholes recipe still work its magic of zero-risk with continuous re-hedging? To answer 

this, we can repeat the Monte-Carlo simulation exactly as before, but this time using a slightly more 

realistic model for the underlying asset price movement. As a demonstration, we will use a process 

known as the Hull-White model for the underlying asset price movement. This belongs to a class of 
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models having stochastic volatility6. Stochastic volatility refers to the fact that in the random evolution 

of the asset price, 

 1
dx dt dX
x

D 5# ' , (6.11) 

the volatility 5  also undergoes random evolution. In the Hull-White model, the volatility performs a 

mean-reverting random walk given by: 

  (6.12) * + * +2 2
2d a b dt c d5 5 5# $ ' 2 X

2where a  are constants and  are observations of uncorrelated Gaussian variables with zero 

mean and variance proportional to . Our main concern is not the price process itself, but rather to 

examine the risk of option writing when 

, ,b c 1,dX dX

dt

, 1t tp R $. /1 2

/2

 incorporates some flavour of the ‘stylized facts’ 

observed in empirical price movements (recall Chapter 3). In particular with suitable choices of , 

the probability density function  has a higher kurtosis (i.e. more peaked, with fatter tails) than 

the lognormal, as shown below: 

, ,a b c

, 1t tp R $.1

 

Figure 6-6: PDF of returns  for a Hull-White stochastic volatility model and a lognormal model. The 
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 the Hull-yellow histogram represents White model with 20.05,  0.05 ,  0.25a b c# # # . The solid red line 

represents the lognormal model with 0.055 # . 

 

                                                 
6 For a description of stochastic differential equations like Equation (6.11) and (6.12) see Section 2.2.5 and [WDH]. 

Although stochastic volatility models represent some improvement over a straightforward random walk, they still cannot 

capture all the higher-order temporal correlations and scaling properties found in Chapter 3 for real market data.  
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Figure 6-7

 ! "TW5 (  as a function of the 

trading time 8  for Hull-White (solid line) and lognormal (dashed line) asset mod ption contract consid

was a Europe n put with 0 8,  10,  100days,  0,  5%x X T r

els. The o ered 

a 5# # # # # .  

 

 compares the resulting dependence of ! "TW5 (  on the trading time for the Hull-White 

model, and the lognormal price process from Figure 6-5: 

 

igure 6-7: The standard deviation of the variation of the option writer’s wealth
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F

igure 6-7 shows a marked increase of risk for all trading times when using the more realistic Hull-F

White stochastic volatility model for the underlying. Most importantly, when we extrapolate ! "TW5 (

back to 0

 

8 #  we no longer get the zero-risk result of the Black-Scholes continuous delta-hedg

recipe. F ers of the Black-Scholes philosophy might claim that the delta-hedge clearly needs t

modified in light of the new stochastic differential equation governing the asset price movements. In 

fact, the Black-Scholes formula can be re-formulated for stochastic volatility models like the Hull-

White model: tricks such as hedging the option not only with a quantity of underlying assets but als

quantity of other options, can be used to theoretically reduce the risk for continuous hedging to zero 

once more. However, here’s the big problem for such Black-Scholes followers: in general there is no 

such differential equation model, like the coupled equations (6.11) and (6.12), which can adequately 

reproduce all the important features of the financial market price-series of interest. So how can one 

even start to generalize Black-Scholes under these conditions? As suggested by the discussions in 

Chapters 2 and 3, the ‘no model’ situation will be the rule rather than the exception. Hence we need

move to the next stage of Bouchaud and Sornette’s formalism. We already have a general analytical 

formula for calculating the variation of the option writer’s wealth: now we want to see what happens 

when we average over all possible real-world realizations. This will give us an expression for the real

ing 

ollow o be 

o a 

 to 

-
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world option price, i.e. an option price formula in the absence of a local-time differential model for the 

asset price evolution. 

 

6.4.2 Price for a real-world option 

Instead of using a particular model for the underlying, we just consider the financial data itself in order 

to obtain the option price. We first simplify Equation (6.8) for the variation of the option writer’s 

wealth, by assuming that the risk-free interest rate 0r # . This approximation is simply a shift of 

‘reference frame’: we are moving everything to a world where the current value of cash is equal to the 

future value7. We do not need to make this approximation here, but the resulting mathematics is made 

far clearer with it. Hence Equation (6.8) becomes 

 * +* +
1

0 1
0

T

T T i i
i

W V V x x
8

i8 886
$

'
#

( # $ ' $9   (6.13) 

where for convenience we have re-defined i i , which changes nothing. Now let’s find the mean 

at t  of this variation in wealth over all possible realizations of the underlying asset’s price 

movement @

1& '

0#

A
0t t

x
# &T

 during the lifetime of the option, i.e.
0 T

T x x
W(

" . We average over Equation 

(6.13), making the substitution t i8#  to make the result easier to read: 

 ! " ! " ! "* +
0

1

0 0 | ,
0

, , ,
T T t

T

T T T t t tx x x
t

W V x X T V x X x x x
8

8

8
8

6
'

$

'
#

( # $ ' $9" t t
t x x x

  (6.14) 

We have explicitly written out the functional dependencies of V  and 0 ,  TV t6 , to illustrate that the 

different terms depend on the underlying asset’s price at different times: for example the payoff 

function ! ",T T XV x  only depends on the asset price at expiry. Equation (6.14) expresses the averaging 

over realizations 
0 Tx x"

#  as an averaging over just the explicit dependence of the term considered 

(e.g. for the payoff function we have 
0 T Tx x x

&"# # ). This notation is demonstrated in Equation 

(6.15) below: 

 

! " ! " ! "

! " ! "
! "

0
0

0

, , , |

|
T

t

t t T T T Tx x

t t t

t x

f x f x p x x x x dx dx dx

f x p x x dx

f x

8 8 8$ $#

#

4

3
3

"
" " 8

                                                

 (6.15) 

 
7 In fact at the time of writing, interest rates are low across the industrialized world, hence making this a very good 

approximation.  
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given that the asset price starts off from 0x  at time 0t #  with probability unity. For a term that 

depends on the underlying asset’s price at more than one time, for example 
1 2
,t tf x x.1 /2 1t with t , the 

averaging process of Equation (6.15) is expressed as: 

2 0

 

! "
1 2 1 2

0

1 2 2 1 1 2 1

1 2
2 1 1

0

0 0

| ,

, , , , , |

, | , |

,

T

t t t

t t t t T T T Tx x

t t t t t t t

t t x x x

f x x f x x p x x x x dx dx dx

f x x p x x x p x x dx dx

f x x

8 8 8$ $. / . /#1 2 1 2

. / . / . /# 1 2 1 2 1 2

. /4 1 2

3
3

"
" " 8

 (6.16) 

We are able to express the averaging as in Equations (6.15) and (6.16), since the value of the function 

! "tf x  cannot be conditional on the value of the underlying asset at any future time . Note that we 

have not yet made any assumptions regarding statistical independence. Unless otherwise stated, we 

will drop the explicit dependence of 

't 0 t

! "0| ,t tp x x x8'  on 0x , since 0  is fixed throughout. The option 

cost V  is not a function of the underlying asset price at any point except 0 0t # . Since we assume that 

all asset price realizations @ A
0t t

x
# &T

 start at the same fixed price 0x , a function of 0x  alone is constant 

under the averaging process. Let us now expand the summand of Equation (6.14): 

x

 

! "* + ! " ! "

! "* + ! "
! "

|| , t tt t t tt

t t

t

t t t t t t t t t tx xx x x xx

t t t t t t tx

t t t x

x

x x x x x x x

x x x x

x

88
8 86 6

6 D 6

6 D

''
' '$ # $

# ' $

#

6

 (6.17) 

In the second line of Equation (6.17) we equate the average value of the underlying price at time t 8'  

(i.e. 
|t t

t x x
x

8
8

'
' ) to the asset price at time  (i.e. t tx ) plus a conditional drift term tD . Below is a 

schematic diagram showing the position of this average value: 

 

igure 6-8: Schematic diagram showing the position of the mean of the PDF

 p x x[ ]t t '8B B!

xt'8
xt xt t'D

F  ! "|t tx xp 8' . The two shaded portions 

have equal area. 
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More formally: ! "|
0

|
t t

t t t t tx x
x x p x x dx x

8
8 8 8 8 t tD

'

-

' ' ' '# 3 # '   (6.18) 

However, under un-biased movement of the underlying asset price, the conditional drift term tD  will 

be equal to zero. We are now going to make our first major assumption, that 0tD # . This gives 

us:
|t t

t x x tx x
8

8
'

' # , and consequently, the summation term of Equation (6.14) is equal to zero. Later we 

will discuss relaxing this assumption to account for biased asset price movements. We can now go 

ahead and assert the principle of no arbitrage, which basically states that the option should be written 

at a ‘fair’ price - hence neither the writer nor the holder will on average make any money from the 

contract: 

    
0

0
T

T x x
W(

"
#   (6.19) 

Combining equations (6.14) and (6.19), we obtain the price of the contract V : 0

 ! " ! "

! " ! "

0 0

0
0

, , ,

, |

T
T T x

T T T T

V x X T V x X

V x X p x x dx
-

#

# 3
   (6.20)  

 

 

 

If, for example, we set the payoff function to be that of a European vanilla call, i.e. 

! " ! ", max ,T T TV x X x X# $ 0

0 Tx

 then the option price from Equation (6.20) becomes: 

  (6.21) * + ! "0 |T T
X

V x X p x x d
-

# $3

 

6.4.3 Implementing the real-world pricing formula 

We have constructed a pricing formula for options without the need for an underlying asset price 

model. The only assumption has been that the increments of the underlying asset’s price have zero 

mean. However unlike the Black-Scholes option price formula for a given payoff function, the pricing 

formula of Equation (6.20) is not in a ‘closed-form’: we cannot simply drop the formula into a 

spreadsheet and expect it to spit out a number. This has been a common criticism of the Bouchaud-

Sornette approach: practitioners managing portfolios of thousands of contracts need a very fast pricing 

system. However, it is easy to be scared-off unnecessarily by the integral sign of Equation (6.20). It 

really can be a very quick process to numerically obtain the probability density function ! "0|Tp x x  and 

integrate over it. We will demonstrate this with an example using real data. The dataset we will use 

here is the same as that analyzed in Chapter 3: the daily closing values for the NYSE composite index 

which, at the time of writing, is freely available from http://www.unifr.ch/econophysics. Our analysis 
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of this data will parallel some of the discussion of data-analysis in Chapter 3. However in contrast to 

Chapter 3 where we used the entire data-set to characterize the statistical properties, we here want to 

mimic the typical scenario faced in practice whereby the available dataset is not particularly large. 

Furthermore we want to provide a step-by-step cookbook of how to implement the statistical analysis 

of this data in preparation for its use in the formalism, by contrast to the discussion in Chapter 3 which 

just focused on the end results of this statistical analysis. We will therefore be using a relatively small 

subset of data. Specifically we will use daily data for the period 1990-1998, instead of the entire record 

from 1966 onwards.  

The first step is to use the series of prices to generate a series of returns over a time increment 

, the expiry time of the option. This is achieved using the definition of returns (Equation (1.3)):  t T( #

 ,
t t T

t t t T
t T

x xR R
x

$
$

$

$
4 #  (6.22) 

Let’s consider a one-month (i.e. T  trading days) European call-option. Recalling our assumption 

of an underlying movement with no drift, we need to de-trend these returns by subtracting the mean, 

i.e. 

21#

't t t t
R R R# $ . Next we need to build a histogram of the de-trended return probability, in order to 

simulate the probability density function ! "0|Tp x x . Most spreadsheets and analysis packages come 

with tools to do this automatically, however the process is simple: 

a. Identify the minimum minR  and maximum maxR  de-trended  returns in the series 

b. Define a bin-size * +max minR R R( # $ n  as a guide, where  is the length of the series n

c. Define a function ! "'n R , which is the number of detrended returns in the series @ A'R  which 

have a value in the range ' 'R R R& '(  

d. Calculate ! "'n R  at the discrete values min'R R j R# ' (  for each integer j  in the range 

0j n) )  and assume ! "'n R  is constant within the range ' 'R R R& '( . 

e. Calculate the frequency ! "'n R n  for each bin 
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Figure 6-9: Histogram of one-month de-trended returns (i.e. ! "n R nE ) on the NYSE composite index for 1990-8. 
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The histogram of returns looks non-Gaussian, as also found in Chapter 3 for the larger dataset. In fact 

the kurtosis  is well in excess of that for a Gaussian. This histogram of returns can be mapped to 

the PDF we require in the following way. We use the fact that 

5F 0

0 0 'Tx x x R# '  to give 

 ! " 0

00| ' Tx x
T T x Tp x x dx p R dx$. /# #1 2  

The probability 0

0
' Tx x

xp R $. #1 /2  can be obtained from our histogram (see Figure 6-9). As ! "'n R n  gives 

the frequency of occurrence of returns within a return-interval R( , then the density of this occurrence 

is given by dividing by the interval length. In price space ( Tx ) this interval length is 0x R(  thus: 

 ! "
0

00

00
0

| '
T

T

x x
xx x

T T Tx

n
p x x dx p R dx dx

n x R

$
$

. /1 2. /# # #1 2 ( T  (6.23) 

This gives us a PDF of the form needed to calculate the option price: so let’s now use it in Equation 

(6.21). First let ! " * +0 min1x j x R j R# ' ' ( . Then, using Equation (6.21) and (6.23): 
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V x X T x X p x x dx
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x j X x X dx

n x R

n R j R x Rx j X x j X
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#

$

#

# $

: ;' (
. /# $ $< =1 2 (> ?

: ;' ( (: ;. /# $ $ '< =< =1 2 > ?> ?

3

9 3

9

 (6.24) 

where ! "H x  is the Heaviside function. We have used the fact that, due to our method of forming the 

histogram, the probability is constant in any bin. Equation (6.24) may look complicated, but it is really 

quite simple and fast to evaluate numerically since the number of terms in the sum (i.e. n ) is 
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typically small. The results from pricing an option with initial asset value , and our one month 

maturity T , are shown below in Figure 6-10 for a range of values of the strike price

0 500x #

21# X : 

0: The X  for a Eu an call rope

de

. What we reral vari

 

igure 6-1 calculated real-world option price as a function of the strike price 
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This gen ation of call option value with strike price, is as expected eally want to do 

at this point is to compare this generated ‘real-world option price’ with the Black-Scholes result from 

Chapter 2. Instead of just putting the two prices side-by side, let’s use the common trick in finance of 

running the Black-Scholes formula backwards from our supposed ‘real-world option price’. We can 

then solve for the Black-Scholes volatility 5  that would have resulted in this same price. This quanti

is known as the ‘implied-volatility’: 

 

ty 
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Figure 6-11: Implied volatility as a function of option strike price for a European call option of initial spot value 

 and expiry T days on the NYSE composite index. The prices used to generate the implied volatility 

curve were calculated using Equation (6.24). The horizontal dashed line shows the value of the historical volatility.  

0 500x # 21#

 

Figure 6-11 provides a wonderful example of the ‘implied-volatility smile’ (though its shape is often 

more of a ‘smirk’ or even a ‘frown’.). This is the same type of result that one obtains from calculating 

the implied volatility from actual traded option prices, thereby giving us confidence in the new 

formalism8.  

 

6.4.4 Quantifying the risk analytically 

We now turn our attention to minimizing the spread of the wealth distribution, and in turn the option 

writer’s ‘risk’. We use the term ‘risk’ rather casually here to imply the uncertainty in the option 

writer’s profit-and-loss situation. We want to keep our approach reasonably general, hence we will 

consider an adequate measure of uncertainty in an outcome to be an increasing function of the 

outcome’s variance. With this in mind, the minimization of the outcome’s risk becomes a 

minimization of the variance of that outcome. Since we are considering our outcome to be the profit or 

loss the option writer experiences, i.e. the ‘variation of wealth’ TW( , we therefore need to minimize 

the variance * + *
0

0

22

T
T

T T x xx x
W W( $ (

""
+ . We have already asserted however that 

0
0

T
T x x

W( #
"

 

                                                 
8 As with all numerical implementations, the evaluation of Equation (6.20) described in this section has some intrinsic 

numerical error. This error arises from the discrete binning of the data when forming the PDF. Equation (6.24) 

approximates the lower limit of the integral in Equation (6.20) to the nearest bin. For simplicity, we suggested a number of 

bins of order n . In general the greater the number of bins, the more sensitive the calculation is to the finite nature of the 

dataset. 
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by the principal of no arbitrage (or equivalently setting a ‘fair’ option price), hence the variance of the 

option writer’s variation in wealth at expiry is given by: 

! " * +

! " ! " ! "* +

0

0

2

21

0 0
0

var

, , ,

T

T

T T
x x

T

T T t t t t
t

x x

W W

V x X T V x X x x x
8

8
8

6
$

'
#

( # (

: ;
# $ ' $< =

> ?
9

"

"

 (6.25) 

Expanding Equation (6.25) gives six distinct terms. Remembering that the form of Equation (6.4) is 

 +  TW( # value $ payout  hedging profit

leads us to treat these six terms one by one: 

 

value G   value

 ! " ! " ! "* +
0

22 2
0 0 0 0, , , , ,

TT
T T xx x

V x X T V x X T V x X# #
"

 (6.26) 

The option price is given by Equation (6.20) and is constant over all realizations of the underlying 

price process. This is because 0x , which is constant for all realizations, is the only asset price on which 

it depends. 

 
payout G   payout

 ! "* + ! "* +
0

2
,

T T
T T T T

x x x
V x X V x X#

"

2
,  (6.27) 

The payoff function is only a function of the underlying asset’s price at expiry Tx , hence the averaging 

is over this price alone. 
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(6.28) 

We first represent the squared sum as a double sum over the time labels t  and t , and then split this 

into two separate parts: one where '  and one where 

'

t t# 't t7 . We could then use Equation (6.16) on 

the second of these sums, but this gets messy for the general scenario. Instead we choose to make an 

assumption about the underlying asset’s movement. This will be our second major assumption, that the 

price increments ,t t t tx x x8 8$ $( # $  and ' ,t t t t tx x x8 8E E E7 $( # $$  are uncorrelated. With this assumption, the 
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second sum in Equation (6.28) vanishes. We again use our first assumption, i.e. 0tD # , and perform 

the averaging over tx 8'

* +

 in the first sum: 

t

t
x

dx 8'

tx
: ;
< =
> ?

2 , X

ing p
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 (6.29) 

In the second line of Equation (6.29) where we explicitly carry out the averaging over |t tx x8' , we use 

|t t
t t x x

x x
8

8
'

'# . This makes it easy to identify the integral as the variance of the distribution of the 

underlying asset price between times  and tt 8' , which we will call . 2
,t t85 '
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The option price is constant, as given by Equation (6.20). The payoff is just a function of Tx . 
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(6.31) 

The option price is constant, hence is unaffected by averaging over realizations. We then used 

Equation (6.17) and our assumption of zero conditional drift ( 0tD # ) to reduce the summand and 

hence entire term to zero. 

 

2$ G payout  G    profit
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(6.32) 

The summand on the right hand side of Equation (6.32) contains the asset price at times , t t 8'  and 

. This means that we need to consider realizations that start at T tx , pass through  and end at Tx . 

We evaluate this complicated conditional average in the following way:  
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where ,
t T

t t x x
x 8' &

(  represents an average increment in a realization of the underlying asset’s price 

evolution which starts at price tx  and ends at price Tx . The price increment ,t t t tx x x8 8' '( # $ . 

 

We now have all the terms in the equation for the variance of the variation in the option writer’s 

wealth. We can finally put all these contributing terms (Equations (6.26), (6.27), (6.29), (6.30), (6.31) 

and (6.33)) together to give: 

! " ! "* + ! "* +
! "* +

! " ! "

2 2
,122

0
,

| ,

var , ,
2 ,

t

TT

t T
T t t

t t t tT
x

T T T T T xx t
T T t t t t x x x x x

x
W V x X V x X

V x X x x

88

8
8

6 5

6

'$

#
' &

: ;$< =
( # $ ' < =

< =(< =
> ?

9   (6.34) 

Writing the averages in Equation (6.34) out explicitly gives us: 
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where R  is given by: c

! "* + ! " ! " ! "
2

2
0 0
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R , | , |c T T T T T T T TV x X p x x dx V x X p x x dx
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# $ < =
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3 3    

Equation (6.35) gives us an analytical expression for calculating the variance of the variation of wealth 

distribution. This variance measure can then be used in our chosen model for calculating risk. 

 

6.4.5 Risk-minimizing hedging strategy 

Our measure of the variance in the variation of the option writer’s wealth, depends on the hedging 

strategy ! "t tx6  which is adopted. It is now our objective to find a form for the hedging strategy which 

minimizes this variance, and hence our chosen risk measure. This is accomplished by means of a 

functional minimization of Equation (6.35). In practical terms, this corresponds to a simple 

differentiation with respect to the function 6 : 
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Combining Equations (6.35) and (6.36) gives us: 
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The simplest way to satisfy Equation (6.37) is to set the integrand equal to zero. This ensures that for 

any general choice of price process PDF ! "0|tp x x , the equation will be satisfied and a minimum risk 

measure then assured. Note here that Equation (6.35) is an upward-curving parabola in ! "t tx6  and 

hence a minimum (rather than a maximum) in the risk is assured by Equation (6.36). Hence: 
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,2

0,

1 ,
t T

t t T T t t T t Tx x
t t

|x V x X x p x x dx8
8

6
5

-

' &
'

# (3  (6.38) 

Equation (6.38) gives us the ‘optimal’ hedging strategy ! "*
t tx6 . The strategy is optimal in the sense 

that it is the single strategy which minimizes the variance of the option writer’s wealth and hence our 

chosen measure of risk. We can see how much risk remains by using this form of the optimal strategy 

in Equation (6.35) for the variance. This gives us a ‘residual risk’  given by: *R

! "* + ! "
1 22 **

,
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R R |
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0 tx p x x dx
8

8
8

5 6
-$
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# $ 9 3    (6.39) 

The optimal strategy of Equation (6.38) can be simplified further if we make the additional assumption 

that the increments ,t t t tx x x8 8$( # $ $  are independent and identically distributed9. This means that the 

evolution of the underlying asset does not change behaviour during the life of the option. Under this 

assumption we have: 

 2 2
, ,,    

t T

T t
t t t t x x

x xx
T t8 85 5 8 8' ' &

$
# ( #

$
 (6.40) 

where 5  is the stationary standard deviation of increments , 1 1t t t tx x x$ $( # $ . In Equation (6.38) this 

gives: 

 ! " * + * + ! " ! "*
2

0
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For the case of a European call option, Equation (6.41) gives the risk-minimizing optimal hedging 

strategy to be: 

                                                 
9 It is possible that a weaker condition could suffice. Depending on the PDFs of price-increments, it may be enough that the 

increments are uncorrelated and have identical means and variances. For simplicity, we will impose the more general 

assumption of i.i.d. increments. 
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6.4.6 Implementing the optimal strategy 

The process of taking a set of real financial data and using it to generate a risk-minimizing 

optimal hedging strategy according to Equation (6.41), seems at first to be similar to the process of 

implementing the option pricing equation. We have to construct the PDF ! "|T tp x x  and calculate the 

variance of price increments 25 . Although this seems straightforward following Section 6.4.3, there 

are some pitfalls when dealing with real financial data. These pitfalls arise mainly due to our 

assumptions about the data10: first that it has zero-mean and is uncorrelated, and then that it is i.i.d.  

6.4.6.1 Using real data 

Let’s return to look at the data itself: the NYSE composite index daily values 1990-8 which we used in 

Section 6.4.3 to price an option. We will take our assumptions one by one, and test their validity for 

this dataset. Our first assumption was that tD , the conditional mean of the increments 

,t t t tx x x8 8$( # $ $ , was equal to zero (recall Equation (6.18)). Let’s examine this by first forming the 

series of returns * +*, 1 1t t t t t +1tR R x x$4 # $ x$ $ . The value of tD  can then be calculated and compared to 

5 : 

 * +24 3
0 0 05.1 10             7.8 10t t tt t

t
x R x x R R x0D 8 8 5 8$ $I # G I $ # G 8   (6.43) 

Hence for relatively small values of the interval8 , the mean increment in the underlying’s price is 

indeed much smaller than its fluctuations. Next, let’s look at our assumption of uncorrelated 

increments in price: we used this assumption in quantifying the risk analytically in Section 6.4.4. We 

will calculate the linear correlation coefficient ! ",x yJ  defined for timeseries @ Atx  and @ Aty  in a 

similar way to Chapter 3: 

 @ A @ A
* +* +

* + * +2 2
,

t t t tt t t
t t

t t t tt t
t t

x x y y
x y

x x y y
J

$ $
. / #1 2

$ $
  (6.44) 

We wish to investigate whether the increment in price at time , i.e. t ,t tx 8$( , is correlated with the 

increment in price at an earlier time . We therefore examine the autocorrelation, i.e. 't % t

                                                 
10 The attraction of the more general formalism developed in this Chapter, is that these assumptions do not need to be 

made. The formalism becomes more cumbersome if they are not made, but the approach remains valid. 
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@ A @ A',t tR RJ . /1 2  where @ A'tR  represents the series of returns @ AtR  shifted in time such that t t' t# $( . 

Figure 6-12 below shows the autocorrelation of the series of returns @ AtR  and absolute returns @ AtR : 
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d increment

F

dataset. However there is a significant degree of correlation in the absolute returns, as reported earlier 

in Chapter 3 (see Fig. 3.4). This correlation in the absolute returns only decays very slowly and is still 

non-negligible even after a whole year of trading. Similar results are found for longer increments 18 0 .  

This then brings us to our assumption that the increments in the underlying’s price ,t tx 8$( , are 

independent and identically distributed (i.i.d.). We used this assumption at the end o tion 6

simplify our expressions for the risk-minimizing optimal strategy. The presence of correlations in the 

absolute returns in Figure 6-12, implies that the price increments are not i.i.d. In Chapter 2, we showed

that for uncorrelate s with identical variances (and hence for i.i.d. increments as well) we 

expect the variance to scale as 2 2
,08

f Sec  

5 5 8# . The numerical results for the NYSE dataset yield the 

following graph:  
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Figure 6-13: The non-linear growth of the variance of returns  as a function of time interval 2
,085 8  for the NYSE 

data (solid line). The dashed line represents growth for a random walk model, i.e. 2 2
,085 5 8# . 

 

As can be seen in Figure 6-13, there is a marked departure in the real data from the i.i.d. prediction of 

linear growth of variance. However, this departure seems relatively small for increments 508 )  

trading days. Let us also examine the stationarity of the PDF, since this is also part of the assumption 

of an i.i.d. price process. To do this we split our dataset into three roughly equal parts, each spanning 

three years. We then construct the PDF of returns , 1t tp R $. /1 2  for each period by constructing a 

histogram in the same way as detailed in Section 6.4.3: 
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Figure 6-14: Histograms showing probability distribution function (PDF) of daily returns from three periods in the 

NYSE dataset. Under each plot are the standard deviation5 , skewness (asymmetry) and the kurtosis 

(peakedness)

s
F . 
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Although the three distributions in Figure 6-14 have a similarly peaked, non-Gaussian shape, the shape 

parameters , ,s5 F

t

expiry. Let’s he substitution 'T Tx x X# $  in Equation (6.42): 

 demonstrate that the distributions are actually quite dissimilar.  

Having discussed the assumptions and their possible limitations, our job is now to develop 

insight into how deviations from these assumptions will affect our implementation. Recalling Equation 

(6.42) for the risk-minimizing hedging strategy for a European call option, we see that there are two 

empirical forms that we need to obtain from our dataset: 5  which is the standard deviation of 

increments , 1 1t t t tx x x$ $( # $ , and ! "|T tp x x  which is the p obability density function. Let’s start with r

5 . The standard deviation of price 

  is the standa

when dealing with real financial 

oney’ option (i.e. 
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rd deviatio timestep 

ade the assump ents in order 
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tion of i.i.d. increm

, 1t tR $. /1 2

‘in-the-m

5

tx X ). We$  would expect that the write ould be very close to r’s hedge w

1#  since it is almost certain

 use t

 that the asset would be due to be delivered to the option holder at 

! " * + ! "*

0

1 ' ' ' | 't t T t T T t Tx x X x x p x X x dx6 # ' $ '3  (6.45) 

The limit tx X$  gives: 

* +
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*
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2
,

1

T tT t
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x x
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where 2
,T t5  is the variance of price increments ,T t T tx x x( # $ . Equation (6.46) would of course give 

! " 1t tx6 &  in this limit under the assumption of i.i.d. increments, because we then have 

* +2 2 9

to analytically construct the optimal hedging strategy, we have shown above that the real data exhibit 

some departure from this assumption. Let’s explain hy this might concern us here: consider

6

 
* +2 T t5

-

$
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 ,T t

T t
5

5 #
$

b . We then could construct our PDF by analogy with 

 (6.47) 

where ,T t5  is the volatility of price increments ,T t T tx x x( # $

ents to arrive at ur as ! "*
t tx6 .

Equation (6.23) as: 

 ! "|T t T Tp x x dx dx
n x R

#
(

 (6.49) 

However, we saw earlier in this section that the distribution of returns was not in fact identical for all 

. However, this misses the point that we 

sed o sumption of independent incremu  If our data deviates from our 

assumptions, we can no longer assume that the hedging strategy of Equation (6.42) is at all ‘optimal’. 

Let us now turn our attention to the construction of the probability density function ! "|T tp x x

T $

t ; if this 

ithin our dataset. We therefore ought to use a sufficiently small window of past times during 

which we believe the distribution is indeed stationary. However this has the associated problem that 

without a large amount of data, the error in constructing the PDF is large. It seems therefore that we

either should generalize our assumptions to cater for the nature of the dataset we’re handling, or use a 

‘surrogate’ dataset containing some of the features we obse

. 

terval of This is a distribution of price changes over an in t  timesteps (in our case days). Recall ou

therefore first generate a series of returns 

 * +

* +

t t T t

t T t

x x
R R E E$ $

E$ $

$
4 #  8) 

and then, following the same procedure as Section 6.4.3, de-trend the retur s ( 't t
R RE E E

#

r 

assumption from Section 6.4.5 that the distribution of price increments is identical for all 

were true, we would then only have to worry about the time interval of our returns and not the absolute 

times. We could 

* +, tt t T t xEE E$ $

o s Chapter to consider the effect of 

(6.4

n
t t

R
E

$

! "'n R

) and 

in the data to generate a histogram giving 

! "'
t

n R

times w

 

rved in the real data, but lacking the 

features which compromised our assumptions. We will follow the second of these approaches below in 

rder to illustrate the method, and return at the end of thi

generalizing the underlying assumptions. 

 

6.4.6.2 Using surrogate data 

The basic aim is to construct a new dataset having the same PDF of one-timestep returns ! "p R  

as the original dataset, but with i.i.d. increments. We can then use this dataset in place of the original in 

an implementation of Equation (6.42) since it won’t break any of the assumptions we have made. We 

generate the surrogate dataset as follows. First we need to construct the PDF of one-timestep returns 
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from the original data. We follow the procedure of Section 6.4.3, by first forming the return time-seri

@
es 

AtR  such that: 

 , 1
1

t t t
t

x xR R
x$
$

$
4 #  (6.50) 

Then we de-trend the data, 't t t t
R R R# $  and bin it between minR  and maxR  such that: 

 ! "' ' 'p R dR

1t t$

returns timeseries generated cial dataset. As requ , we f  that surp R.

! "'n R
dR

n R
#

(

a ate  scales as surrogate
,0t t5 5( # ( . Also since we 

 (6.51) 

Having constructed ! "'p R

independent, identically distributed returns 

, we need to sample it randomly in order to generate a timeseries of 

@ Asurrogate
tR

have generated each  independently, there will be no autocorrelation between any funct

. We do this in the following way: 

 Define a. max

b. Choose a random number r  uniformly distributed between minR  and maxR . 

c. Choose a random number p  uniformly distributed between 0 and maxp  

d. If ! "'p R r p# ,  then append r  to the series @ AsurrogateR  

e.

nd t

the inc

fina

Lim

 

it Theorem, in contrast to the i.i.d. surrogate data: 

! "max 'p p R. /# 1 2

er t(  timesteps scales with t( , we find that the original 

, the maximum likelihood value of the de-trended returns PDF 

t

@ Asurrogate
tR Loop back to step b. until  reaches required length 

Once we have our surrogate i.i.d. timeseries @ Asurrogate
tR

! "rogate 'p/ #1 2  
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surrogate
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lose the unique scaling behaviour shown in the origin
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Figure 6-15: Excess kurtosis (i.e. 3F $ ) of returns over t(  days. Cr

Solid line shows (power law) decay for surrogate timeseries. 

 

6.4.6.3 Implementation 

We will now implement the optimal strategy. We will 

manufactured it to obey the assumptions we made earlie

return length  (days)(t

ex
ce

s
F$

osses show anomalous decay for NYSE data. 

do this using the surrogate data since we have 

r in the analytical formalism. We will discuss 

e optimization process for the original, non-i.i.d. data later on. The process of implementing the 

hedging strategy is similar to that of implementing the fair option price (Section 6.4.3). We begin by 

th

taking the surrogate timeseries @ Asurrogate
tR  and binning it to generate a histogram . We then 

onstruct our PDF as: 

surrogaten R. /1 2

mint
11

expression for the optimal hedging strategy: 

c

 ! Tp x "
surrogate

|
T t

t

x x
x

t T T
t

n R
x dx dx

n x R

$. /#1 2#
(

 (6.52) 

Defining ! " * +1x j x R j R# ' ' (  and using Equation (6.52) in Equation (6.42), we arrive  at an 

                                                 
11 We again consider a European call option as an example. 
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 (6.53) 

Figure 6-16 compares the optimal hedging strategy - implemented using Equation (6.53) together with 

the surrogate data - to the Black-Scholes delta, at two different times during the option’s lifetime. The 

forms of the

500X #  and expiry days, on the NYSE 

composite index. 

 

 21T #

 two functions are similar as expected, but the risk-minimizing optimal strategy shows a 

markedly lower sensitivity to the underlying asset movement near the expiry time of the contract. At 

the start of the contract, the Black-Scholes delta-hedging strategy and the risk-minimizing optimal 

strategy are very similar. This is due to the fact that, with the i.i.d. surrogate data, the distribution 

! "0|Tp x x  has become essentially Gaussian due to convergence under the Central Limit Theorem. 
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Figure 6-16: Comparison of the risk-minimizing optimal strategy (solid curve) and the Black-Scholes delta-hedge 

(dashed curve). The option is a European call option with strike 
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6.4.7 The residual risk 

We have shown how to derive and implement a method for pricing and hedging options, based on just 

the historical underlying asset price data. The formalism we used1 had the aim of minimi

spread of the option writer’s variation in wealth. We demonstrated earlier in Section 6.4.1 that in the 

general case, even if the option writer were able to re-hedge continuously, his/her spread in variation 

of wealth would be non-zero. Essentially the option writer’s portfolio has a non-

6.4.5 we showed that this risk could be minimized with a suitable choice of hedging strategy leaving a 

minimum, or ‘residual’ risk. We now examine the behaviour of this residual risk as a f

different option parameters. This calculation of the residual risk for a real financial datase

a numerical implementation of Equation (6.39). Following the same method as Section 6.4.6 for the 

implementation of the optimal strategy, we arrive at12: 
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$ -
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# $9 3
 (6.54)

zing the 

zero risk. In Section 
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with ! " *0 1x j x#

 

+minR j R' ' (

erical implementations, the in

, and with the returns to be binned given by . Unlike our earlier 

um tegral in Equation (6.54) must be erically, since the 

surrogate
tR

 evaluated num

! "*
t tx

n

 for a given real financial dataset is not a simple analytic function 

he 

form of the optimal strategy 6

(see Equation (6.53)). This makes the numerical calculation of the residual risk computationally 

intensive and subject to numerical error. Figure 6-17 shows the dependence of the residual risk on t

two parameters of the option, the maturity T  and the strike price X : 

 

                                                 
12  We use the surrogate dataset, since the expression for risk was generated with the same assumptions regarding the 

behaviour of the underlying asset. 
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Figure 6-17: Variation of the residual risk *R vs. the two option parameters, ma

option was re-hedged every day ( 18 # ). The initial spot value was 0 500x # , and 

minimizing hedge was the surrogate timeseries @ Asurrogate

tR  generated from the NY

 

6.4.8 Risk premium 

In an efficient market, the prices of the same contract offered by ma

same. However, in practice this is not always the case. If the contract is ris

spread of his/her probable returns is non-zero), the supplier will tend to add 

to the contract price. This seems reasonable, since it is generally ac

they view uncertainty as a bad thing, and thus require monetary comp

uncertainty. However the extent and manner in which 

turity  and strike priceT X
data 

ta. 

adequate compensatory ‘risk premium  popular technique involves using t e variance of th

portfolio in order to calculate k premium. For example, rtain assumptions the risk-

compensation described by Equation (6.55  can be arrived at either from a

. The 

the used to produce the risk-

SE da

ny different suppliers should be the 

ky for the supplier (i.e. the 

a so-called ‘risk-premium’ 

cepted that people are ‘risk-averse’: 

ensation for accepting more 

different suppliers of a contract will judge this 

sk, can be very different: after all, there are many ways of assessing risk and hence calculating an 

’. A h e 

a ris under ce

) below  utility maximization 

rgument, or from a Value-at-Risk (VaR) approach: 

 

ri

a

! "varT TW WK( # (  (6.55) 

Here K

( #

 represents the degree of risk-aversion that the option writer desires. Equation (6.19) in Section 

6.4.2, gave the ‘fair’ option price by setting 
0

0
T

T x x
W

"
. We now ask what would change if instea

of simply using the no-arbitrage ‘fair’ condition for pricing, we used a risk-averse pricing scheme such 

as Equation (6.55). Recall the equation for the variation of the option writer’s wealth TW( , in compact 

form: 
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 0T TW V V H( # $ '   (6.56) 

where H  is the term corresponding to the gain or loss from hedging assets. We can express the 

variance of Equation (6.55) above as: 
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  (6.57) 
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,x x"
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0 T

‘expensive’ the option is: the higher the risk-aversion K , the more the option will cost

‘fair’ price TV . 

 

 is our shorthand for averaging over all und

Cancelling, and using the fact that for unbiased increments of the underlying asset we have 0H #  

(recall Equation (6.17)), we get: 

 
* + * +

* +

2 22 2

hich is exactly the same result as Equation (6.35). H

2

2
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 (6.58) 

R 2 R

T T T T T

c TH V H# ' $ #

w ence  

 ! " 0 0var    R    RT T T TW W V V V VK K K( # ( L $ # L # '   (6.59) 

Our risk-averse pricing scheme given by Equation (6.55) has simply resulted in an additive term to the 

earlier option price (Equation (6.20)). This additive term is proportional to the standard deviation in 

e option writer’s variation of wealth. Interestingly, one could use Equation (6

writer’s degree of risk-aversion based on traded market option prices . This gives an idea of how 0V

2 1t t1 2

normally distributed. To reproduce the Black-Scholes formula we will here assume a lognormal form 

for the underlying’s distribution of returns such that: 
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  (6.60) 

where 

> ?$

 in excess of the 

6.4.9 Black-Scholes as a special case 

The numerical results in Section 6.4.1 suggested that if the underlying asset’s price movement was 

-Scholes delta recipe, then the risk of the 

contract would vanish completely. Here we show that the formalism of Bouchaud and Sornette also 

predicts this miraculous result, but as a special case: in particular, for a special choice of underlying 

asset price PDF 

i.i.d. lognormal, and we hedged continuously with the Black

|p x x. / . This special form of PDF can be shown to be lognormal, normal or quasi-
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BS5  is the Black-Scholes volatility. 
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6.4.9.1 The option price 

es 

Now let’s make the substitution 

We start by looking at the Black-Scholes option price for a European call option. Equation (6.21) giv

this price as: 
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, we have neglected terms greater than the second power of the return in the Taylor 

quation (6.63). For Black-Scholes, the elementary probability 

Since 1tR !

t

ty ! "1t t|p y y $

 

! " 2

0

ln
2 2

0 0 BS
ln

2 2

0

BS

T

X xy

T
X x

V x e dy

T5

#

NO
N

3
  (6.65) 

expansion of the logarithm in E

distribution of returns ! "p R  is Gaussian: hence from Equation (6.63) the probability density function 

of , , can be calculated using: 

 ! "
2

1
t

t t
Rp y z p R z y

z $

.H
# # $ ) $N PH

w quation (6.65) is identical to the Black-

t   (6.64) 

The mean of this PDF is * +2BS1
1 2ty 5$ $  and the variance is * +2BS5

mit Theore interval 0 ) )t T .

 ! "0| 0Tp y  has converged to a Gaussian with mean * +2BST 5  1
2$ * +2BS

. We can now exploit the Black-

Scholes assumption of continuous time to say that there have been an infinitely large number of 

 The em then implies that the 

istribution and

Therefore, we can now calculate Equation (6.62) to be: 

* + * + * +

! "

! " * + ! " * +

0 2 2BS BS

BS BS
0

0 BS

2

ln 2 ln 2

T
y T Te e

T

x X T x X T
x X

5 5

M 5

5 5

- : ;$ '$

. / .' $P N# $ O
P N

1 2 1
T5

< =
> ?

/
P
P
2

here ! "xO

0r # ). 

 is the cumulative normal distribution function. E

Scholes formula for the price of a European call option (see Equation (2.62) in Chapter 2 with 
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Hence by inserting the as ut the underlying ass  continuous-time into the present

6.4.9.2 Th g strategy 

We saw in Section 6.4.6.2 that when our data had almos

sumptions abo et and  

formalism, the Black-Scholes result appears as a special case. 

 

e hedgin

t converged to a Gaussian distribution in the 

limit of large time-increments, the risk-minimizing optimal strategy of the present formalism almost 

coincided with the Black-Scholes delta-hedging strategy. We now show that, given the Black-Scholes 

ssumptions, the risk-minimizing optimal strategy analytically reproduces th

exactly. We start by recalling that the lognormal distribution of the underlying asset’s price movement, 

which is assumed in Black-Scholes, is very well approximated by a standard Gaussian distribution if 

a e delta-hedging strategy 

the underlying asset price is sufficiently large: in particular 0x T5$ . We will use this as a 

simplifying assumption in what follows. We first then take the Gaussian form of the PDF 
2t

p x x. /1 2   

* +
* + * +

2
2

2 1

2 1

21|
2

x x t tt t

t tp x x e
t t

5

M 5

: ;
< =< =

. /1 2 $
 

1
| t

* + 2 1

1 2 1tx t t5H $

The risk-minimizing optimal strategy for a European call option, Equation (6.42), is given by: 

* +
*

2

1
t t T t T T t T

XT t5

-

$

Comparing Equations (6.66) and (6.67) we get: 

t t T T t T
t tX

V
x

- HH
H H

where we have identified 

2 1

2 1

> ?
$ $ $

#

Then we differentiate to get: 

 2 1

2 |t t
t t

x x
p x x

$
. /# 1 2

6

2 1
|t tp x x. /H 1 2  (6.66) 

 ! " * +* + ! "|x x x x X p x x dx6 # $ $3  (6.67) 

 ! " * + ! "* | tx x X p x x dx
x

6 # $ #3  (6.68) 

 Tx  (6.69) 

as the option price at time , by comparison with Equation (6.21). Hence Equation (6.68) gives us 

ult from Equation (2.55), that the optimal hedging strategy should be 

* + ! "|t T T t
X

V x X p x x d
-

# $3

t

! "* t
t t

t

Vx
x
H

#
H

exactly the Black-Scholes res

. 
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6.4.9.3 The residual risk 

A k-Scholes pricing and hedging ll that remains to be done now is to show that by using the Blac

formulae, the risk of option writing disappears altogether. If we differentiate two Gaussian underlying 

n (6.66) of the previous section, we get: price PDFs, using Equatio

 | |x x p x x. / . /  (6.70) 
* + * +

2 1 2 1

2 12 2
2 1

| |t t t t t t t t
t t t t

t t

p x x p x x x x x x
p

x x t t t t5 5

. / . /H H $ $1 2 1 2 # 1 2 1 2H H $ $

th nd side yields 

!2
0t5 tMultiplying by "|p x x x

! "* +*2
t tx dt5 63 3 . This implies that the residual risk becomes zero in accordance with

, and integrating over the intermediate asset value  and time, gives: 

 
! "2 1

1 2 1 2 1

2
0

0 0

0 0

| |
|

| , | |

T
t t t t

t t
t t

t t t t t

p x x p x x
p x x dx dt

x x

0p x x x x p x x p x x

5

Q

- . / . /H H1 2 1 2
H H

. / . / . / . /# $1 2 1 2 1 2 1 2

3 3

a  processes, or we had not assume

 (6.71) 

Recall the form of the residual risk, Equation (6.39). The continuous hedging scenario, where the 

al as the step sizediscrete sum turns into an integr  08 &

can show using the Euler-McLaurin formula for the difference between an integral and a discrete s

that for small re-hedging times 8  the residual risk is given by: 

, gives: 

 ! "* + ! "
2

0R R |
T

c t t t tx p x x dx dt5 6
-

# $ 3 3  (6.72) 

If we multiply the identity of Equation (6.71) by the payoff functio

** 2

0 0

 

n, and use the fact 

at ! "*
t t t tx V x6 # H H

!
2

0 0

|
T

, then the right-hand side becomes  while the left-haR c

"0t tp x
-

raculous Black-Scholes resu

underlying proces

x dx

mi

n s that was

that we could hedge continuously, then we would 

 zero

where the cumulative probability distribution ! "|X T T
X

P p x x dx
-

0 # 3  gives the probabil

e have (using the substitution of T Ty x X# $  in Equation (6.21)) 

 * + ! " ! "0 0
0

| | 0T T T T T T
X

TV x X p x X dx y p y dy# $ # #3 3   (6.74) 

whereas the residual standard deviation in wealth variation can be obtained from Equation (6.73) by 

,  the 

lt. However this result of -risk is not general: if we had not assumed 

 a member of the Gaussian family of d 

not have found this special-case result. Indeed one 

um, 

* +
2

*R 1
2 X XP P5 8

0 0# $  (6.73) 

ity that the 

option is exercised at time of expiry. This t in general small: for example for an at-

the money contract (

0

remaining risk is no

0X x# ) w

2
5

M

- -

1
2XP0 #  for an at-the-money option: using 
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5 5 5
4

V
8

( # # $ # #R*

2 8T X X
8 8 M

0 0   (6.75) 

ence if we have a one-month contract that we hedge 

 

H every day (i.e. 21T 8 % ) then the spread in the 

We again consider a European call option. The ‘fair’ option price is given by Equation (6.21): 

0 0T T T
X

-

3

Rewriting Equation (6.76) as 
Y

option writer’s variation of wealth is approximately 20% of the option value. Of course with non-

residual risk is much d 

away: the differential form of the Black-Scholes formulation cannot take into account the large jumps 

.4.10 Expanding around the Black-Scholes result 

 will develop systematic corrections to the Black-Scholes 

results. 

6.4.10.1 Expansion of the option price 

 x  (6.76) 

Tdx  (6.77) 

 

0 T T

Gaussian underlying asset price processes, the  higher and can never be hedge

a real underlying asset may perform, hence the option portfolio cannot be replicated perfectly. 

 

6

We now turn to look at the effect of non-Gaussian underlying asset price distributions, by expanding 

the PDF about the Gaussian. In this way, we

* + ! "|V x X p x x d# $

* + ! "0 0lim |T TY
X

V x X p x x
&-

# $3 

and integrating by parts, we have 
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 (6.78) 

. In the last line of Equation (6.78) we used the fact that where ! " ! "' | 'P z p x x dx
-

# 3 0T T
z

0 ! " 0P Y0 &  

 probability faster th ust hold to guarantee the correct normalization of the

 the transformation of the ‘fair’ option price in Equation (6.78) such 

an * +Y X$ &- , which m

distribution. Hence we have made
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that we can now expand ! "TP x0  around the Gaussian. If we make the substitution * +Ty x X T5# $ ,  

we can expand around the cum lative Gaussian u ! "GP y0  which has mean * +0z x# $ X T5  and unit 

g and expiry variance. We expand in (rooted) powers of the num  timesteps between writinber of
2kT 8  as: 

 ! " ! "
* +

2 2
1 2

12

y z Q yeP y y
T TM 8 8

$ $ : ;
< =# ' ' '
< =
> ?

"

where the functions 

1/ 2

Q y
GP0 0  (6.79) 

" ials of the normalized cum 13 kK . The first two of these 

ials can be written as: polynom

! " * * + ! " * + * + * +2 2 2 22 3 5
2 3

26
d d de
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2K K2 2 2 234

1 2 3 5 ,     
24 72

y z y z y z y z y zQ y e Q y e e e
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$ $ $ $ $ $ $ $ $ $# $ $   

  (6.80) 

Now we can combine Equations (6.80), (6.79), and (6.78) to give: 
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 (6.81) 
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 are polynom ulants

+

We can use Equation (6.82) directly from our knowledge of the moments (and hence normalized 

+
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The integrals in Equation (6.81) are standard14. Hence we can easily obtain a cumulant expansion of 

the ‘fair’ option price around the Black-Scholes (Gaussian) price , as follows: GV

* + * + * + * +

2
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2
2 4 23 34 1 6

24 726

z

G
eT

z z z z
T TT

M
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8 88

$

: ;
G $ ' $ ' $ ' '< =< =
> ?

"3
  (6.82) 

cumulants kK ) of the probability density function of underlying asset price movements, in order to 

obtain the price correction to the Black-Scholes option price. Alternatively we can extract from 

Equation (6.82) an ‘implied volatility’ as we did in Section 6.4.3, as a function of the moments of the 

underlying asset’s distribution. First we expand the option price to first order, using Equation (6.78): 
                                                 
13 Cumulants  are standard parameters characterizing the moments of a PDF. The normalised cumulants are given by nc

ncn nK 5# . For example, the third and fourth normalised cumulants 3K  and 4K  describe the skewness and kurtosis of 

the distribution: * +3 3
3 x xK 5# $  and * +4 4

4 3 x xK 5 F' # $ 4  respectively. For more details see [G] 

and [BP]. 

d’ in the sense that they can be found in formulae books readily so needn’t be explicitly calculated here. 14 ‘Standar
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Comparing Equations (6.83) and (6.82), and considering the typical case in which the skewness of the 

underlying asset price distribution is not the dominant feature as compared to the kurtosis (i.e. 
2

3 4K K! ), we find the implied volatility imp5 5 Q5# '

! " * + * + ! "*
2

1 |t t T T t Tx x p x x dx6
5

# $
$ 3  

 to be given by: 
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0
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31 1T X xF5 5
: ;: ;$$< =< =# ' $

< =

W  sum over the distribution’s cumulants  

24 T5< => ?
 (6.84) 

> ?

where TF  is the kurtosis of the PDF ! "0|Tp x x . Equation (6.84) is parabolic in the strike price X . T

effect of the skewness term is to skew the parabola to one side or the other. This explains the ori

the implied volatility smile, as seen for example in Figure 6-11. For typical asset price PDFs where the

excess kurtosis is positive, Equation (6.84) predicts the ‘smile’ seen in traded option-price implied 

he 

gin of 

 

volatilities. A large skewness and/or anomalous negative excess kurtosis, can turn this ‘smile’ into a 

‘smirk’ or ‘frown’. 

6.4.10.2 Expansion of the optimal hedging strategy 

We will again expand the general result about the Black-Scholes Gaussian case, focusing on the risk-

minimizing hedging strategy for a European call option given by Equation (6.42): 

 +*t T
X

x x X
T t

-

$ (6.85) 

e can transform the probability distribution ! "|T tp x x  

ier Transf,n T tc $ ! "|T tp x x

! "T tp z$

into a 13

 . Firstly we use the definition of the Four orm of the probability distribution , 

&

 ! " & ! " * +1| T tiz x x
T t T tp x x p z e dz$ $
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$-

# 3  

to give 
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+ ! " & ! " * +
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izM
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H
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H $3  (6.86) 

We can express the Fourier Transform of the PDF as a sum of cumulants: 
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Inserting Equation (6.87) into Equation (6.86), and integrating by parts, we get: 

 

* + ! "
* +

* +
* +

* +

* +
* +

* + * +
* +

* +

,
2

,
2

,
2

,
2

!

!

1 1
, !

2

1, !

1|
2

2

1
2 !

1
1 ! 2

n
n T t

n T t

n
n T t

n T t
n T t

n
n T t

n T t

c iz
iz x xn

T t T t

c iz
n

c izn n
iz x xn T t n

n

c iz
n iz x xn T t n

x x p x x e e dz
iz

c ni z
e e

n

c
iz e e dz

n

M

M

M

M

- $
#

$
#

- $
#

- $
#

-
$ $

$-

-

' $-
- $ $$

#
$-

$ $ $$

$

H9$ #
H $

. /

N P

9$

9#
$

3

93

2n

-
-

#
-

9 3

* +1 T t n

n

iz x x
ie

-
$ $ '

$-

N P#
1 2  (6.88) 

dz

9

gral in the last line of Equation (6.88) is the The inte * +1n $ th derivative of the probability distribution 

! "|T tx x  with respect to tx

* +T t$

p . This is evident if we look again at the Fourier expansion of the PDF: 
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(6 1). We now examine our cumulant 

(6.89) 

rom Equation (6.89), we see that differentiating the P

down successive powers of * +iz , just as we require for Equation (6.88). Thus we h : 

 

ave

expansion of the risk-minimizing hedging strategy for the Gaussian distribution, in which case all the 
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Combining Equations (6.85) and (6.90) gives the cumulant expansion of the optimal hedging strategy: 
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 (6.91) 

In the second line, we used the assumption that the movements of the underlying asset’s price are  

i.i.d., since in this case the cumulants are additive, i.e. , ,n T t nc c 88$ #

tion (6.2 tV t ,

c  for 3n ,  are identically equal to zero. In th ) scenario, 

Equation (6.91) then gives back the Black-Scholes delta hedging strategy: 

is special (Black Scholes

. The last line of Equation 

.91) includes , the option price at time  via Equa

cumulants 
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  (6.92) 

distribution of underlying price movements, will lead to the necessity for higher-order corrections to 

the hedging strategy in order to minimize the risk of writing the option. 

 

 This brings us to the end of our technical tour around a generalized treatment of derivatives. 

This tour took us back to re-examine the foundations of risk, hedging and pricing, and through a step-

e’ Black-Scholes 

formulation could be classified as ‘uglier but far more robust’ since it does not depend on the real 

i he 

we 

ricing.  

 

 A highly speculative, but potentially very exciting, path for future research would be to use the 

et model forward in time by 

tting it evolve, and (iv) construct PDFs for the future based on the resulting trajectories of the time-

volving market model. Such an approach, if successful, would do away with the idea of having to 

 

 beginning 

ited 

However in general this will not be true: the presence of kurtosis and skewness etc. in the real 

 

wise process whereby we could examine the consequences of the various Black-Scholes’ 

approximations. In contrast to the ‘beautiful but delicat theory, the present 

market honoring the underlying approximat ons of Black-Scholes. Given that it is the accuracy of t

final answer that is important in financial practice, and given that the Black-Scholes approximations 

cannot be guaranteed to hold in any particular market, it is this ‘ugly but robust’ method which 

believe will define the future for portfolio risk management and derivative p

market models of Chapter 4 to generate the PDFs etc. needed to implement the present risk-

minimization, hedging and pricing scheme. The methodology would be: (i) build microscopic model, 

(ii) match model parameters to present state of market, (iii) project mark

le

e

obtain such measures by analyzing past data. In this case, there would be no reason why the price 

process would have to be stationary, or even that it have much of a history. For example, the system of

interest could be a recent IPO, like our dot-com company risk-e.com which featured at the

of Chapter 1. In short, one replaces the black-box real market together with its known but lim

output from the past, with an approximate output generator for the future.  
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