Brownian Motion

Background material for Financial
Physics



Brown’s observation

* While looking through his microscope, the
botanist Robert Brown observed small (micron-
sized) particles jiggling about in the water.

* These were not pollen grains themselves, which
are much bigger, but much smaller ‘bits’ of the
plants that come out of the pollen.

* This random motion was not properly
understood until Einstein’s paper in 1905.



Einstein-Smoluchowski theory

* Smoluchowski is often forgotten. He published after Einstein.
e Einstein paper was entitled (translated from German):

On the Motion of Small Particles Suspended in a Stationary Liquid, as
Required by the Molecular Kinetic Theory of Heat.

* “In this paper it will be shown that, according to the molecular
kinetic theory of heat, bodies of a microscopically visible size
suspended in liquids must, as a result of thermal molecular
motions, perform motions of such magnitudes that they can be
easily observed with a microscope. It is possible that the motions to
be discussed here are identical with so-called Brownian molecular
motion; however, the data available to me on the latter are so
imprecise that | could not form a judgment on the question ...”

* This paper was one of the four major contributions to physics that
Einstein made in 1905, his Annus Mirabilis.



Random Walk

 Random walks can be modelled using the binomial
distribution (see Blundell & Blundell, Ch.3, or
Johnson et al. Sect. 2.2.4).

e Well-known result that the standard deviation is

proportional to the square root of the number of
steps. 0 X VIV

* For a one-dimensional of fixed step length L the
r.m.s. displacementis < 22 >/2=+/NL



2D-random walk

A simple way to show the mean square
displacement grows linearly in time while the
that the mean displacement remains zero:
Consider a two-dimensional random walk of N
vectors of fixed length [ at random angles taken
from a uniform probability distribution.



2D-random walk
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This result is useful for adding complex numbers with random phases.



Diffusion

(%) = 2Dt



Newton’s 2" law.

mi = —ax + Fy + F(t)

e Forces: damping, steady, random.
+ Steady-state solution: & = [/

dV
H dx

 E.g., for a sphere of radius a in a liquid of viscosity n

* Or, in terms of mobility: Udgrift =

a=put=6mna



Einstein relation

Consider a density n(x) of independent Brownian
particles in a potential V(x). In thermodynamic
equilibrium the particle currents from diffusion and
mobility balance: In ( dV)
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_pZ-
da:+n

dx
At equilibrium n(xz) < exp|—V (x)/kpT)|

Hence: kT
Qo
A key result derived by Einstein relating diffusion to

damping, or equivalently mobility.



Langevin Equation

To understand the Brownian motion more completely, we
need to start from the basic physics, i.e. Newton’s law of
motion. The most direct way of implementing this is to
recognize that there is a random, or stochastic, component to
the force on the particle, F(t), which we only know through a
probabilistic description. N.B. This is not the approach used by
Einstein, nor the closely related approach used by the Polish
physicist Smoluchowski in 1906. This slightly later method by
Langevin is a useful preliminary before discussing stochastic
differential equations. The Langevin equation is

mi = —ax + F(t)

Forces: damping, random.
(Assume there’s no drift for simplicity.)



Langevin Equation
mi = —ax + F(t)

 No random force, F(t)=0.
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Langevin Equation

1 1
r=——x+ —F\(t) where 7 = M/«
T m

* Multiply through by x(t)
1 1

ri = ——xt + —aF(t)
T m

* x(t) is uncorrelated with F(t).
(@F(t)) =0

* Hence taking time-averages

(xZ) + ! (xx) =0

T



“Solving” the Langevin Equation for mean square displacement

(xZ) + % (xx) =0

2z d [ dx dz\? 1 d? () dz\?
rT— =—\x— ||| ==z—5 (7)) — | —
de2 — dt \"dt di 2 dt? di

Hence we find (assuming equilibrium value of (u?)

d*(xz?) 1d{z?) 5 kT
— — 9 — 92
i 7 dl W) =2-1
e Solution (with initial position and velocity zero).
2 _ 2kpT E o __—t/T
<:1: (t)> =T |- (1—ce )

* Ballistic expansion at the thermal speed for short
times, and diffusion at longer times.



The Langevin equation is nasty to deal with since the forcing
term is a random sequence of delta functions—it is not
piecewise continuous. However this did not prevent us

finding the mean square displacement. It is slightly more
involved to find then m.s. velocity starting from:

duu _FO

a 't m

Integrating from t=0 to t we find ,
u(t) = u(0)e /T + et/ / e/ A()dt
0

Giving the mean velocity found previously (u(t)) = w(0)e %7
The mean square velocity is

t t
(W2(t)) = u2(0)e 2T 4 =2t/ / / M1t /T (A (1) A(ts))dt, dts
0 0



Finding the m.s. velocity from the Langevin equation

t t
(W?(t)) = u?(0)e 2/ + e—Qt/T/ / e Hi2)/T( A(t1) A(ty))dt1 dts
0 JO

(u(0)A(t > 0)) = 0 has been used to eliminate the cross term.

Further details of how to manipulate this double integral
can be found in Statistical Mechanics, by R.K. Pathria
(Pergamon Press, 1972). N.B.

(A(0)A(T)) -0 as T — o0



