Binomial tree model: alternative derivation based on a no-arbitrage argument

 (From the Hull's book.)Consider a one-step binomial tree with the definitions (as in the Binomial tree notes):

- x_{0} is the initial price of underlying asset.
- $x_{0} u$ and $x_{0} d$ are the prices after time-step 1 on the upper/lower branches.
- V_{0} is the initial value of the option.
- V_{u} and V_{d} are the values of the option after time-step 1 on the upper/lower branches.
- Π is the value of a portfolio of 1 option and short Δ assets.

Choose Δ such that

$$
\begin{aligned}
V_{u}-u x_{0} \Delta & =V_{d}-d x_{0} \Delta \\
\Rightarrow \Delta & =\frac{V_{u}-V_{d}}{x_{0} u-x_{0} d} \quad \text { cf. } \Delta=\frac{\partial V}{\partial x} \quad \text { in Black - Scholes }
\end{aligned}
$$

At $t=0$ the value of the portfolio is $V_{0}-\Delta x_{0}=\Pi(t=0)$. This must equal the discounted value after 1 time-step (which is the same for the upper/lower branches) otherwise there would be an arbitrage opportunity.
(Continuously compounded interest at rate r is used here giving $e^{r T}$ which is more usual than the $(1+r)$ used in the lecture notes.)

$$
\begin{aligned}
V_{0}-x_{0} \Delta & =e^{-r T}\left(V_{u}-u x_{0} \Delta\right) \\
V_{0} & =x_{0} \Delta-e^{-r T}\left(u x_{0} \Delta-V_{u}\right) \\
& =\frac{V_{u}-V_{d}}{u-d}\left(1-u e^{-r T}\right)+e^{-r T} V_{u} \\
& =e^{-r T}\left\{V_{u} \frac{e^{r T}-d}{u-d}+V_{d} \frac{u-e^{r T}}{u-d}\right\} \\
V_{0} & =e^{-r T}\left\{p V_{u}+(1-p) V_{d}\right\}
\end{aligned}
$$

where

$$
p=\frac{e^{r T}-d}{u-d}
$$

looks like a probability (the risk-neutral probability), since

$$
\frac{e^{r T}-d}{u-d}+\frac{u-e^{r T}}{u-d}=\frac{u-d}{u-d}=1
$$

CJ. Foot, April 2013

