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Information Is physical

e.g. G Milburn in The Quantum Tamers

MMMMMMMMMMMMMMMM


http://www.perimeterinstitute.ca/Outreach/Quantum_Tamers/Is_Information_Physical?/

'VLATKO VEDRAL

[} |- |I|'| | 1-_.:
"L || |

Monday, 06 May 2013



Example: two messages

« Alice can send two messages 0 or 1. She chooses 0 with probability p and 1
with probability 1-p. How much information does one of her messages

contain?

H(p) = —ploga(p) — (1 —p)loga(1 —p)

1 . . .
Information contained in
the message?

0.8f
1. There is no information if
0.6} only 1's may be chosen
= 2. 1 bit of information is
- 0.4} contained if 0's and 1's
may be chosen with
p=1/2
0.2 3. There is no information if
@ only 0’s may be chosen
00 0j2 0:4 Oj6 0:8 1
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Example: compression

« Imperfect compression encoding for two messages. Message a is sent with
probability p and message b is sent with probability 1-p.

L)

Monday, 06 May 2013



Example: Channel Capacity

 What is the classical channel capacity of a single photon channel where %2
of the photons are lost? Messages: 0 = no photon and 1 = one photon

0.3
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Summary: classical information

e Shannon entropy (Alice X)
HOO = =) p(x) logz (p(x)))
« Joint entropy (Alice X & Bob Y) ]
HOGY) = =) p(35,74) logz (p(x:, )

« Conditional entropy (What BoéqY cannot learn about Alice X)
HX|Y) =HX,Y) — H(Y)

e Mutual information (What Bob Y can learn about Alice X)
H(X:Y) = HX) — HX|Y)

e For two messages 0,1 (a bitwhen py =p; = 1/2)

0<HX) <1 0<HX,Y) <2

0<HX|Y) <1 0<H(X:Y) <1
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Schumacher’s quantum noiseless channel coding theorem

Schumacher showed that states p in a d dimensional Hilbert space H
produced by a quantum information source can be compressed. In
particular it is possible to reliably compress and decompress p to a state in
a Hilbert space H, with dimension

dim(H,) = 2°50)

and can thus be viewed as being represented by S(p) qubits.

Like in classical compression this only works on average, i.e. if the source
produces a large number m of quantum messages.

Reliably in this case means that the entanglement fidelity of the original
state p™ after compression C™ and decompression D™ tends to 1 for large
m. The entanglement fidelity tells us how well the state p™ preserves its
entanglement with an environment during compression and decompression.
We do not define the entanglement fidelity here (see NC page 420).

cm Dm

P > | o >| p

m log,(d) qubits mS(p) qubits m log,(d) qubits
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Photons as spatial mode and polarization encoded qubits

Spatial mode encoding

— Two spatial modes a and b (direction, momentum) are chosen to
represent the qubit states |0) and |1)

— Single qubit gates are implemented by
» a phase shifter in one spatial mode - phase gate
* beam splitter - Hadamard gate
— Two qubit gates can be realized by Kerr nonlinearities
e Polarization encoding
— The qubit is encoded in the photon polarization e.g.|0) = |H), |1) = |V)
— Single qubit gates are implemented by
 polarization rotators and polarization phase shifters
» polarizing beam splitter - spatially separate |H) and |V) components
— Two qubit gates e.g. with polarizing beam splitters and Kerr nonlinearities
e Linear optics quantum computing by entanglement creation via measurement
 Photon number encoding: |0)-> no photon |1) = 1 photon
e Spatial + polarization encoding allows to store two qubits in one photon

— This encoding is not easily scalable
Monday, 06 May 2013 20



A beam splitter (BS) as a single gubit operation

A simple 50/50 BS for spatial mode encoded qubits
|O>in |O>out

-

—< | H —
in N Do
|W>in — a‘0>in‘|‘6‘1>in
Wyout = H|W)iy = \%<a+m|o>out+<a—ﬁ>|1>out

« Matrix representation of the dynamics of a general beam splitter

_ cos(§)  e¥sin(¢)
BS(&, ) = ( e "sin(¢) —cos(€) )

This time evolution is unitary. BS(45%,0)=H is a simple 50/50 beam splitter.
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A phase shifter as a phase gate

« A slab of transparent medium put into the path of one mode

10)in > |0)out A medium of length L with refractive
index n yields a phase shift ¢

¢ = (n —ng)Lw/co

Tin ———— Mout

« The resulting quantum gate is a phase gate with the truth table
10)out = |0)in [ Lout = eigb|1>in

« With beam splitters and phase shifters one can realize every single qubit
operation. Kerr nonlinearities y allow to create a two qubit phase gate where
a phase shift is induced if two photons are travelling a distance L in the Kerr
medium. The resulting entanglement phase is

¢ = xL

Monday, 06 May 2013 22



Example: A Mach-Zehnder interferometer

0Yin ﬁ / O)out

1)in L \ 1) out

 The Mach-Zehnder interferometer evolves the input state |\Vi;, according to

[W)out = HOH|W)in — H ¢ H —

wee= (1 5)(55) (2 5)(5)

4]
oyt = Lih/2 ( cos(¢/2)a —isin(¢/2)3 )
out —isin(¢/2)a + cos(¢/2)8
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Polarization encoded qubits

* We encode the qubits in their direction of polarization |0) = |H), |1) = |V).
« Single qubit gates are obtained by rotating the direction of polarization.
« A polarizing beam splitter separates the different polarizations in space.

— This can be used to measure a qubit

e

Photon
source

H . Polarizing beam splitter
— v [ONW

— and also to implement a two qubit gate e.g. a CNOT gate

a, b PBS b PBS
Control bit
a
- B pBs PR
¢, d CKerr SKer d %
Target bit PBS |
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Momentum entanglement

Using apertures A two individual mode pairs (directions) are selected.

Each pair consists of one photon with colour a (slightly above) and one with
colour b (slightly below halve of the pump frequency).

Before the beam splitters we thus have the entangled state

1
Y) =—(la){|b), + |b)1]a
|¥) ﬁ(l )11b)2 + [D)1]a)2)
Behind the BS the two paths cannot be distinguished - interference
Coincident detections in a and b detectors vary cosinusoidally on changing

the phase difference ¢

29



Polarization entanglement

* Non-collinear type-Il down-conversion phase matching

» At certain angles with the optical axis such that photons are emitted along
cones with no common axis: one cone is ordinarily, the other extraordinarily
polarized - they intersect along two directions - unpolarized light

e State created at cone intersections

1
¥) = ﬁ(W)ﬂH)z +|H)11V)2)

extraordinary
(vertical)

\
Uv- |
pump |

2

BBO-crystal
ordinary
(horizontal)

V)=\H | Vo +e v ] H
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Quantum dense coding — experimental setup

Alice Bob

A4

Q
‘~‘
A2

BBO
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Schematic

Quantum teleportation

Alice

classical channel Bob

Monday, 06 May 2013

SOurce
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Quantum teleportation

Experimental setup

Alice L , Bob
coincidence
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Quantum teleportation

Expected Result

0.25} 0.25¢L
Ci C)
0 0 !
0 0

delay delay
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Experimental results

« Experimental results for a 45* and 90* photon state

4-fold coincidences per 4000 seconds
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e Schematic Setup

Entanglement swapping

1¥)4

Monday, 06 May 2013
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The quantum telephone exchange (1)

« Entanglement swapping can be used to realize a quantum telephone
exchange. Imagine there are N users in a communication network. Each
user shares a Bell state with a central exchange.

7« D C »6
| D)7 - | D)5
8 5
A, B, C and D are the O is the central
users of the network 0 telephone exchange
p : ’ ~
D7)y, |D7 ),
1« A B »4
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Local realism limitations

® Flip fair coins

® Locality: measured quantity (red/green) only depends on local state of system
® Realism: quantity (red/green) is well defined independently of measurement

p(G,G,:) :p(R,R,:) =
p(G,R,:) =p(R,G,:)

N|— ONIFkr onN]r

p(G,:,G) :p(R,:,R) =
p(G,:,R) =p(R,:,G)

p(:,R,G) =p(:,G,R) =
p(G:,R,R) =p(:,G,G)=0

=?
O » » ggg g}g _, p does not exist

Clarendon Laboratory, University of Oxford.



Bell function

@® Assign colour values R = 1 and G = —1 and measure colour correlation
functions of C;

B = (C1Cy) + (C1C3) — (C1C3)
® If we put no restrictions of local realism on the correlations
B=1+1+1=3

® However, local realism (assuming p exists) after the first two correlation
measurements gives

p(R,R,R) =p(R,:,R) —p(R,G,R) ==—0=

N| =N =
N| =N =

p(G, G, G) — p(Gr ) G) _ p(G, Rr G) —
Hence (C,C;) = 1 and B is thus limited to

-0

B=1+1-1=1

Clarendon Laboratory, University of Oxford.




Bell inequalities (1)

® A Gedanken experiment (realized by A. Aspect et al.)

Q=J_rll o
— @ —0—| C |—O0O—

T=+1
Alice Charlie Bob \

® () Charlie prepares two systems (possibly correlated) and sends one to
Alice and the other one to Bob.

(i)  After receiving their respective particles Alice and Bob both randomly
choose to measure one of two properties of their particle. Then they
simultaneously perform their measurement.

(i)  They repeat this experiment many times and record their outcomes

(iv) Alice and Bob get together and investigate the correlations between
their experimental results. What can they expect to obtain?

@® We describe the possible measurements of Alice by random variables Q
and R and those Bob by random variables S and T.

44
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Bell inequalities (Il)

® We look at the expression
QS+ RSH+RT-QT =(Q+R)SH+(R—Q)T =2

as either Q + R or Q — R Is zero.

® We now assume that the probability for Q=q, R=r, S=s, T=t before the
measurement is p(q, r, s, t) and using this probability distribution we find

B = (QS) + (RS) + (RT) — (QT) = > _ p(q,7,5,t)(QS + RS + RT — QT)

Q7T787t

<2 > p(grst)=2
q5T7S7t

(QS) + (RS) + (RT) — (QT) < 2 | CHSH inequality

Clarendon Laboratory, University of Oxford.




Bell inequalities (l1)

® Send a quantum mechanically entangled state (a singlet) and perform spin
measurements
[¥7) = [T — [ 11)

@® Alice decides between measuring the operators

Q = ot R = otV
@® Bob decides between measuring the operators
2 2
I R P
NG V2
® It is now straightforward to calculate the quantum mechanical expectation
values
1 1 1 1
S) = —&= RS) = — (RT) = — T =
@) = 5 (RS) = 5 (RT) = o5 (QT) = —

(QSY + (RS) + (RT) — (QT)Y = 2+/2 Violation of the CHSH inequality

Clarendon Laboratory, University of Oxford.



Bell inequalities (1V)

We learn that quantum mechanics is not compatible with local realism.

Entanglement between Alice’s and Bob’s states yields correlations “stronger”
than allowed by local realism.

Entangled states allow entropy properties which are not possible in classical
iInformation theory. For instance if we calculate the entropies of subsystems
Alice and Bob from the previous example we find

S(pa) = loga(2) =1
S(pp) = 1092(2) =1
Therefore the entropy of p, conditional on knowing pg IS negative

S(palps) = S(pap) — S(pp) = —1

while in the classical case H(X]|Y) is always larger than zero (see NC p507 for
a proof).
Experiments: A. Aspect et al., Phys. Rev. Lett. 47, 460 (1981);

A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982).

The second experiment tests the CHSH inequality

S(pap) = 1loga(1) =0

/]
Clarendon Laboratory, University of Oxford.



Aspect experiments (1)

® Testing the Bell inequalities with polarization entangled photons

YUy ARG

D, | D
| \ >

N\NQ PBS EPR source PBS %

D, 4

D

® Setting angels a = 0 and a = /4 corresponds do measuring Q = g, and
R = o,

® Setting angels a = /8 and a = 3 /8 corresponds do measuring —S = (o, +

O-x)/\/7 and —T = (-0, + O-x)/\/i

Clarendon Laboratory, University of Oxford.



The Aspect experiments (lI)

@® Aspect used photons entangled in their polarization degree of freedom. By

correlating the different measurement results he could violate Bell's
iInequalities.

® The polarizer setting determines which observable is measured

@® Atomic cascade Basic experimental setup

Atomic beam

21 Filter
4”5 v ! Vo PolIl
5810m v, [ s | = 7Y
551,3 nm
1 4s4p P,
Vi Disc
406 nm v I :
2
422 Tnm | LD I
21 elay
4s So )
Stop

Clarendon Laboratory, University of Oxford.




Aspect experiments (lll)

® This result can be viewed as evidence for non-locality but this is not the only
explanation. Various experiments had several loopholes:

a) fair sampling assumption (CHSH probabilities as fraction of coincidences)
b) efficiency of photo detectors is rather small

c) accidental coincidences

d) polarizers are set up (not randomly) before photons are created

e) strict Einstein locality of the measurements

f) the quantum system is not truly a bipartite system atom + two photons

® Addressing these loopholes
a) b) 100% detection efficiency in ion trap experiments (only 3um distance)
c) keeping the accidental coincidences in the data
d) e) adjusting the polarizers randomly after the photons are created
— arandom gquantum process can be used to set up the measurement
— the measurements are then performed in strict Einstein locality
— perform measurements in different moving frames

@® There are also other ways to test local realism against QM using GHZ states

50
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Local Realism vs. Quantum mechanics

Disproofs of Bell, GHZ, and Hardy Type Theorems and the Illusion of Entanglement

Joy Christian®
Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

An elementary topological error in Bell’s representation of the EPR elements of reality is identified.
Once recognized, it leads to a topologically correct local-realistic framework that provides exact,
deterministic, and local underpinning of at least the Bell, GHZ-3, GHZ-4, and Hardy states. The
correlations exhibited by these states are shown to be exactly the classical correlations among the
points of a 3 or T-sphere, both of which are closed under multiplication, and hence preserve the
locality condition of Bell. The alleged non-localities of these states are thus shown to result from
misidentified topologies of the EPR elements of reality. When topologies are correctly identified,
local-realistic completion of any arbitrary entangled state is always guaranteed in our framework.
This vindicates EPR, and entails that quantum entanglement is best understood as an illusion.

Preprint server 28/04/2009

Clarendon Laboratory, University of Oxford.



Local Realism vs. Quantum mechanics

Characterization of Multipartite
Entanglement for One Photon Shared
Among Four Optical Modes

Scott B. Papp,** Kyung Soo Choi,** Hui Deng,” Pavel Lougovski,? S. ]. van Enk,? H. ]. Kimble't

Access to genuine multipartite entanglement of quantum states enables advances in quantum
information science and also contributes to the understanding of strongly correlated quantum
systems. We report the detection and characterization of heralded entanglement in a multipartite
quantum state composed of four spatially distinct optical modes that share one photon, a so-called
W state. By randomizing the relative phase between bipartite components of the W state, we
observed the transitions from four- to three- to two-mode entanglement with increasing phase
noise. These observations are possible for our system because our entanglement verification
protocol makes use of quantum uncertainty relations to detect the entangled states that span the
Hilbert space of interest.

Science, 8/05/2009

Clarendon Laboratory, University of Oxford.



GHZ states

® A GHZ state is a three particle entangled state. These states can be used to
test quantum mechanics against local realism. In this setup no inequalities are
needed for these tests as quantum mechanics makes definite predictions
rather than statistical ones. We look at the three qubit state of polarization
entangled photons:

1
V2
® |H) and |VV) are eigenstates of ¢,. The polarizations rotated through 45* with

respect to H and V denoted by |H') and |V') are eigenstates of c,. Left handed

|L) and right handed |R) circular polarizations are eigenstates of c,. Rewriting
the state |GHZi in the YYX basis we find

%(|RLH’) + |LRH') + |RRV') + [LLV"))

IGHZ) = (|HHH) + |[VVV))

IGHZ)

® Thus if measuring in the YYX basis we know with certainty the outcome of the
third measurement after determining the state of the first two qubits!

® By cyclic permutation one finds analogous expressions for measuring any two
photons in circular polarization and the remaining one in 45* basis

Mondax, 06 Max 2013 53
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GHZ state and local realism

® From a local realism point of view these perfect correlations can only be
explained by assuming that each photon carries elements of reality which
determine the outcome for all measurements considered.

@® Let us consider a measurement in the XXX basis. Which outcomes are
possible if the elements of reality exist? The permutations of |GHZ) imply that if
H’ (V’) is obtained for one photon the other two have to have opposite
(identical) circular polarizations.

® Imagine we find V' and V’ for photons 2 and 3. Since 3is V’, 1 and 2 have to
have identical circular polarization. Also, since 2 is V’, 1 and 3 have to have
identical circular polarization. If all of these are elements of reality then all
photons have identical circular polarization. Thus photon 1 needs to carry
polarization V'. We conclude that |[V'V'V’) is a possible outcome. Similarly one
can verify that the only four possible outcomes are

V'VIV, \H'H'V), |H'V'H"Y, \V'H'H.
@® However, in the XXX basis the |GHZi reads
1
GHZ) = 5(|H’H’H’> + |H'V'VY + [V H'VY + |VIV'HY)

® Local realism and quantum mechanics predict opposite results in all cases!

Clarendon Laboratory, University of Oxford.



A source for three-photon GHZ states

® Polarization entangled pairs of photons
are created in the BBO crystal such that
1

_ = i
W) = 5 [[HalVp+IV)al )y
® In the rare event that two pairs are
created with one UV pulse the four Z(AT
fold coincidence corresponds to

the observation of the state
1
V2

at the detectors D1, D2, D3.

GHZ') ((HHV) + [VVH))

® The detection of a photon at detector
T acts as the trigger

® Note: The coherence of the photons neet < UV-Pulse
to be substantially longer than the length A

the UV pulse so that the two pairs are
not distinguishable

Clarendon Laboratory, University of Oxford.



Experimental proof of GHZ entanglement

® As afirst step |GHZ) entanglement has to be confirmed experimentally. Four
fold coincidences are detected for variable delays in path a

E 80- 45° s -45° 80 D.@0° m -45°

= he Lz D@ .« H5°

o

5 60] 604

a,

: %

§4o 40 - % I E ;

3 t !

.g 20 20-_

7 @ ®)

& 20 -0 0 100 200 -200 -100 0 100 200
Delay (um) Delay (pm)

Graph (a) polarization analysis at D3 (two curves § 45%), conditioned on T, and
the detection of one photon at D1 polarized at 45* and one photon at detector
D2 polarized at -45*. In (b) no such intensity difference is predicted if the

polarizer in front of detector D1 is set at 0* c6

Clarendon Laboratory, University of Oxford.



Measurements in different bases

® Performing the measurements in the YYX (a), YXY (b), and XYY (c) basis
confirms the entanglement properties of the |GHZ) state

@® The experiment yields a visibility of 71%.

® Based on these results one can identify the terms which are supposed to be
absent and those which should be present.

® Thus one can compare the quantum mechanical and local realistic results for
measurements in the XXX basis.

0.20 1

0.15

Fraction
Fraction
Fraction

0107

0.05 1

0.00 4 0.00 - .00 4

Clarendon Laboratory, University of Oxford.



Local realism vs. guantum mechanics

® The measurements in the XXX basis yield the following results: (a) XXX
guantum mechanics; (b) XXX local realism; (c) XXX experimental results:

a _
VHYV  VVH HHH
0.25 -
0.20 -
_ c
-
S 0151 0.25 - VVH'
U | r [ r
E r r r
L 0101 0.20 -
0.05 - S 015
' o
0.00 £ 5104
b
VVV HHY HVH VHH 0.05 -
0.25 -
020 ] 0.00
j
S5 0151
0
48]
= 0101
0.05 -
0.00
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One time pads

« Cryptographic protocol which allows the encryption and decryption protocol
to be publicly known. The security of the protocol relies entirely on the key
which is private and not publicly known.

« A simple, very secure cryptosystem is the Vernam cipher or one time pad.

« Alice and Bob share identical n-bit secret key strings. Alice encodes her
message by adding message and key (XOR). Bob decodes by subtracting
the key again.

 Aslong as the key is secure the one time pad is provably secure, i.e. Eve’s
mutual information with the message can be made arbitrarily small.

« In contrast public key distribution relies on the unproven difficulty of solving
certain mathematical problems like factoring.

Ql{UI||A [N ||T |lU ||M

+ + + + + o+ o+

G|lQ||Y IR |[|W||A ||D

public

wl LY ]lF [lo]lullp channel TG A IIN 1T 1fu [m
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Quantum key distribution and no-cloning

Transmission of single or entangled quanta (qubits) between Alice and Bob.

The security is guaranteed by encoding the key in non-orthogonal quantum
states (we will discuss BB84) or in entangled pairs of qubits (EPR
cryptography).

The No-Cloning Theorem guarantees that non-orthogonal states cannot be
copied (this property of quantum states could also be used for quantum
money which cannot be forged). To see this we consider normalised states
|ai and |bi which are not orthogonal i.e. {(a|b) # 0. A cloning machine
described by the state |machinei would have to operate

la)|blank)|machine) — |a)|a)|machiney)
|b)|blank)|machine) — |b)|b)|machinep)

The unitary operation of the machine has to preserve the inner product
{alb){machine|machine) — (a|b){a|b)(machineg/machinep)

This is only possible if (a|b) = 0 or (a|b) = 1. Note: classical information is
encoded in orthogonal quantum states and can thus be copied.

Monday, 06 May 2013 62



The BB84 protocol (1)

« Alice begins with two strings A and B each consisting of (4 + 6)n qubits.
She encodes these strings as a block of (4 + d)n qubits

(44d6)n
|77b> — ® |wak,bk>

k=1

where q, is the k! bit of A and b, is the k' bit of B. Each qubit is in one of
the four states

Yoo) = [0)
Y10) = [1)
Yo1) = (|0) +[1))/v2
P11) = (10) —[1))/v2

 The bits in A are encoded in the basis X or Z determined by B.

 These four states are not mutually orthogonal and cannot be distinguished
with certainty

Monday, 06 May 2013 63



The BB84 protocol (Il)

* Alice sends 4(n + §) encoded message qubits to Bob
» Bob publicly announces receipt of the qubits

» Bob measures in random bases B’ to get his bit string A’
» Then the bases B and B’ are announced publicly

* Alice and Bob keep 2n key bits ag, a; where encoding by, = b’
» They compare n of these bits to check for an eavesdropper
« If sufficiently few of these disagree: success

» The remaining bits provide a random secure key
 This can be used for the provably secure classical Vernam cipher.

Monday, 06 May 2013 64



Intercept - Resend Attack (1)

Alice Eve p(E|A) Bob p(B|EA)

0X  0X 1/2 0X
0Z

1Z

17 1/4 17

0X

1X

0Z 1/4 0Z

0X

1X

1/4
1/8
1/8
1/8

1/16

1/16
1/8

1/16

1/16
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Intercept - Resend Attack (ll)

 Eve guesses the correct value of the bit with 75% probability.

« If Alice and Bob measure in the same basis then their results will disagree
with a probability of 1/4. Therefore (for a perfect noiseless channel) the
probability for Alice and Bob to find disagreement and thus identifying Eve
when comparing n of their key bits is given by

3n
P, = 1-—(2
d <4>

« Thus the number of bits n that need to be compared for detecting an
eavesdropper with a probability P is:

logo (1 — Py)
10g>(3/4)
e Thus in comparison to trusting the transmission (and not comparing any key

bits) Alice and Bob need at least to sacrifice n bits from their key for
detecting Eve with probability P,.
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The Ekert 91 protocol using EPR pairs

g .
( ) )

1\%NQ PBS EPR source PBS

DZ

« Alice and Bob measure at angles ¢, and ¢
« Expectation value

E(pa dp) = (¥ |0g,04,|¥7) = —cos(2(¢a — ¢5))

e The correlations for +1 outcomes are

Py = |(dE oty

Monday, 06 May 2013
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The Ekert 91 protocol using EPR pairs

/A T

T 3
$a1 =0, ¢A2:Z’ ¢A3:§ ¢p1 =0, ¢Bz=?n, ¢33=§

They work out the Bell function B from the CHSH inequality, detect eavesdropper if B < 2 V2

E(pa1, Pp1) = -1 E(¢us, Pp3) = —1

Monday, 06 May 2013 68



Free space cryptograph: Alice — the sender

L2 base plate sitting on
f] precision tiphik aligner

e

allgnment
reference laser
clock %P
random 0
number i
generator source it
i module . Spatial  relay
i filter optics
computer with ! pulse 4
digital I/0 card [~ | driver || A
e :

Figure 1: The Alice compact breadboard transmitter. The digital /O card delivers a random 2-bit signal at 10 MHz synchronised
to the reference clock. This signal is used in the pulse driver for randomly firing one of four lasers in the miniature source
module. The four lasers are combined in a spatial filter using a conical mirror and relay lens. This system produces pulses with
0.05-0.5 photons per pulse. The output of the spatial filter i1s then transformed to a collimated beam with 2 mm FWHM and
further expanded in a x20 telescope (L1 and L2) to produce a near diffraction-limited 40mm beam. A precision translator with
lens L1 allows for the fine focus adjustment. A bright CW laser beam can be injected with an auxiliary mirror AM for alignment
purposes into the the same spatial filter as the faint pulses, while a calibration of the number of photons per bit can be made by
mserting mirror FM and measuring a reference photo-count. Mirrors AM, FM M1 and M2 are gold coated for high reflectivity
in the infra-red.
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Free space cryptograph: Bob — the receiver
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Figure 2 The receiver (Bob) consists of a 25 cm aperture Schmidt-Cassegrainian telescope. The miniature detector module is
attached to the rear mounting of the telescope. It consists of a non-polarising beamsplitter (BS) followed by two polarising
beamsplitters (PBS). Single photon detectors (D1-4) receive the output of the polarisers. In the D1/D3 arm, a half wave plate
rotates the analysed polarisation to the 45° basis. The module incorporated high voltage supplies and discriminator circuitry to
produce standard NIM pulses at the output. The detector outputs D3, D4 are combined with the D1, D2 outputs with a delay of
5 ns and input into the two channel timing card in the PC. A flip mirror allows a CCD camera to view the incoming light for
alignment purposes.
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Free space cryptography — real experiment

Alice;
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Phase encoded systems in fibres ()

« Optical fibres do not conserve the polarization

— depolarization (suppressed by very coherent source)

— randomly fluctuating birefringence (1 hour timescale)

— Polarization tracking is possible but makes the scheme cumbersome
 An extended Mach-Zehnder setup is used for phase encoding

.
o
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* Alice uses her phase modulator (PM) to encode 0, 1 in phases 0 and rw or in
phases n/2 and 3n/2.

 Bob also chooses between 0 phase shift and n/2 phase shift for his
measurements - This scheme is equivalent to polarization encoding.

 However, keeping the phase constant over large distances is very difficult.
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Phase encoded systems in fibres (ll)

* A better practical setup is to collapse the interferometer

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

0000000000000 00000000000000000000000000000000 00000008

Laser

.
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
.
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Alice Bob

 Two pulses are propagating down the single fibre. They are denoted by S
(short path) and L (long path). After travelling through Bob’s part of the
Mach-Zehnder they create three different outputs: SS and LL are not
relevant as they show no interference effects.

« SL and LS are indistinguishable and thus interfere. The choice of phase
shifts by Alice and Bob gives the encoding-decoding exactly as in the
previous scheme.

e Setup much more stable since the pulses follow the same path for most of
the interferometer.

« Drawback: Half of the signal is lost in the SS and LL path.
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