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Lecture QI1, QI2  
 

Classical information theory 



 
 

Information is physical 
   e.g. G Milburn in The Quantum Tamers 
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http://www.perimeterinstitute.ca/Outreach/Quantum_Tamers/Is_Information_Physical?/
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Example: two messages 

• Alice can send two messages 0 or 1. She chooses 0 with probability p and 1 
with probability 1-p. How much information does one of her messages 
contain? 

 Information contained in 
the message? 
 

1. There is no information if 
only 1’s may be chosen 

2. 1 bit of information is 
contained if 0’s and 1’s 
may be chosen with 
p=1/2 

3. There is no information if 
only 0’s may be chosen 1. 

2. 

3. 
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Example: compression 

• Imperfect compression encoding for two messages. Message a is sent with 
probability p and message b is sent with probability 1-p. 
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Example: Channel Capacity 

• What is the classical channel capacity of a single photon channel where ½ 
of the photons are lost? Messages: 0 = no photon and 1 = one photon 

 



Summary: classical information 

• Shannon entropy (Alice 𝑋) 

𝐻 𝑋 = −�𝑝 𝑥𝑗 log2 𝑝 𝑥𝑗  
𝑗

 

• Joint entropy (Alice 𝑋 & Bob 𝑌) 

𝐻 𝑋,𝑌 = −�𝑝 𝑥𝑗 ,𝑦𝑞 log2 𝑝 𝑥𝑗 ,𝑦𝑞
𝑗𝑞

 

• Conditional entropy (What Bob 𝑌 cannot learn about Alice 𝑋) 

𝐻 𝑋 𝑌 = 𝐻 𝑋,𝑌 − 𝐻 𝑌  

• Mutual information (What Bob 𝑌 can learn about Alice 𝑋) 

𝐻 𝑋:𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌  

• For two messages 0,1 (a bit when 𝑝0 = 𝑝1 = 1/2) 

  0 ≤ 𝐻 𝑋 ≤ 1   0 ≤ 𝐻 𝑋,𝑌 ≤ 2 

  0 ≤ 𝐻 𝑋 𝑌 ≤ 1   0 ≤ 𝐻 𝑋:𝑌 ≤ 1 
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Lecture QI3  
 

Quantum information 
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Schumacher’s quantum noiseless channel coding theorem 

• Schumacher showed that states ρ in a d dimensional Hilbert space H 
produced by a quantum information source can be compressed. In 
particular it is possible to reliably compress and decompress ρ to a state in 
a Hilbert space Hr with dimension 
 
 
and can thus be viewed as being represented by S(ρ) qubits. 

• Like in classical compression this only works on average, i.e. if the source 
produces a large number m of quantum messages.  

• Reliably in this case means that the entanglement fidelity of the original 
state ρm after compression Cm and decompression Dm tends to 1 for large 
m. The entanglement fidelity tells us how well the state ρm preserves its 
entanglement with an environment during compression and decompression. 
We do not define the entanglement fidelity here (see NC page 420).  

ρ ρ‘ ρ” 
Cm Dm 

mS(ρ) qubits m log2(d) qubits m log2(d) qubits 
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Lecture QI4  
 

Photon technologies 
Quantum communications 
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Photons as spatial mode and polarization encoded qubits 

• Spatial mode encoding  
– Two spatial modes a and b (direction, momentum) are chosen to 

represent the qubit states |0〉 and 1  
– Single qubit gates are implemented by 

• a phase shifter in one spatial mode  phase gate 
• beam splitter  Hadamard gate 

– Two qubit gates can be realized by Kerr nonlinearities 
• Polarization encoding 

– The qubit is encoded in the photon polarization e.g. 0 = |𝐻〉, 1 = |𝑉〉 
– Single qubit gates are implemented by 

• polarization rotators and polarization phase shifters  
• polarizing beam splitter  spatially separate |𝐻〉 and |𝑉〉 components 

– Two qubit gates e.g. with polarizing beam splitters and Kerr nonlinearities 
• Linear optics quantum computing by entanglement creation via measurement 
• Photon number encoding: |0〉 no photon |1〉  1 photon 
• Spatial + polarization encoding allows to store two qubits in one photon 

– This encoding is not easily scalable 
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A beam splitter (BS) as a single qubit operation 

• A simple 50/50 BS for spatial mode encoded qubits 
 
 
 
 
 
 
 
 
 

• Matrix representation of the dynamics of a general beam splitter 
 
 
 

 
 
This time evolution is unitary. BS(45±,0)=H is a simple 50/50 beam splitter. 

H 
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A phase shifter as a phase gate 

• A slab of transparent medium put into the path of one mode 
 
 
 
 
 
 

• The resulting quantum gate is a phase gate with the truth table 
 
 
 

• With beam splitters and phase shifters one can realize every single qubit 
operation. Kerr nonlinearities χ allow to create a two qubit phase gate where 
a phase shift is induced if two photons are travelling a distance L in the Kerr 
medium. The resulting entanglement phase is 
 

A medium of length L with refractive  
index n yields a phase shift φ 
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Example: A Mach-Zehnder interferometer 

 
 
 
 
 
 
 

• The Mach-Zehnder interferometer evolves the input state |Ψiin according to 
 

eiφ 

H H φ 
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Polarization encoded qubits 

• We encode the qubits in their direction of polarization 0 = |𝐻〉, 1 = |𝑉〉. 
• Single qubit gates are obtained by rotating the direction of polarization. 
• A polarizing beam splitter separates the different polarizations in space. 

– This can be used to measure a qubit 
 
 
 
 

– and also to implement a two qubit gate e.g. a CNOT gate 

Photon 
source 

H 

V 

Polarizing beam splitter 
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Momentum entanglement 

• Using apertures A two individual mode pairs (directions) are selected. 
• Each pair consists of one photon with colour a (slightly above) and one with 

colour b (slightly below halve of the pump frequency). 
• Before the beam splitters we thus have the entangled state 

Ψ =
1
2

𝑎 1 𝑏 2 + 𝑏 1 𝑎 2  

• Behind the BS the two paths cannot be distinguished  interference 
• Coincident detections in a and b detectors vary cosinusoidally on changing 

the phase difference 𝜙 



Monday, 06 May 2013 30 

Polarization entanglement 

• Non-collinear type-II down-conversion phase matching 
• At certain angles with the optical axis such that photons are emitted along 

cones with no common axis: one cone is ordinarily, the other extraordinarily 
polarized  they intersect along two directions  unpolarized light 

• State created at cone intersections 

Ψ =
1
2

𝑉 1 𝐻 2 + 𝐻 1 𝑉 2  

 
 
 
 

 



Quantum dense coding – experimental setup 
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Quantum teleportation 

• Schematic 
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Quantum teleportation 

• Experimental setup 
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Quantum teleportation 

• Expected Result 
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Experimental results 

• Experimental results for a 45± and 90± photon state  



Entanglement swapping 

• Schematic Setup 
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The quantum telephone exchange (I) 

• Entanglement swapping can be used to realize a quantum telephone 
exchange. Imagine there are N users in a communication network. Each 
user shares a Bell state with a central exchange.  

O 

A B 

C D 

1 4 

7 6 

2            3 

8            5 

A, B, C and D are the 
users of the network 

O is the central 
telephone exchange 
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Lecture QI5  
 

Testing EPR 



Clarendon Laboratory, University of Oxford. 

Local realism limitations 

Flip fair coins 
 
 
Locality: measured quantity (red/green) only depends on local state of system 
Realism: quantity (red/green) is well defined independently of measurement 

𝑝 𝐺,𝐺, : = 𝑝 𝑅,𝑅, : =
1
2 

𝑝 𝐺,𝑅, : = 𝑝 𝑅,𝐺, : = 0 

𝑝 𝐺, : ,𝐺 = 𝑝 𝑅, : ,𝑅 =
1
2 

𝑝 𝐺, : ,𝑅 = 𝑝 𝑅, : ,𝐺 = 0 

𝑝 : ,𝑅,𝐺 = 𝑝 : ,𝐺,𝑅 =
1
2 

𝑝 : ,𝑅,𝑅 = 𝑝 : ,𝐺,𝐺 = 0 

𝑝 𝐺,𝐺,𝑅 =? 
𝑝 𝐺,𝐺,𝐺 =? 𝑝 does not exist 



Clarendon Laboratory, University of Oxford. 

Bell function 

Assign colour values 𝑅 = 1 and 𝐺 = −1 and measure colour correlation 
functions of 𝐶𝑖 

ℬ = 𝐶1𝐶2 + 𝐶1𝐶3 − 〈𝐶2𝐶3〉 
 
If we put no restrictions of local realism on the correlations 
 

ℬ = 1 + 1 + 1 = 3 
 

However, local realism (assuming 𝑝 exists) after the first two correlation 
measurements gives 

𝑝 𝑅,𝑅,𝑅 = 𝑝 𝑅, : ,𝑅 − 𝑝 𝑅,𝐺,𝑅 =
1
2
− 0 =

1
2

 

𝑝 𝐺,𝐺,𝐺 = 𝑝 𝐺, : ,𝐺 − 𝑝 𝐺,𝑅,𝐺 =
1
2
− 0 =

1
2

 

Hence 𝐶2𝐶3 = 1 and ℬ is thus limited to 
 

ℬ = 1 + 1 − 1 = 1 
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A Gedanken experiment (realized by A. Aspect et al.) 
 
 
 
 
 
 
  
 
(i)  Charlie prepares two systems (possibly correlated) and sends one to 
  Alice and the other one to Bob. 
(ii)  After receiving their respective particles Alice and Bob both randomly 
 choose to measure one of two properties of their particle. Then they 
  simultaneously perform their measurement.  
(iii) They repeat this experiment many times and record their outcomes 
(iv) Alice and Bob get together and investigate the correlations between 
 their experimental results. What can they expect to obtain? 
We describe the possible measurements of Alice by random variables Q 
and R and those Bob by random variables S and T. 
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Bell inequalities (I) 

C 

Charlie Alice Bob 

𝑄 = ±1 

𝑅 = ±1 

𝑆 = ±1 

𝑇 = ±1 



Clarendon Laboratory, University of Oxford. 

Bell inequalities (II) 

We look at the expression 
 
 
as either 𝑄 + 𝑅 or 𝑄 − 𝑅 is zero. 
 
We now assume that the probability for Q=q, R=r, S=s, T=t before the 
measurement is 𝑝(𝑞, 𝑟, 𝑠, 𝑡) and using this probability distribution we find 

CHSH inequality 

ℬ = 𝑄𝑆 + 𝑅𝑆 + 𝑅𝑇 − 𝑄𝑇 = 

𝑄𝑆 + 𝑅𝑆 + 𝑅𝑇 − 𝑄𝑇 ≤ 2 
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Bell inequalities (III) 

Send a quantum mechanically entangled state (a singlet) and perform spin 
measurements 

Ψ− = ↑↓ − | ↓↑〉 
Alice decides between measuring the operators 
 
 
Bob decides between measuring the operators 

 
 
 

It is now straightforward to calculate the quantum mechanical expectation 
values 

Violation of the CHSH inequality 
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Bell inequalities (IV) 

We learn that quantum mechanics is not compatible with local realism.  
Entanglement between Alice’s and Bob’s states yields correlations “stronger” 
than allowed by local realism. 
Entangled states allow entropy properties which are not possible in classical 
information theory. For instance if we calculate the entropies of subsystems 
Alice and Bob from the previous example we find 
 
 
 
Therefore the entropy of ρA conditional on knowing ρB is negative 
 
 
while in the classical case H(X|Y) is always larger than zero (see NC p507 for 
a proof). 
Experiments: A. Aspect et al., Phys. Rev. Lett. 47, 460 (1981); 

A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982). 
 The second experiment tests the CHSH inequality 
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Clarendon Laboratory, University of Oxford. 

Aspect experiments (I) 

Testing the Bell inequalities with polarization entangled photons 
 
 
 
 
 
 
 
 
Setting angels 𝛼 = 0 and 𝛼 = 𝜋/4 corresponds do measuring 𝑄 = 𝜎𝑧 and 
𝑅 = 𝜎𝑥 
 
Setting angels 𝛼 = 𝜋/8 and 𝛼 = 3𝜋/8 corresponds do measuring −𝑆 = (𝜎𝑧 +
𝜎𝑥)/ 2 and −𝑇 = (−𝜎𝑧 + 𝜎𝑥)/ 2 
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EPR source 

D1 

D2 
D4 

D3 

PBS PBS 

α β 
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The Aspect experiments (II) 

Aspect used photons entangled in their polarization degree of freedom. By 
correlating the different measurement results he could violate Bell’s 
inequalities. 
The polarizer setting determines which observable is measured 
 
Atomic cascade    Basic experimental setup 
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Clarendon Laboratory, University of Oxford. 

Aspect experiments (III) 

This result can be viewed as evidence for non-locality but this is not the only 
explanation. Various experiments had several loopholes: 

a) fair sampling assumption (CHSH probabilities as fraction of coincidences) 
b) efficiency of photo detectors is rather small 
c) accidental coincidences 
d) polarizers are set up (not randomly) before photons are created 
e) strict Einstein locality of the measurements  
f) the quantum system is not truly a bipartite system atom + two photons 

 Addressing these loopholes 
a) b) 100% detection efficiency in ion trap experiments (only 3µm distance) 
c) keeping the accidental coincidences in the data 
d) e) adjusting the polarizers randomly after the photons are created 

– a random quantum process can be used to set up the measurement 
– the measurements are then performed in strict Einstein locality 
– perform measurements in different moving frames 

There are also other ways to test local realism against QM using GHZ states 
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Clarendon Laboratory, University of Oxford. 

Local Realism vs. Quantum mechanics 
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Preprint server 28/04/2009 
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Local Realism vs. Quantum mechanics 
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Science, 8/05/2009 



Clarendon Laboratory, University of Oxford. 

GHZ states 

A GHZ state is a three particle entangled state. These states can be used to 
test quantum mechanics against local realism. In this setup no inequalities are 
needed for these tests as quantum mechanics makes definite predictions 
rather than statistical ones. We look at the three qubit state of polarization 
entangled photons: 
 
 
𝐻  and 𝑉  are eigenstates of σz. The polarizations rotated through 45± with 

respect to H and V denoted by 𝐻′  and |𝑉′〉 are eigenstates of σx. Left handed 
𝐿  and right handed 𝑅  circular polarizations are eigenstates of σy. Rewriting 

the state |GHZi in the YYX basis we find 
 
 
Thus if measuring in the YYX basis we know with certainty the outcome of the 
third measurement after determining the state of the first two qubits! 
By cyclic permutation one finds analogous expressions for measuring any two 
photons in circular polarization and the remaining one in 45± basis 
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Clarendon Laboratory, University of Oxford. 

GHZ state and local realism 

From a local realism point of view these perfect correlations can only be 
explained by assuming that each photon carries elements of reality which 
determine the outcome for all measurements considered. 
Let us consider a measurement in the XXX basis. Which outcomes are 
possible if the elements of reality exist? The permutations of |𝐺𝐻𝐺〉 imply that if 
H’ (V’) is obtained for one photon the other two have to have opposite 
(identical) circular polarizations.  
Imagine we find V’ and V’ for photons 2 and 3. Since 3 is V’, 1 and 2 have to 
have identical circular polarization. Also, since 2 is V’, 1 and 3 have to have 
identical circular polarization. If all of these are elements of reality then all 
photons have identical circular polarization. Thus photon 1 needs to carry 
polarization V’. We conclude that 𝑉′𝑉′𝑉′  is a possible outcome. Similarly one 
can verify that the only four possible outcomes are 
 
 

However, in the XXX basis the |GHZi reads 
 
 
Local realism and quantum mechanics predict opposite results in all cases! 
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A source for three-photon GHZ states 

Polarization entangled pairs of photons 
are created in the BBO crystal such that 
 
 
In the rare event that two pairs are 
created with one UV pulse the four 
fold coincidence corresponds to 
the observation of the state 
 
 
 
at the detectors D1, D2, D3.  
The detection of a photon at detector 
T acts as the trigger 
Note: The coherence of the photons needs 
to be substantially longer than the length of 
the UV pulse so that the two pairs are  
not distinguishable 
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Clarendon Laboratory, University of Oxford. 

Experimental proof of GHZ entanglement 

As a first step |𝐺𝐻𝐺〉 entanglement has to be confirmed experimentally. Four 
fold coincidences are detected for variable delays in path a 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph (a) polarization analysis at D3 (two curves § 45±), conditioned on T, and 
the detection of one photon at D1 polarized at 45± and one photon at detector 
D2 polarized at -45±. In (b) no such intensity difference is predicted if the 
polarizer in front of detector D1 is set at 0± 
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Measurements in different bases 

Performing the measurements in the YYX (a), YXY (b), and XYY (c) basis 
confirms the entanglement properties of the |𝐺𝐻𝐺〉 state 
The experiment yields a visibility of 71%. 
Based on these results one can identify the terms which are supposed to be 
absent and those which should be present. 
Thus one can compare the quantum mechanical and local realistic results for 
measurements in the XXX basis. 
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Local realism vs. quantum mechanics 

The measurements in the XXX basis yield the following results: (a) XXX 
quantum mechanics; (b) XXX local realism; (c) XXX experimental results: 
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Quantum Cryptography 
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One time pads 

• Cryptographic protocol which allows the encryption and decryption protocol 
to be publicly known. The security of the protocol relies entirely on the key 
which is private and not publicly known. 

• A simple, very secure cryptosystem is the Vernam cipher or one time pad. 
• Alice and Bob share identical n-bit secret key strings. Alice encodes her 

message by adding message and key (XOR). Bob decodes by subtracting 
the key again. 

• As long as the key is secure the one time pad is provably secure, i.e. Eve’s 
mutual information with the message can be made arbitrarily small. 

• In contrast public key distribution relies on the unproven difficulty of solving 
certain mathematical problems like factoring. 

Q    U    A    N     T    U     M 
+    +     +     +     +     +     + 

G    Q    Y    R     W   A     D 

W    L    Y    F     Q    U     P 

=    =     =     =     =     =     = 

Q    U    A    N     T    U     M 

G    Q    Y    R     W   A     D 
=    =     =     =     =     =     = 

W    L    Y    F     Q    U     P 
-      -      -     -      -      -     - 

public 
channel 
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Quantum key distribution and no-cloning 

• Transmission of single or entangled quanta (qubits) between Alice and Bob. 
• The security is guaranteed by encoding the key in non-orthogonal quantum 

states (we will discuss BB84) or in entangled pairs of qubits (EPR 
cryptography). 

• The No-Cloning Theorem guarantees that non-orthogonal states cannot be 
copied (this property of quantum states could also be used for quantum 
money which cannot be forged). To see this we consider normalised states 
|ai and |bi which are not orthogonal i.e. 𝑎 𝑏 ≠ 0. A cloning machine 
described by the state |machinei would have to operate 
 
 
 

• The unitary operation of the machine has to preserve the inner product 
 
 

• This is only possible if 𝑎 𝑏 = 0 or 𝑎 𝑏 = 1. Note: classical information is 
encoded in orthogonal quantum states and can thus be copied. 
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The BB84 protocol (I) 

• Alice begins with two strings A and B each consisting of (4 + δ)𝑛 qubits. 
She encodes these strings as a block of (4 + δ)𝑛 qubits 
 
 
 
 
 
where 𝑎𝑘 is the 𝑘th bit of A and 𝑏𝑘 is the 𝑘th bit of B. Each qubit is in one of 
the four states 
 
 
 
 
 

• The bits in A are encoded in the basis X or Z determined by B. 
• These four states are not mutually orthogonal and cannot be distinguished 

with certainty 



The BB84 protocol (II) 
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• Alice sends 4(𝑛 + 𝛿) encoded message qubits to Bob 
• Bob publicly announces receipt of the qubits Transmission 

• Bob measures in random bases 𝐵𝐵 to get his bit string 𝐴𝐵 
• Then the bases 𝐵 and 𝐵𝐵 are announced publicly Measurement 

• Alice and Bob keep 2𝑛 key bits 𝑎𝐾, 𝑎𝑘′  where encoding 𝑏𝑘 = 𝑏𝐵𝑘  
• They compare 𝑛 of these bits to check for an eavesdropper 
• If sufficiently few of these disagree: success 

Verification 

• The remaining bits provide a random secure key 
• This can be used for the provably secure classical Vernam cipher.  Secure key 



Intercept - Resend Attack (I) 
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Intercept - Resend Attack (II) 

• Eve guesses the correct value of the bit with 75% probability. 
• If Alice and Bob measure in the same basis then their results will disagree 

with a probability of 1/4. Therefore (for a perfect noiseless channel) the 
probability for Alice and Bob to find disagreement and thus identifying Eve 
when comparing n of their key bits is given by 
 
 
 

• Thus the number of bits n that need to be compared for detecting an 
eavesdropper with a probability Pd is: 
 
 
 

• Thus in comparison to trusting the transmission (and not comparing any key 
bits) Alice and Bob need at least to sacrifice n bits from their key for 
detecting Eve with probability 𝑃𝑑. 



The Ekert 91 protocol using EPR pairs 

• Alice and Bob measure at angles 𝜙𝐴 and 𝜙𝐵 
• Expectation value 

 
𝐸 𝜙𝐴,𝜙𝐵 = Ψ− 𝜎𝜙𝐴𝜎𝜙𝐵 Ψ

− = −cos 2(𝜙𝐴 − 𝜙𝐵)  
 

• The correlations for ±1 outcomes are 
 

𝑃±± = 𝜙𝐴
±𝜙𝐵

± 𝜓− 2
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EPR source 

D1 

D2 
D4 

D3 

PBS PBS 

α β 



Monday, 06 May 2013 68 

The Ekert 91 protocol using EPR pairs 

A secret key is established from those cases where the angels agree 

𝐸 𝜙𝐴1,𝜙𝐵1 = −1 𝐸 𝜙𝐴3,𝜙𝐵3 = −1 

Alice and Bob announce their results when the angels are different 

They work out the Bell function ℬ from the CHSH inequality, detect eavesdropper if ℬ ≤ 2 √2 

Alice and Bob announce their measurement angels and results  

Alice and Bob set measurement angles randomly 

𝜙𝐴1 = 0, 𝜙𝐴2 = 𝜋
4
, 𝜙𝐴3 = 𝜋

8
 𝜙𝐵1 = 0, 𝜙𝐵2 = 3𝜋

8
, 𝜙𝐵3 = 𝜋

8
 



Monday, 06 May 2013 70 

Free space cryptograph: Alice – the sender 
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Free space cryptograph: Bob – the receiver 
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Free space cryptography – real experiment 

Alice: 

Bob: 
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Phase encoded systems in fibres (I) 

• Optical fibres do not conserve the polarization 
– depolarization (suppressed by very coherent source) 
– randomly fluctuating birefringence (1 hour timescale) 
– Polarization tracking is possible but makes the scheme cumbersome 

• An extended Mach-Zehnder setup is used for phase encoding 
 
 
 
 
 
 

• Alice uses her phase modulator (PM) to encode 0, 1 in phases 0 and π or in 
phases π/2 and 3π/2.  

• Bob also chooses between 0 phase shift and π/2 phase shift for his 
measurements  This scheme is equivalent to polarization encoding. 

• However, keeping the phase constant over large distances is very difficult. 
 

Laser 

PM 

D0 PM 

D1 

Alice Bob 
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Phase encoded systems in fibres (II) 

• A better practical setup is to collapse the interferometer 
 
 
 
 
 
 

• Two pulses are propagating down the single fibre. They are denoted by S 
(short path) and L (long path). After travelling through Bob’s part of the 
Mach-Zehnder they create three different outputs: SS and LL are not 
relevant as they show no interference effects.  

• SL and LS are indistinguishable and thus interfere. The choice of phase 
shifts by Alice and Bob gives the encoding-decoding exactly as in the 
previous scheme. 

• Setup much more stable since the pulses follow the same path for most of 
the interferometer.  

• Drawback: Half of the signal is lost in the SS and LL path. 

Laser D0 

D1 

Alice Bob 

PM 

PM 
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