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The average of cos is zero since phases are random so that
(13.88)

(iv) The pulses can be made short by making sure that the

extra phase of as many modes as possible are the same
(known as mode-locking) and this would also lead to an

increase in intensity which would then be proportional to
NZ?,

(6) We have that AkL = w/2. Now, 6k = 2n;27/107% - 27ny/5 x
105, Therefore, since n; = 1.509 and ns = 1.530, we have
that L = 1.21075,

13.3 Problems and Solutions 3

13.3.1 Problem set 3
S

uppose that a two level system is in the state a|0) + h|1\

What are the probabilities of observing 0 and 1? What are the
probabilities of observing |+) = (]0) £ |1))/v/2?

(2) A two state system with energy separation between the two
states of hwyg is prepared in its ground state at t = 0. At t =0

a sinusoidal perturbation
V(t) = hVp coswt (13.89)

is applied to the system (this assumes that there are only the
off-diagonal elements, so that V,, = Vi = 0). Solving the
time dependent Schrodinger equation in the two state basis
and neglecting rapidly varying terms, show that the maximum
probability of being in the excited state is given by

[Vol?
(w —wo)? + [Vo|?

Prax = (13.90)

where {Vp| is the matrix element of Vj between the two states

of the c:vqham Show that a pulsed 'nprfnr'l—mhnn of duration
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t=m/ lng with frequency w = wy inverts the system so that
p=1.

(3) A three level system interacting with an electromagnetic field
can be described by the following Hamiltonian:

Hy = hwala){a| + hwy|b) (b + hwc|c)(c]| (13.91)
V(t) = ——g(nle—*’wﬁ"l)ﬂa)(bl + Qoe 102 H2)t 0N (|} + h.c.
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Write down the total Hamiltonian in the matrix form. Suppose
first that there is no interaction. What is the free evolution of
the system? Suppose then that the interaction is turned on
_ and that ¢ = —v; and ¢ = —1o. Find the eigenvectors of the
(4) Explain in detail the semi-classical model of light matter inter-
actions. Name one deficiency of this model and explain your
choice.
A non-interacting two level atom is described by the following
Hamiltonian:

Ho = Ey[1)(1] + Eaf2)(2] (13.92)

Explain the physical meaning of each term in this expression.
This atom then interacts with the electromagnetic field such
that the interaction Hamiltonian is given by

V(t) = e 1) (2] + ye ™ 1)(2| (13.93)

Explain the physical meaning of every term in the interaction

Hamiltonian.,
Assume that the atom is initially in the state 1. By knowing
that the state of the atom is in general given by

c1(t)e " 1 [1) + co(t)e *F1H|1) (13.94)

solve the Schrodinger equation to show that the probability of
occupying the exited state oscillates at the frequency

Q= /72/h% + (w — wi2)2/4) (13.95)
ie.
e ()|? o sin® (13.96)
where
o — B,
= — 13.97
wi2 A ( )

(Do not derive the constant of proportionality.)

Assume that the interaction is “on-resonant”. Derive and plot
the exact evolution of the probability to occupy the excited
state 2 as a function of time. Given that v = 10~ 2%J, how long
does it take to excite the atom to level 2 if it is initially in level
17
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(5) Explain briefly the semi-classical approximation in the treat-
ment of light matter interactions.
A nuclear spin has two possible states in a external magnetic
field, up |1) (i.e. aligned with the field) and down |[|) (i.e.

it a1l T 2l 2l 21N Qi dland bl sz alanao to tan o am
allvl=allg U Wilbkll bLIC th:lu.)- DUppoOst vlldb bl LIUCICUD 1o L dll
external (static) magnetic field of strength B, which points in
the z direction.

(i) Write down the Hamiltonian for the nucleus using the
Pauli matrix notation and identify its eigenvalues.

(ii) Suppose that the initial state of the system is aligned with
the field in the z direction, |T). Suppose then that the field
is instantaneously switched to the x direction. Solve the
Schrodinger equation to obtain the exact evolution of the
nuclear spin in terms of the eigenstate of the Pauli spin
matrix o,. What is the phase difference between the two
orthogonal spin eigenstates of o, as a function of time?

(iii) After what time will the spin switch to its orthogonal state

11)?
What is the relationship between the energy associated with
the spin and the time it takes to evolve between orthogonal
states? Comment on the validity of the time energy uncertainty

relation to estimate the time of this transition.
The Pauli matrices are given in the |1), |]) basis by

01 0—1 10
Um_(lO)’Uy_(z' 0),02_(0_1) (13.98)

13.3.2 Solutions 3

& 1 YL ) PP, S L) VIR MY W T TN SO R & SR, B I A LIS DRI |
\L} 11T Propapblilvles 11 ve U, 1 Dasls arc |U,| all{l |U| y wlillle 111 Lie
+ basis they are |a + b|? and |a — b|2
(2) Let’s start by writing
T = ¢, (£)e ErM1) 4 cp(t) e F2/R|2) (13.99)

Substituting this into the Schrédinger equation
ov

+h
[2

7] = (11() + 24 (
ot
we obtain

—'L'QJQt

&1 = —iVy coswte “ote, (13.101)

Gy = —ﬂ?U* oS {,pri“’otrhl (1 3 102)
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After applying the rotating wave approximation we obtain

7 _i(w—wg)t

b |
Cl] — —1¥p¢E (8] {1o.

by = _i%*e—l(w—wg)tcl

The initial conditions are ¢;(0) = 1,c2(0) = 0 and é(0) =
—i/2Vy, ¢;(0) = 0. Eliminating ¢; by double differentiation we
arrive at

1 _
é + i(w — wo)ég + Z|V012c2 =0 (13.105)

A trial solution is e®** and the resulting equation is

60 . 1 - 5 )
—p° — (w—wolp + Z|Vo]‘ =0 (13.106}
The roots are
1 _
pe = 5(—(w = wo) + [(w —wo)® + |W*|/%)  (13.107)

and the full solution to the Schrédinger equation is thus

co(t) = Aypett+t 4 A eiH-t (13.108)

The coefficients A+ can be fixed from the initial conditions to
yield
WP L
2 (w—wo)?+ |V

ea(t) = et _ gty (13.109)

where
Q = (w—wo)? + [Vo]?])}/2 (13.110)

is the Rabi frequency. Thus the solution for the upper level
evolution is

o 1
ea(t) = —é%*eﬂ(w—“’o)m sin 5 Ot (13.111)

< 1A

The probability in question now follows from this. The flip

duration m/{2.
Solve the Schrodinger equation to obtain the free evolution.

The solution should be of the form
[T (t)) = cae”=t|a) + coe b)Y + c.em et c)  (13.112)

where ¢g, cp, €. are initial amplitudes for states a,b, ¢ respec-
tively. When you diagonalize the interaction Hamiltonian you
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should obtain the following eigenstates:

Qo

(4)

Q4 Qo
wh == (=g = ) (319
o) = (it - ﬁlc>) (13.114)

where Q = /Q2 + (¥2. (What are the corresponding eigenval-
ues?).

In the semi-classical model atoms are quantized, but light is
not. The atom is described through a Hamiltonian, and the
effect of light is taken as an additional part of the Hamilton-
ian. The evolution of the system is obtained by solving the
Schrodinger equation with the total Hamiltonian. This is fre-
quently impossible to solve analytically and we have to resort
to approximations or numerics. The effect of oscillating fields
is usually taken as a perturbation of the basic non-interacting
atomic Hamiltonian. This leads to the time dependent pertur-

bation theory where the most useful result is Fermi’s golden
rule. This tells us the probability of obtaining a transition from

one level to another under a time dependent perturbation.

|1) and |2) represent the two atomic levels. The E; and Es
are the corresponding energies of the two states. They are the
eigenvalues of the atomic Hamiltonian with [1) and [2) being
the eigenvectors. Now, when this atom interacts with a field the
Hamiltonian contains the transition elements for jumping from
1 to 2 and vice versa. We have the creation and annihilation
operators |2) (1] and |1)(2|.

The Schrédinger equation is

(Br 1) (1] + B2 |2)(2] + 7e™* 1) (2] + ye ™ "2) (1)) [T (2))

6"2?» (13.115)
By substituting in the wave function
[T (1)) = ci(t)e *F1t[1) + co(t)e”F21|2) (13.116)
we obtain two equations:
%Cz = 36y el @TT=w) (13.117)
%cl = iépe iz —w)t (13.118)

This is a system of coupled equations which we solve for co by
differentiating the second equation and substituting the first
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equation into it. We obtain

2
éa — i(wng — w)éa + %CQ =0 (13.119)
The trial solution cg = € leads to
2 7
o — ((4)12 - w),u - ﬁ =0 (13120)
which has two roots:
Wi — W
o = 122 + (V2 /R2 + (w — wi2)2/4) (13.121)
Therefore
ca(t) = Ae*#1t 4 Bettt (13.122)

But ¢2(0) = 0, thus A = —B. The solution is therefore

lea|? = 4A%sin® () (13.123)

as required.
-~ If on resonance,wehave —

lea|? = sin®(~t/h) (13.124)
For |ca|? = 1 we require

r-I (13.125)
) 2 _ L J
and so we obtain the time for a flop to be t = wh/2v. Given
that v = 107%*]J, we find ¢t = 1.65 x 107" seconds.

(5) The first part is the same as the previous question.

(i) The initial Hamiltonian is H = ’JZ—BUZ. This has eigenval-

ues —uB/2 and +uB/2 as can be seen from the matrix

OTTY
( _‘L
n )

AL ALA
AN Id

(if) Now the state is |T), but the Hamiltonian is H = “2—303;.
The eigenvectors of this Hamiltonian are |—) and |«),
which evolve with phases e #Bt/2h gand iBt/2h regpec-
tively. But, the initial state can be written as an equal
superposition of the eigenstates of o,:

T =1=)+ 1) (13.126)
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Therefore the state after some time T is given by
W(T)) = WP/ ) 4 BT/ (13.127)

The phase difference between the two states is

BT
Ag = “h (13.128)
(3) The orthogonal state to the initial state is

1) =1l=)— =) (13.129)
So, the phase difference between the states has to be

e BT/F — _1 and so

wh
= 13.13

T B (13.130)

The energy difference is E = uB and so from the last question
we have that

TE = nh (13.131)
This is very similar to the uncertaintv relation between enerov
ar the uncertanty relafion between energy

and time AEAt > h.
Thus the time energy uncertainty is a pretty good estimate of
the time it takes for the transition, given that it is only out by
.

13.4 Problems and Solutions 4

13.4.1 Problem set 4

(1) In

he Schrodinger picture, operators are time independent and
8

arnlirn ornardino Fo L QoL A pr:adl
€VOIVE alCorqliiig 1o th € OCOTOAIIEET Equavion

zh—t\IJ) H|D) (13.132)

where H is the (time independent) Hamiltonian. Find a form
for the time evolution operator

Ut to)¥(to)) = [¥(2)) (13.133)

in terms of the Hamiltonian H. Use this to show that in the
Heisenberg picture, where states do not evolve in time but
operators representing observables do, that

A

ih— O(t) [0, ] (13.134)
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(2) Consider a two level atom with the ground state |g) and ex-
cited state |e} interacting with a single quantized radiation
field mode of frequency w which is close (but not equal) to
the atomic transition frequency wp. The interaction energy be-
tween the atomic dipole d and the electric field E is V = —dE.
We write the dipole operator as d = deg(0y + o_) where o4
are the Pauli raising and lowering operators

6+l9) = le) (13.135)
G_le) = |g) (13.136)

so 6, = le)(g|. The field operator £ = Egy(a + a!)sin kz,
where @ and a! are the creation and annihilation operators.
Use the result of questlon 1 to show that the rotating wave

is equlvalent to droppmg terms 416 + 464 in V.

(3) A single mode field is prepared in a number state |n) with
precisely n photons. Calculate the uncertainty in the field op-
erator

S = Eo(a +a')sinkz (13.137)

and interpret the result.

(4) Explain the process of quantizing the electromagnetic field.
Why is a single mode of the field equivalent to a unit mass
barmonic oscillator?

In terms of the creation and annihilation operators, the Hamil-
tonian for a single mode field of frequency w is

H=hw{éa'a+= (13.1
U 2)
A coherent state of this field with the amplitude « is given by

oy = e 127723 |y (13.139)

i ility of obtaining n photons in the field?
What is the average energy of the field in this state? Hence

give the physical meaning of the amplitude .
Solve the Schrodinger equation to obtain the free evolution
of this state. What happens to the amplitude « during the

evolution?
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The action of a beam splitter with the transmission and reflec-
tion amplitudes T and R respectively is given by

|n) ® |0) — ZT""’R’W f (Z) |n—p) ® |p) (13.140)

Suppose that the input is a coherent state of amplitude « in
one port and vacuum in the other port, |a) ® |0). Show that
the output is a product of coherent states

[Ta) ® |Ra) (13.141)

Hence explain why the coherent state is considered the best
quantum description of classical light.

(5) A quantum particle moving non-relativistically in one dimen-
sion has mass m and potential energy imw?x?. Write down
its Hamiltonian H. Express H in terms of the operators

2 (13.142)
mw/

H

H

(13.143)

im\‘b ﬁu\

B (zt
\
(

where 3% = mw/h. You may assume that [z, p] = ih.

(i) Evaluate the commutators [a, at], [H, a] and [H, a].

(ii) Hence determine the allowed energy levels of the particle,
explaining carefully the logic that you use. What do these
levels represent when we apply them to a single mode of
the quantized electromagnetic field?

(iii) Let |0) denote the ground state. Show that

(0l(a + a")|0) =0 (13.144)
{0](a+a™)?|0) =1 (13.145)

What do these relationships signify in relation to the
quantized electromagnetic field?

(6) Suppose that we have a state of two light modes of the form
1/2|2,0) + 1/v2|1,1) + 1/2]2,0). Prove that this state is
entangled, i.e. prove that the state cannot be written as a

—stateoflight (al®) + by +el2Pel) + ) 92—

13.4.2 Solutions 4

(1) From the Schrodinger equation it follows that

1T(E)) = e~ H/Ag(0)) (13.146)
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(Note that this is only true if the Hamiltonian is time indepen-
dent.) Therefore

[T(t)) = e HE—10)/E g (1)) (13.147)
A , 0 — s kg _
The usual expectation value of an observable is given by
(O@) = (¥(1)|0|¥(#)) (13.148)

But this can be rewritten using our time evolution operator as
(O(1)) = (T(0)|eH t=to)ROe=iHt=to)/R|gy(0)y  (13.149)

and so
O(t, to) = e l—t0)/hO=iH (t=to)/h (13.150)

is the time dependent operator in the Heisenberg picture. Let’s
now derive the evolution equation for the above operator. Dif-
ferentiate the equation obtaining

md%a(t,to) — _AOW) + OWH = [O(), ] (13.151)

(2) Using the previous question we have
.k =16+, H] (13.152)
ith—o, = (04, .
a’t O+, 11] { )

where H = Hppom + Hpgq and [6, Hr] = 0. The trick here
is to identify the Hamiltonian for the atom. It is most conven-
iently given by

Hatom = Eele) (€] + Eqlg) (gl (13.153)

Let’s assume for simplicity that E; = 0. Then E, = hwy which
is the transition energy. So
d i

70t = “5[0+,hw0|6><6|] (13.154)

= % (hwolle)ale) (el ~ leele) (gl}) (13.155)

so that
d i, PPN
'd—t'O'_l_ = EUWO)O'.F (15.100)
o (t) = o (0) (13.157)
Similarly,

o_(t) = e~ *otg_(0) (13.158)
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Now we do the same for the field equations. We use Hp =
huw(ata 4+ 1/2) and [a,af] = 1. Then

z‘h%d(t) = [a(t), H] = [a(t), Hr] (13.159)

is the evolution equation which yields (prove it!)

a(t)

a(0)e~ (13.160)
&’r(t) T

(0)e™* (13.161)

Il
b

So we can write the interaction as

V(t) = —dE(t) = —deg(84 +5_)Eosinkz(a'(t) + a(t))
(13.162)

NPT Q T . 1 D’i(w—WQ)t and T nT ~ o_i(w’—(‘)O)t ara elowrly varvy_
ACTINS 0484 ~ € allG O_ 4" ~ & al'C Bi0WiYy vValy

ing near resonance, but o al ~ e“t«0)t and g_a ~ e~iHwtwo)t
very at ~ 2wq and average to zero, leading to the rotating wave

®3)

approximation.
The mean field (EF) is zero in a number state, as

{n|a +a'|n) =0 (13.163)
On the other hand, the mean square field is

(n|E®*n) = Ejsin® kz(n|a® + ata + aat + (a¥)?|n)
= E¢sin’kz(2n +1) (13.164)

The field with fixed n has definite amplitude, but random phase
between 0 and 27.

The electromagnetic field is classically a wave described by six
numbers at every point in space and time. These numbers can
be specified simultaneously and the values of both the electric
and magnetic field can in principle be determined exactly and
simultaneously. When the field is quantized this is no longer
possible. In fact, the electric and magnetic fields become op-

erators which are no longer commuting, i.e. they are no longer
simultaneously measurable. Writing the total classical energy
in the field we get

W= % f (eE? + pH?)dV (13.165)

But E « zcoswt/V and B « pwsinwt/V, so that W = (p? +
w?x?)/2, which is a simple harmonic oscillator.
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In terms of the creation and annihilation operators, the Hamil-
tonian for a single mode field of frequency w is

H = hw (afa + %) (13.166)

A coherent state of this field with the amplitude « is given by
2 a”

o) = e711/2 Y " ——|n) (13.167)

What i the pro hwblllt of obtainine n nhotons in the feld?
aming n photons 1 the nelq!

The probability of obtaining n photons is |(r|a)|? and is

2
Pn = e*lo‘lz% (13.168)

The average energy is
(E) = hw(a (a‘fa + %) |o) (13.169)

2n 1
= hw (e—lalz Z %n + 5) (13.170)

_ ( ~lal? |2 Zlalz(” K %) (13.171)
= hw (|a[2 + 512-) (13.172)

The physical meaning of |«|? is that it is the average number
of photons.

We now solve the Schrédinger equation to obtain the free evo-
lution of this state,

. 6'”) At A 1
il A — 13.1
th—, M(aa+2)|n) (13.173)
The solution is
In(t)) = e~ H1/DE |y (13.174)

Therefore

9 /\Jn
jat)) = e71T/2 Y~ —— e~ WD) (13.175)
V!
n

zwt)

— emiwt/2, —|e|? /22 (ae” iny (13.176)

— o~ Wt/2|  ,—iwty (13.177)
€ rw 7 ¥ 7

A=
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Therefore the amplitude oscillates at frequency w.
When the coherent state is the input we have

2 ny a”
)10 e (7) e n o
n ¥ N&T S/ ¥ e

—|Ta|*/2 ,~|Ral /QZZ{ o= p_} |n — p)
{Rap¥ P

Lve )
= |Ta) ® |[Ra) (13.178)
QED.
(5) The Hamiltonian is given by
" p? mw?z?
H = 13.179
(2m * 2 ) ( )
We can first compute
ala = = (m + — [z, p] + -—\ (13.180)

Using the fact that [z, p] = ik we can rearrange the above to

obtain
H = hw (afa + ) (13.181)
(i) We can easily prove that [a,af] = 1, from which it follows
that
[H,a] = hwlal, ala = —fwa (13.182)
and
[H,a'] = hwa'la, a'] = hwa! (13.183)

(i1) Suppose that Hl|w,) = E,|vy,). Then (Ha — aH)|y,) =
(H — Ep)altn) = —hwajn). Thus,

H(“l%)) = (En — h’w)(alwn» (13-184)

Thus, a lowers energy by hw and, likewise, it can be shown
that a' raises energy by hw.

The lowest energy state is the one which cannot be low-
ered anymore, so

al0) =0 (13.185)
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Therefore, H|0) = fiw/2|0) and so the energy of the nth
eigenstate is E, = (n + 1/2)hw. When we quantize the
words) is a harmonic oscillator. Different levels represent
different number of photons that can exist at the given
frequency (or with the corresponding energy).

(iii) The first equality is easy as a|0) = 0 and likewise (0|a’ =

N Mha gan~id Sa Ao e aceam o3 e olas any
U. L1IIC DCLOLIU id UOVLIC DY CApPalldiull, sllice

(@ +a")? =a® 4 aa’ +afa + (af)? (13.186)

All terms disappear apart from
(0]aat|0) = 1 (13.187)

The first relationship says that the average of the electric
field in the vacuum is zero. The second says that the
average of the energy squared is non-zero. This is a purely
quantum signature, and (loosely speaking) says that the

(6)

vacuum state also contains some energy, since energy of
the field is proportional to its square.

It is clear that there are no coefficients a, b, ¢, d, e, f and g that
can reproduce the original state. Therefore the state cannot
be written as a product and this means that it is entangled.

13.5 Problems and Solutions 5

13.5.1 Problem set 5

(1)

The coherent state |a) is generated from the vacuum state of
a field mode |0) by a unitary transformation:

f)

lo) = a0y (13.188)
1/ eIy \ J

2iren OO

where D(a) = etaa’ e=121*/2 ig the Glauber displacement oper-
ator, af the creation operator. Show that, using this definition,
the probability of finding n photons in a coherent state |a),

p(n) = |{n|a)|? is given by the Poisson formula
ATt —TL
p(n) = = :' (13.189)

and determine the mean number of photons 7 and the standard
deviation An = [(n?) — (n)?]*/2.

Calculate the mean field (E‘) for an electric field operator E =
Eysinkz(a + a') for a field prepared in a number state. Then
calculate the mean square field (E2) in such a coherent state,
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and from these results find the field uncertainty AE = [(£2) ~
(F)2]'/2. How does this compare with the field uncertainty for
the vacuum?

(2) Imagine we can prepare a single field mode in a superposition
of zero and ten photons

[T) = a]0) + b|10) (13.190)

Take a = b = 1/+/2 for simplicity. Calculate the mean pho-
ton number for this superposition. Suppose having prepared
initially such a superposition state, we monitor the field and
detect a single photon which has leaked out of the cavity con-
firming the field mode. What is the field state inferred after
such a detection? What is the field mode mean photon num-
ber inferred immediately after this leaking photon has been
detected? Interpret this surprising result.

(3) Show that the ground state when a cavity field interacting with
a two level atom is far detuned from resonance by A is Stark
shifted in energy by interaction by an amount

(13.191)

(4) Explain why a coherent state is a good mathematical repre-
sentation of typical laser light. Describe briefly the basic fully
quantum mechanical description of light matter interaction.
A two level atom interacts on resonance with a single mode
light field. Suppose that the atom is initially excited and the
field has n photons. The atom field interaction is described by

the Jaynes—Cummings Hamiltonian
H="Hh\o_a' +0,a) (13.192)

Explain the physical significance of this Hamiltonian and the
meaning of all the symbols.

Prove that the joint state of the atom and field at some time £
is given by

U(t) = cos Antle,n) +isin Antlg, n+ 1) (13.193)

Give the expression for A,

Calculate the probability for the atom to be in the ground state
and plot it as a function of time.

Now suppose that the field is initially in a coherent state of
amplitude « instead of a number state. Using linearity of

Schridinger : ! wit] - eulati
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whatsoever write down the expression for the probability that
after time £ the atom is in the ground state.

Assume that @ = 0. After what time is this probability greater
than a half?

by hw;;j. It is subject to a small external time dependent
monochromatic electromagnetic perturbation for a time T, os-
cillating at the frequency w. You may assume that the per-
turbation has matrix elements Vj; = Vz; between these states.
Show that if the atom is initially in the state i, the probability
of a transition to the state j is approximately

2 sin’ ((wij — w)T/2)

P = Wl oy o

(13.194)

(i) Argue that the probability of the transition back from j
to 7 is the same as that for the transition from  to ;.
(ii) Show that, within the formalism employed, the transition
rate grows linearly with time.
(iii) Why is the Einstein B coefficient independent of time

(only a qualitative explanation required)?

6) Su se that we have the following two level atom and single
filed mede interaction Hamiltonian:

H = (o_(a")* +0ya) (13.195)
Compute the dynamics of the initial state |e, 0).

13.5.2 Solutions 5

(1) Here we have to compute {n|D(a)|0). Therefore we need to be
able to evaluate

) (13.196)

To do so, you can use the fact that €* = > z"/n!, and then
apply the creation operator algebra. The rest of the question

can be answered straightforwardly from the relevant chapter
in this book.

(2) If | ) = (|0) + [10))/+/2, then

7

(Olata|T) = —;—(O +10) =5 (13.197)
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If we detect a photon, that is like applying annihilation oper-
ator to the above state. We obtain

a(|0) + [10))/v2 = v/5|9) (13.198)

This state is not normalized; we have to divide it by /5 to
normalize it. Therefore the number state with nine photons is
obtained at the end. The average (in fact it is exact) number
of photons is nine. So, detection has increased the average
number!

The relevant states in this case are the ones that will “(Rabi)
flop into each other”:

1) = |g)In) (13.199)
12) = |eYfn — 1) (13.200)

with the corresponding energies E; = E,; + nhw and Ey =
E. + (n — 1)hw. The Hamiltonian is given by

Ey Vig
H = 13.201
(V21 E, ) ( )

We obtain energies from
HY,L =EFE1¥, (13.202)
The solution to this eigenvalue equation is
Ey = %(El + Fp) & %[(El — Bp)? +4lViaP]V? (13.203)
Large F; — E5 leads to
EL=

N

+ 1+ 2%

i 1] AT EEA S

no| =t

N
B =

1
~ §[(El + Ea) 4+ RA £ 2|Vi2|*/RA] (13.205)

(4)

The last term is the so-called Stark shift.

A coherent state is the minimum uncertainty state in position
and momentum of a harmonic oscillator.

This is a natural Hamiltonian from the physical perspective as
the atom and vice versa.

Going to the interaction picture the Schrodinger equation re-
duces to

do_al + opa)|y) = ihglz[)) (13.206)

Pay
ot
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We assume that there are n photons in the field. Then due to

energy conservation only the following superposition is possi-
ble:

1Y) = cile,n) + ealg, n+ 1) (13.207)

The Schrodinger equation becomes

MerVa T Ilg, nt1) +cov/i 7 Tle, n)) = i(érle,n) +éalg, n+1)

(13.208)

Multiplying (g| and (e[, we obtain
)\V n -+ 161 = 'iéz (13.209)
AWn+ leg = iéy (13210)

&+ (Mn+1)2¢ =0 (13.211)
The solution is
c1(t) = Asin(Avn + 1t) + B cos(Av/n + 1t) (13.212)

Therefore A, = Av/n + 1.
But at t =0, ¢;(0) = 0, so that

c1(t) = sin(Avn + 1t) (13.213)
‘The probability is therefore
p1(t) = |e1(t)2 = sin®(\n + 1t) (13.214)

If the field is in the coherent state
o) = e~loP/2 af;i.rl)
n
then the amplitude for the ground state at time £ is

c1(t) = e lolr2 > O‘Tn' sin{An + 1t) (13.216)

Thus the probability is

Ly]
Z

pi(t) = el > 5—; sin(A\v/n + 1t) (13.217)

If & = 0, then
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and p; = 1/2 implies sin(M) = 1/v/2, hence
t=m/4\ (13.219)

This is bookwork. Here is just one way of deriving it. If we
divide the total time interval T into n small time intervals,
then the amplitude for the transition is given by

GIHL = 2T ()de)™]) (13.220)

first order, equal to
) ? ~ .
(711 — 5 J/ V(t)dt)|?) (13.221)

This is in the interaction picture, so converting back we have
that

V(t) = V(t)eit (13.222)

Therefore, the probability is given by the mod square of this
1 .
=V / e~ e dt[i) (13.223)

(the positive frequency is omitted in the rotating wave approx-
imation). Performing the integration leads to the required for-
mula

28I ((wiy — w)T/2)
(Alwi; —w))?

where V' = (j|V|¢) is the transition matrix element.

Pij = 4|V

(13.224)

(i) The transition from j to i has |Vj;|2, but Vj; = V;3 and so
\Viil = |Vi;|, and this proves the equality of the rates.

(it) For a short time rate we have that (as can be shown by
Taylor’s expansion)

dP/dt = |Vi;|*T (13.225)

as required.

(iii) To obtain B, we have to average over a continuum of
states (of the system or the driving field — it doesn’t
matter which). Once we sum up over all the states that
contribute to the transition, we obtain an expression that
is independent of time. This is because the integral of
the above sinc function is proportional to T, so that the
resulting derivative is independent of it.
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(6) We know how to solve the Jaynes-Cummings model. This in-
teraction Hamiltonian is the same apart from the fact that it

involves fourth power of the creation and annihilation oper-
ators. This means population oscillations at the rate cos (24t
where Q4 = Ay/(n + 1)n(n — 1)}(n — 2) between the state |e, n)
and |g,n + 4).




