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8. Principles of quantum computing
1. The swap gate was explored in Part I and can be implemented using the network

|a⟩ |b⟩

|b⟩ |a⟩
=
|a⟩ |b⟩

|b⟩ |a⟩

which works for both classical and quantum inputs. The classical clone network is just
a single controlled-not gate

a a

0 a

(if a = 1 then the second qubit is flipped from 0 to 1) but clone does not work on a
quantum computer unless the qubits are in eigenstates: the no cloning theorem.

2. To build not and controlled-not gates from Toffoli gates just set both inputs (not) or one
of the two inputs (controlled-not) to one. To build an or gate use De Morgan’s laws,
a or b = not(not a and not b) and implement and using a Toffoli gate.

3. Both not and and gates can be built from Fredkin gates with appropriate patterns of
inputs, though it takes a bit of thought to see why these gates work.

a a

0 a

1 not a

a a

0 a and b

b (not a) and b

The circuit for a not gate also copies the input a at the same time, and so implements
clone on a classical computer.

4. Since the Fedkin gate is a controlled-swap gate it can be built from the standard swap
network by adding an additional control to each gate, turning each controlled-not gate
into a Toffoli gate.

=

1
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It is not possible to build a Toffoli gate using only Fredkin gates without using ancilla
bits; this is most easily seen by noting that the Fredkin gate only swaps bits or leaves
them alone, so the number of 0s and 1s in the output must be the same as in the input.
However since the Fredkin gate is universal there must be some construction of a Toffoli
gate using multiple Fredkin gates and ancilla bits.

5. If the control bit is 0 then the central controlled-gate is not applied to the target qubit,
which just experiences VV† = 1; if the control bit is 1 the target qubit experiences
VUV† as desired. This idea obviously generalises to controlled-controlled-gates, and
since controlled-not is self-inverse we can simplify the construction above by replacing
the outer Toffoli gates by simple controlled-not gates.

6. As previously noted the controlled-not gate implements the bitwise sum, that is the sum
without carry, while the carry bit is 1 if and only if both a and b are 1. There is no need
to explicitly preserve the second input as all gates applied to it are reversible.

9. Elementary quantum algorithms

1. The oracle will take the form of an f -controlled-not gate, and its parity can be deter-
mined in two calls with just two bits

0 f f 1

0 f (0) ⊕ f (1)

2. The circuit

will achieve the desired result.

3. We have already proved f11 and f01, and f00 is trivial, so the only interesting case is f10.
Using H2 = 1 the circuit can be written as

H H

H X H H X H

and the remaining steps follow easily by combining results for f01 and f11.



3 Answers: quantum computation

4. The amplitude amplification operator is given by

UAA =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


=

1
2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .
Suppose the satisfying function is f00; the state after the function evaluation will be

ψ00 =
1
2


−1
1
1
1


and the final state can then be evaluated by multiplication to get

UAAψ00 =
1
4


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1



−1
1
1
1

 =

−1
0
0
0


which is −|00⟩. The other three possibilities can be evaluated in exactly the same way,
and the answers are obvious by symmetry.

5. For the case of two satisfying inputs, it is simplest to choose a concrete case again,
such as f00 and f01 matching. Then explicit matrix calculations show that no amplitude
amplification occurs: a measurement is equally likely to give any of the four possi-
ble results. As before this argument applies whatever the two matches are. With three
matches the situation is slightly more interesting, and amplitude amplification results in
the final state being the single non-matching input, which now is the state marked with
a unique phase.

6. Easily shown by direct calculation. As controlled-not gates are self inverse the decoding
networks can be obtained by applying the same gates in reverse order.

7. The state of the five qubits as they enter the network is

(α|000⟩ + β|111⟩) ⊗ |0⟩ ⊗ |0⟩ = α|00000⟩ + β|11100⟩

and in general we have four possible states

|ψ0⟩ ⊗ |00⟩ = α|00000⟩ + β|11100⟩
|ψ1⟩ ⊗ |00⟩ = α|10000⟩ + β|01100⟩
|ψ2⟩ ⊗ |00⟩ = α|01000⟩ + β|10100⟩
|ψ3⟩ ⊗ |00⟩ = α|00100⟩ + β|11000⟩
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where the subscript identifies the bit which has experienced a spin-flip error (0 indicat-
ing no error). Now run through the network of controlled-not gates.

|ψ0⟩ ⊗ |00⟩ CN14−→ α|00000⟩ + β|11110⟩ CN24−→ α|00000⟩ + β|11100⟩
CN15−→ α|00000⟩ + β|11101⟩ CN35−→ α|00000⟩ + β|11100⟩ = |ψ0⟩ ⊗ |00⟩

|ψ1⟩ ⊗ |00⟩ CN14−→ α|10010⟩ + β|01100⟩ CN24−→ α|10010⟩ + β|01110⟩
CN15−→ α|10011⟩ + β|01110⟩ CN35−→ α|10011⟩ + β|01111⟩ = |ψ1⟩ ⊗ |11⟩

|ψ2⟩ ⊗ |00⟩ CN14−→ α|01000⟩ + β|10110⟩ CN24−→ α|01010⟩ + β|10110⟩
CN15−→ α|01010⟩ + β|10111⟩ CN35−→ α|01010⟩ + β|10110⟩ = |ψ2⟩ ⊗ |10⟩

|ψ3⟩ ⊗ |00⟩ CN14−→ α|00100⟩ + β|11010⟩ CN24−→ α|00100⟩ + β|11000⟩
CN15−→ α|00100⟩ + β|11001⟩ CN35−→ α|00101⟩ + β|11001⟩ = |ψ3⟩ ⊗ |01⟩

The first three qubits (which are always control bits) are not changed by any of the
controlled-not gates. Furthermore the states of the ancilla qubits 4 and 5 are the same
in both components of the superposition, and so can be factored out as indicated. If a
quantum state is separable then measuring one part has no effect on the other, and so
the ancillas can be measured without affecting the logical qubit. Finally note that the
four different ancilla states are all orthonormal, and so can be perfectly distinguished.

8. From the results of the previous question it is easy to write down the error correcting
steps, as measuring the ancillas in the computational basis gives four distinct results
with corresponding actions. For example if the ancillas are in |01⟩ then the encoded
qubits are in state |ψ3⟩, which can be fixed by applying a not gate to qubit 3; similar
results apply in the other cases. For quantum control, note that these actions can all be
implemented using generalised Toffoli gates, but implementing all these Toffoli gates is
a lot of work. Another problem is that the ancilla qubits need to be reinitialized to |0⟩ at
the end; this is easy if the ancillas have been measured, as any ancillas in state |1⟩ can
be rest with not gates.

9. In a classical code, if two errors occur on different bits then two bits have the wrong
value, and the majority vote approach “corrects” the third bit to the wrong value. (If the
same bit is flipped both times then the situation is indistinguishable from the error free
case). For the quantum code the state |ψL⟩ is “corrected” to notL|ψL⟩.

10. For an initial state |ψ⟩ = α|0⟩ + β|1⟩ the relevant density matrices are

ρa =
1
2 (ϕ+z|ψ⟩⟨ψ|ϕ+z + ϕ−z|ψ⟩⟨ψ|ϕ−z)

and

ρb = (1 − p) × |ψ⟩⟨ψ| + p × Z|ψ⟩⟨ψ|Z.

Now ϕ±z = cos(ϕ/2)1 ∓ i sin(ϕ/2)Z and so

ρa = cos2(ϕ/2)|ψ⟩⟨ψ| + sin2(ϕ/2)Z|ψ⟩⟨ψ|Z
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with the other two terms cancelling. Clearly ρa and ρb have the same form, and they are
identical if p = sin2(ϕ/2), which rearranges to various forms such as p = (1 − cos ϕ)/2
or ϕ = arccos(1 − 2p).

10. More advanced quantum algorithms

1. There are four possible inputs, each of which has two possible outputs, giving a total
of 24 = 16 possible functions of which two are constant and six are balanced, with the
last eight functions being neither constant or balanced (four give mostly 0 and four give
mostly 1). For the rest of the question we only consider the constant and balanced cases.
A single value of f (x) tells us nothing while two values that disagree with each other
indicates a balanced function. After three queries we know the result with certainty (ei-
ther we have a disagreement, or three values are the same, and the function is constant).
Hence the minimum number of queries is two and the maximum is three.

For the average case, suppose the function is balanced and that f (x1) = 1: then f (x2)
will be 1 with probability 1/3 and 0 with probability 2/3. In the latter case we can
stop; otherwise we will need one more query. So for a balanced function the average
number of queries required is 2/3×2+1/3×3 = 7/3, while for a constant function it is
always necessary to use 3 queries. If the function is chosen to be constant or balanced
with 50% probability, then the average number of queries is (7/3 + 3)/2 = 8/3. (If the
function was chosen from amongst the 8 possible functions at random then the average
query count would be (6 × 7/3 + 2 × 3)/8 = 5/2, but this is not what was asked!) On a
quantum computer the minimum, maximum, and average query counts are all 1.

11. Trapped atoms and ions

1. The potential energy is given by

U =
M
2

N∑
n=1

(
ω2

r r2
n + ω

2
z z2

n

)
+

e2

4πϵ0

∑
m>n

1
|rn − rm|

where the first group of terms is just the standard form for the potential energy of n
harmonic oscillators, written in plane polar coordinates, and the second group of terms
is the coulomb repulsions between the ions (the second sum goes over all pairs of ions,
counting each pair only once).

2. For an ion travelling in free space the effect of the motion will be to cause Doppler
shifts in the transition frequencies. The effect will depend on the velocity distribution,
but the most common result is Doppler broadening. In a trap the motion is quantised as
vibrations within the trap, and it is necessary to consider transitions between vibrational
sub-levels of each electronic level. For a strictly harmonic trap these levels are equally
spaced, with En = (n + 1

2 )hν, and the selection rule ∆n = ±1 results in a pair of sharp
sidebands, separated from the sharp principal transition by ±hν.

3. For Ca rearrangement gives 1/Γ = (3ϵ0~λ3)/(8π2e2a2
0) and direct substitution gives a

value of about 0.19 µs; for Be we get 1/Γ = (3ϵ0~c3)/(8π2e2a2
0ν

3) and substitution gives
a value of 6.8 × 109 s or 216 years. The 40Ca+ ion trap avoids rapid relaxation by using
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a forbidden transition, weakly allowed by electric quadrupole rules. The 9Be+ ion trap
achieves spatial discrimination by using optical Raman transitions.

4. The phase gate Uπ negates |01⟩ while leaving other states unchanged, and can be con-
verted to the standard controlled-Z gate by applying X gates (not gates) to the first qubit
before and after the Uπ. Finally apply Hadamard gates to the second (target) qubit to
get a controlled-not gate.

5. The first bit is just brute force:

|0⟩⟨0| ⊗ Z + |1⟩⟨1| ⊗ 1 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 +

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 = Uπ.

Now the “massively entangled” state of 2 particles is just

UπH⊗2|00⟩ = (|0⟩⟨0| ⊗ Z + |1⟩⟨1| ⊗ 1) × (|0⟩|0⟩ + |0⟩|1⟩ + |1⟩|0⟩ + |1⟩|1⟩)

neglecting normalisation. Multiplying this out gives

|0⟩⟨0|0⟩ ⊗ Z|0⟩ + |0⟩⟨0|0⟩ ⊗ Z|1⟩ + |0⟩⟨0|1⟩ ⊗ Z|0⟩ + |0⟩⟨0|1⟩ ⊗ Z|1⟩
+|1⟩⟨1|0⟩ ⊗ 1|0⟩ + |1⟩⟨1|0⟩ ⊗ 1|1⟩ + |1⟩⟨1|1⟩ ⊗ 1|0⟩ + |1⟩⟨1|1⟩ ⊗ 1|1⟩

As usual all the inner products can be replaced by 0 or 1, and dropping the (pointless)
1 operators this simplifies to

|0⟩Z|0⟩ + |0⟩Z|1⟩ + |1⟩|0⟩ + |1⟩|1⟩ = (|0⟩Z + |1⟩)(|0⟩ + |1⟩).

The corresponding state for three atoms is

(|0⟩Z + |1⟩)(|0⟩Z + |1⟩)(|0⟩ + |1⟩)

and multiplying this out and using Z|0⟩ = |0⟩ and Z|1⟩ = −|1⟩ gives

|0⟩|0⟩|0⟩ − |0⟩|0⟩|1⟩ − |0⟩|1⟩|0⟩ − |0⟩|1⟩|1⟩ + |1⟩|0⟩|0⟩ − |1⟩|0⟩|1⟩ + |1⟩|1⟩|0⟩ + |1⟩|1⟩|1⟩

matching the result given (neglecting normalisation of course).

12. Nuclear magnetic resonance
1. From the exercises in Part I we know that a 12 T field gives a 1H Larmor frequency of

about 500 MHz, and so we need a field difference of 100÷(500×106)×12 = 2.4×10−6 T
per Å, or 24000 T/m. Generating field gradients of this size is challenging.

2. There are two reasonable approaches to this. The first is to use perturbation theory,
writing the Hamiltonian asH = H0 +H1 where

H0/~ = ω1
σ1z

2
+ ω2

σ2z

2
and

H1/~ = ω12
σ1xσ2x + σ1yσ2y + σ1zσ2z

4
First order perturbation theory says that the eigenstates are unaffected by the coupling,
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and the eigenvalues are changed by the diagonal matrix elements of the perturbation,
that is just the z terms. Thus to first order the Heisenberg coupling can be replaced by
an Ising coupling. To check that this approach is valid we need the first order effect on
the eigenvectors, and in general the other states get mixed in according to

a(1)
k =

⟨k|H1|m⟩
Em − Ek

The only off diagonal elements in the perturbation connect the two central states; these
are of size 1

2 ω12 and so mixing is negligible if∣∣∣∣∣ ω12

ω1 − ω2

∣∣∣∣∣ ≪ 1.

An alternative approach is to diagonalize the full Hamiltonian and then take appropriate
limits to show that the eigenvalues can be approximated by the diagonal elements.

3. As in the previous chapter the critical step is to make a standard controlled-Z gate, as
this can be converted to a controlled-not gate with a couple of Hadamard gates. Now the
controlled-Z can be decomposed (up to an irrelevant global phase) as evolution under
the Ising coupling for a time τ = π/ω12 together with a −90z rotation on both qubits.
The Ising term can be implemented with a spin echo as usual. It might be argued that
the −90z gates are not standard, but these can be replaced by a sequence of three S gates,
where S =

√
Z is a standard gate. For a not gate that takes the same length of time start

from a spin echo which refocuses everything, and put a not gate on the beginning or
end; if you are careful this not gate will cancel an earlier one.

4. Assuming the couplings take the Ising form the Hamiltonian is

H/~ = 1
2 (ω1σ1z + ω2σ2z + ω3σ3z) + 1

4 (ω12σ1zσ2z + ω13σ1zσ3z + ω23σ2zσ3z)

A possible spin echo network is

τ/4

X

X τ/4

X

τ/4

X

X τ/4

X

5. To reduce an apparent Larmor frequency combine a period of free precession with a pe-
riod under a spin echo. To change the sign of a Larmor frequency surround a period of
free precession with not gates. Any single component of a Hamiltonian, including cou-
plings, can be rescaled in the range ±1, but simultaneously rescaling multiple elements
gets complicated and is not always possible.


