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Electro-optic modulation of light

An electro-optic crystal is essentially a variable phase plate and as such can be used either as an
amplitude (intensity) modulator or as a phase modulator. One arrangement for this was shown in the
last lecture. Of course the field may be applied in various directions and some examples are shown
below.

We shall consider in a little detail here the longitudinal case.
The input beam is specified by

Ex′ = Ey′ = A; Ey = 0 (1)

i.e. linearly polarised along x. The output is thus affected by the phase difference between the x′

and y′ directions which is induced by the electric field along z. The output field is thus,

Ex′(`) = A; Ey′(`) = A exp(−iφ) (2)

The resultant complex field along y is then,

Ey(`) =
A√
2

(exp(−iφ)− 1) (3)

and the transmission ratio is

Iout = Iin sin2(φ/2) (4)

where

φ =
πV

Vλ/2
(5)

The quarter-wave plate allows modulation about the linear part of the transmission curve for fields
close to zero.

A similar intensity modulator can be constructed using a Mach-Zehnder arrangement with the
crystal in one of the two paths. Electro-optic modulation effectively scans the path difference of the
two beam interferometer and therefore scans from say an intensity maximum to a minimum. Biasing
can also be achieved using an additional λ/4 plate as above.

2



Figure 1: (a) a longitundial field, (b) a transverse field, and (c) a travelling-wave field.

Figure 2: Longitundal modulator. The λ/4 plate provides a “bias”to 50% transmission
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Principle of the Mach-Zehnder
Interferometer Optical fibre version of a Mach-Zehnder

Phase modulators.
Using now only the input polariser along say x′, a varying voltage to the

crystal can lead to phase and frequency modulation as follows. Let the light field be specified by

Ein = A cosωt (6)

Eout = A cos(ωt− kx+ ∆φ) = A cos(ωt− ω

c
(n0 −

n3
0

2
r63Em sin Ωt)`) (7)

and the applied voltage by

Vm = V0 sin Ωt (8)

Then, the phase of the light is modulated like ∆φ = δ sin Ωt where the modulation index is given
by

δ =
1

2

2π

λ
n3

0r63V0 = ω0n
3
0r63V0/(2c) (9)

Omitting the constant phase factor ω`n0/c,the output light field is therefore described by,

Eout = A cos(ω0t+ δ sin Ωt) (10)

which can be written as a series of Bessel functions,
Eout = A[J0(δ) cosω0t+ J1(δ) {cos(ω0 + Ω)t− cos(ω0 − Ω)t}

+J2(δ) {cos(ω0 + 2Ω)t+ cos(ω0 − 2Ω)t} ..]

where the Jn(δ) represents a Bessel function of the n th order. The result is that the spectrum of
the output light now contains sidebands shifted by harmonics of the modulator frequency either side
of the central carrier (laser) frequency, i.e. ω ± nΩ.

Electro-optic deflection of light

An optical beam can be dynamically deflected by electri-
cal control of the refractive index of a prism. The angle of deflection produced by a prism with small
apex angle α and refractive index n is θ ∼ (n − 1)α. A change in refractive index ∆n caused by an
electric field E corresponds to a change in the deflection angle of

∆θ = α∆n = −1

2
αrn3E = −1

2
αrn3V

d
(11)

Note here the factor of 1/2 because of the way the crystal is cut: voltage applied along the
z−direction; light polarised along x′−direction (direction of dimension D) and y′-direction coincident
with dimension L.
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Figure 3: Electro-optic deflection of light.

The resolution of the scanner is of course determined by the angular diffraction δθ ∼ λ0/D where
D is the diameter of the incident laser beam. To minimise this the beam should be as large as
possible and fill the aperture of the prism. Unfortunately as d is increased so to must V to maintain
the same electric field strength E on the crystal.

Acousto-optic deflection of light
We also mention here as an aside that modulation

of light beams by sound waves is possible and that acousto-optic devices are commonly used to scan
the frequency of a laser beam or to modulate its intensity. Acousto-optic effects come under the
headings of: Bragg scattering, Raman-Nath or Debeye-Sear scattering and Brillouin scattering. As
an illustration we show below the situation for an acousto-optic device operating in the Bragg regime
i.e.,where the incident light interacts with broad sound wave, phase-fronts. The relevant Bragg
condition is then,

sin θ =
mλ

2λs
(12)

where λs refers to the sound wave and m = 1 for a sinusoidal sound wave disturbance. The sound
wave moving in the upward direction with velocity v+

s Doppler shifts the light wave to frequency
υ + fs; similarly the downward propagating sound wave down-shifts the light to frequency υ − fs.
Equivalently we may say that an incident photon with wave-vector k1 collides with a quantised particle
of acoustic energy (a phonon) with wave-vector ks to create a photon of wave-vector k2 which satisfies
momentum conservation through the relationship

k2 = k1 ± ks (13)

Harmonic Generation

In lecture 1 (equation 4) we saw that for a certain class of crystals it was possible to have a χ(2) effect
and thus to induce a polarisation oscillating at the second harmonic frequency using two identical
laser fields. In the equation below we take account there being two equivalent terms (E(ω1)E(ω2) =
E(ω2)E(ω1)) by inserting the factor of 1/2, thus,

P 2ω = ε0
χSHG

2
EωEω (14)
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Figure 4: Bragg condition for diffraction from a sound wave.

The equation for the second harmonic wave is then

d2E2ω

dz2
+

(
2ω n2ω

c

)2

E2ω = −µ0(2ω)2P 2ω (15)

while that for the fundamental wave is

d2Eω

dz2
+

(
ω nω

c

)2

Eω = −µ0(ω)2Pω (16)

Solutions are of the form

Eω = Aω exp[ikωz]; E2ω = A2ω exp[ik2ωz] (17)

where Aω = A0(z) exp(−iωt)

Substituting solutions of this form into 15, and replacing P 2ω using 14 we find the second harmonic
amplitude is given by,

dA2ω

dz
=

(
i(2ω 1

2χ
SHG)(Aω)2

2n2ωc

)
exp(i∆kz) (18)

where the wave vector mismatch is

∆k = 2kω − k2ω (19)

The intensity (Poynting’s vector1) is thus

1 Maxwell’s equations lead to the following continuity equation in the absence of any Joule heating term.

∇.S+ ∂ρ

∂t
= 0

Or using the divergence theorem,
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Figure 5: Effect of phase-matching in KDP. The graph shows the variation in SHG ouptut as a
function of the phase-match angle.

I2ω =
1

2
n2ω

√
ε0

µ0

∣∣A2ω
∣∣2 (20)

so that integrating 18 we have finally,

I2ω =
(2ω)2(1

2χ
SHG)2

2n2ω(nω)2c3ε0
(Iω)2

{
sin(∆kz/2)

∆kz/2

}2

z2 (21)

This is a maximum when z = 2π/∆k = `c which introduces the coherence length `c
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∫
S.dA = − ∂

∂t

∫
ρdV

where the energy density ρ is given by 1
2
{E.D+H.B} and Poynting’s vector S is equal to 1

2
Re{E×H∗).Thus the in or

outward flow of energy over a surface is equal to the change in the energy density bounded by the surface. For a plane wave
in vacuo E and H are related by the intrinsic impedance Z0 =

√
µ0/ε0. Note that the optical intensity is equal

to the magnitude of the time-averaged Poynting vector, i.e.,I = 〈S〉
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Appendix A: The missing steps

Start by taking the curl of the curl E equation and include the polarisation in two parts: linear
and non-linear

∇× (∇× E) = ∇(∇.E)−∇2E = ∇×
(
−∂B
∂t

)
(22)

∇2E =
∂

∂t
(∇× µ0H) =

∂

∂t

(
µ0J+ µ0

∂D
∂t

)
(23)

= µ0

∂2

∂t2
(ε0E+ PL + PNL) = µ0ε0εr

∂2E
∂t2

+ µ0

∂2PNL
∂t2

(24)

∇2E− µ0ε0εr
∂2E
∂t2

= µ0

∂2PNL
∂t2

(25)

Now make the following substitutions:

PNL = ε0
χ

2
EωEω; Eω = Aωe

ikωz (26)

Take the case of plane waves (1D - case) propagating along z, then the 2ω equation (see equation
15) becomes:

d2E2ω

dz2
+

(2ω)2 n2

c2
E2ω = −µ0 (2ω)2 P2ω (27)

−k2
2ωA2ω + 2ik2ω

dA2ω

dz
+

(
n2ω2ω

c

)2

A2ω = −µ0 (2ω)2 ε0
χ

2
A2
ω (28)

The first and third terms on the LHS of the equation are equal and opposite so that we get:

i (2ω)2A2
ωχ exp (i∆kz)

2c22k2ω
=
i
(
2ω 1

2χ
SHG

)
A2
ω

2n2ωc
exp (i∆kz) =

dA2ω

dz
(29)

where we have assumed a small variation of A with z and ∆k = 2kω − k2ω. Thus, the equation
reduces as follows:

=⇒
z∫

0

exp (i∆kz) dz =⇒ sinc {} (30)

Finally, noting I2ω ∝ A2
2ω this leads directly to equations 21.
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Appendix B: Use of Modulators to Stabilise and to Scan Lasers.

The Pound-Drever-Hall Technique
The experimental layout below illustrates the typical configuration for the Pound-Drever-Hall

locking arrangement [1]. In this case the cavity follows the variations in the wavelength of the laser
such that an integral number of half-wavelengths exist between the cavity mirrors. The role of the
Pockels cell is to phase-modulate the laser output so that there are sidebands imposed on the laser’s
output. The frequency of phase-modulation and therefore the separation of the sidebands from the
central carrier frequency is derived from the local oscillator (LO) The back-reflected beam from the
cavity is detected on a fast photodiode and demodulated by the mixer to provide the error signal
which then servo-controls a piezo-electric actuator which corrects the cavity length. Now let’s see
what information is contained in the back-reflected beam. We will write Eref = FEinc. There may be
some phase shift n reflections but this can be taken into account by allowing the reflection coeffi cient
F to be complex. Specifically in the absence of loses for a symmetric cavity

F =
r
(
eiφ − 1

)
1− r2eiφ

(31)

where r is the reflection amplitude at each mirror and φ the phase shift that is picked up in a
round trip within the cavity. We may relate the phase φ to the ∆νfsr = c/2L as follows

φ =
ω

∆νfsr
= 2π × f

∆νfsr
(32)

or the round trip optical path in the cavity in terms of the wavelength of the light

φ = 2π × 2L

λ
(33)

The reflection coeffi cient is periodic in terms of length or laser frequency; the phase changes by 2π
for a length change of λ/2. To calculate the field of the reflected beam when there are several different
frequency components entering the cavity you need to multiply each by the reflection coeffi cient at
the relevant frequency.

Figure 6: Typical arrangement for Pound-Drever-Hall Locking

Thus, considering only the nearest sidebands, we get

9



Figure 7: Plot of the error signal ε/(2
√
PcPs) against φ. The modulation is ˜4% of the FSR and the

cavity finesse is ˜100

Eref = E0

[
F (ω) J0 (β) eiωt + F (ω + Ω) J1 (β) ei(ω+Ω)t − F (ω − Ω) J1 (β) ei(ω−Ω)t

]
(34)

In terms of the power which is detected by the photodiode we have

|Eref |2 = Pref = Pc |F (ω)|2 + Ps{|F (ω + Ω)|2 + |F (ω − Ω)|2} (35)

+2
√
PcPs Re [F (ω)F (ω + Ω)∗ − F (ω)∗ F (ω − Ω)] cos Ωt (36)

+ Im [F (ω)F (ω + Ω)∗ − F (ω)∗ F (ω − Ω)] sin Ωt}+ (2Ω− terms) (37)

The mixer which operates just like a phase-senstive detector pulls out the term proportional to
sin Ωt so that the error signal is

ε = 2
√
PcPs Im [F (ω)F (ω + Ω)∗ − F (ω)∗ F (ω − Ω)] (38)

Note here that the slopes of the zero-crossings of the carrier and sideband components are opposite
and one would normally want the sense of the lock circuit to home in on the centre frequency of the
carrier component.

We can pursue the maths a little further by making justified approximations near resonance.
consider the situation where the carrier is near resonance but the modulation frequency is high enough
that the sidebands are not. In this case we can assume that the sidebands are totally reflected, i.e.
F (ω ± Ω) ' −1, this gives, neglecting the reflected carrier which is proportional to |F (ω)|2 ' 0

Pref = 2Ps − 4
√
PcPs Im [F (ω)] sin Ωt (39)

On resonance φ will be close to a multiple of 2π so that near resonance
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Figure 8: Double pass arrangement using an AOM to scan the frequency of a laser

φ ' 2πN + 4π × δL

λ
(40)

where N is an integer. Within this approximation

F (δL) '
[

r

1− r2

]
×
(
i4π

δL

λ

)
∼ i4F

λ
δL (41)

where F is the finesse of the cavity given by

F =
π
√
R

1−R (42)

with r2 = R. The reflected power near resonance is then

Pref ≈ 2Ps − 16
√
PcPs

F
λ
δL sin Ωt (43)

which contains a term linear in δL and we are now in the linear regime, the slope of which we’ll
call D where

D ≡ 16
√
PcPs

F
λ

(44)

Other Techniques

We mention here for completeness another frequently used technique for locking lasers to reference
cavities although this method does not require the use of a modulator; it makes use of frequency-
dependent elliptical polarisation the details of which can be found in the source paper by Hänsch and
Couillaud [2]
In essence a Brewster plate is inserted into the cavity and the back-reflected light from the cavity

is analysed using a polarising beam-splitter to provide the two orthogonal linear polarisation to be
detected; the difference in signals provides the error signal.

Frequency scanning using an acousto-optic modulator.
In order to stabilise both a laser and to scan smoothly the frequency by over a relatively short

range (<1 GHz) an acousto-optic modulator is often used. The laser can be locked to a cavity and
then the stabilised output varied in frequency by changing the rf drive frequency to the modulator.
In particular the double-pass arrangement shown in figure 8 below has the benefit of providing twice
the scan range without any movement of the laser beam
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