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Domain of Linear Optics

From electromagnetism courses we recall

D = ε0εrE = ε0E+P = ε0E(1 + χ) (1)
Also at optical frequencies,

n =
√
εr = (1 + χ)1/2 ∼ 1 +

1

2
χ.... (2)

Pi = ε0
∑

χijEj (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be
collinear with E, and the susceptibility χ(n) and the permittivity ε are tensors (in this case of rank
2)

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics

P (ω) = ε0
∑

[χ
(1)
ij Ej(ω1) + χ

(2)
ijkEj(ω1)Ek(ω2) + χ

(3)
ijk`Ej(ω1)Ek(ω2)E`(ω3)......] (4)

Typical values for the second order coeffi cient d = χ(2)/2ε0 = 10−24 to 10−21 AsV−2. Typical values
for the third order non-linear susceptibility χ(3) is 10−29 to 10−34 (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry1 have
a finite second order susceptibility; for other materials the first non-linear coeffi cient is χ(3)

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change
∆n = sE in the index. If the direction of the field is reversed the change becomes ∆n = s[−E], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = −s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystals are piezo-electric.
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Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System
The optical properties of an anisotropic medium can

be characterised by a geometric construction called the index ellipsoid where η is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: n1, n2, n3. (Note also that the phase velocity of the wave is proportional to 1/n). Uniaxial
means nx = ny 6= nz (the optical axis). In the appendix we give an alternative way of looking at the
variation of the refractive index with direction in term of the k-vector surface; here the general idea is
to compare plane waves of equal energy density travelling in different directions in a crystal. In this
description we recognise that for the energy density to remain constant the lengths of the vectors D
and E must change accordingly; the connection with energy density UE is given by the expression

UE =
1

2
E ·D (5)

Making use of equation 1 we get

UE =
µr
2ε0

[
D2
x

n2x
+
D2
y

n2y
+
D2
z

n2z

]
(6)

which on re-arranging gives

µr
2UEε0

[
D2
x

n2x
+
D2
y

n2y
+
D2
z

n2z

]
= 1 (7)

If we now make a variable substitution x2 ≡
(
µrD

2
x/2UEε0

)
and recall that we are dealing with a

uniaxial crystal then we arrive at the following equation for the index ellipsoid.

x2 + y2

n20
+
z2

n2e
= 1 (8)

Thus for an arbitrary angle θ to the z−axis as shown,

ne(θ) =

{
cos2 θ

n20
+

sin2 θ

n2e

}−1/2
(9)
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Figure 3: Index ellipsoid for a 4̄2m crystal

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E1, E2, E3) is applied to the crystal the elements
of the tensor η are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ek(ω2) = E0 - a d.c. electric field so that,

P (ω) = ε0[χ
(1)
ij + χ

(2)
ijkE

0]E(ω) (10)

Since χ is related to ε, the equation can be re-written in terms of the refractive index where each
of the elements ηij(E), is a function of the appropriate field components, i.e.

ηij(E) = ε0/ε = 1/n2 = ηij +
∑

k rijkEk +
∑

k,l sijklEkEl........

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,2 the refractive index in the presence
of an electric field as follows,

n(E) = n0 + a1E + 1
2a2E

2......

This introduces the connection between the linear electro-optic coeffi cients and the polarisation of
the medium, see equation 10.

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

x2

n21
+
y2

n22
+
z2

n23
+

2yz

n24
+

2xz

n25
+

2xy

n26
= 1 (11)

2 By Taylor expanding the refractive index about E = 0 we can write
n(E) = n0 + a1E + 1

2
a2E

2...
where the coeffi cients are derivatives of the refractive index with E in the normal way. Defining r = −2a1/n

3 and
s = −a2/n3 we have for η = ε0/ε = 1/n2 the following field dependent change ∆η = (dη/dn)∆n = (−2/n3)(− 1

2
rn3E −

1
2
sn3E2..) with η (E) = η + rE
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Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation
11 must reduce to equation 8 in the absence of the electric field, i.e. that 1/n24,5,6 = 0

This introduces the linear electro-optic tensor rLEO

∆

(
1

n2

)
=
∑

rijkE
0
k (12)

This is a 3×3 ×3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3×6 matrix. [rijk = ∂ηij/∂Ek where η = ε0ε

−1 and the index
ellipsoid is given by

∑
ηijxixj = 1 where i, j = 1, 2, 3 with principal indices of refraction n1, n2, n3

(see footnote 2) and η is symmetric with respect to interchange of indices i, j. Thus, it follows r (and
d) are also invariant under i, j interchange. It is therefore conventional to reduce the i, j index to one
symbol I with the correspondence as given in the “look up”table 1]

j ↓ i−→ 1 2 3
1 1 6 5
2 6 2 4
3 5 4 3

Table 1 Look up table for i, j −→ I

Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (4̄2m) symmetry. The index ellipsoid (see figure 3) is represented by



∆
(
1
n2

)
1

∆
(
1
n2

)
2

∆
(
1
n2

)
3

∆
(
1
n2

)
4

∆
(
1
n2

)
5

∆
(
1
n2

)
6

 =


0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63


 E01
E02
E03

 (13)

The crystal is now biaxial .
Or in terms of the polarisation of the medium3, which we shall use for optical fields in harmonic

generation,

 Px
Py
Pz

 = ε0

 0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36




E2x
E2y
E2z

2EyEz
2ExEz
2ExEy

 (14)

If we take as the direction of the applied d.c. field E0 = E0z = E03 then the new index ellipsoid will
given by

x2

n20
+
y2

n20
+
z2

n2e
+ 2r63xyE

0
z = 1 (15)

3 The coeffi cients d and r are related as follows: d =
ε0χ

(2)

2
and r ∼ − 4d

ε0n4
Be careful about factors of 2 arising

from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as E(t) = E0 +
Re{E(ω) exp(−iωt)}.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(ω1) exp(−iω1t) +
E(ω2) exp(−iω2t)}.

For S.H.G. in particular let ω1 = ω2
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Figure 4: Rotation of axes by 450 about the optical axis.

Figure 5: Rotation of Axes

A clockwise rotation take axes XY onto xy:(Equivalently a positive angle to the positive x-axis
amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems

for a 450 rotation is given by simple trigonometry as follows:

(
x
y

)
=

1√
2

(
1 −1
1 1

)(
X
Y

)
(16)

or, (
X
Y

)
=

1√
2

(
1 1
−1 1

)(
x
y

)
(17)

In the present case x, y represent the original axes which are transformed to x′, y′ (≡ X,Y in the
figure) by an anticlockwise rotation. Thus inserting.

x = 1/
√

2
(
x′ − y′

)
and y = 1/

√
2
(
x′ + y′

)
(18)

into the equation for the ellipsoid 15 we have

(x′ − y′)2
2n2o

+
(x′ + y′)2

2n2o
+

2 (x′ − y′) (x′ + y′)

2
r63E

0
z +

z2

n2e
= 1 (19)

which when rearranged gives

x′2

n2o
+
y′2

n2o
+
(
x′2 − y′2

)
r63E

0
z +

z2

n2e
= 1 (20)
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Figure 6: Electro-optic modulator used as an intensity modulator.

leading to

x′2

n2o

(
1 + n2or63E

0
z

)
+
y′2

n2o

(
1− n2or63E0z

)
+
z2

n2e
= 1 (21)

This identifies

1

n2x′
=

(
1 + n2or63E

0
z

)
n2o

(22)

Or equivalently

n2x′ =
n2o

(1 + n2or63E
0
z )

(23)

Thus, given that r63E0z << n−2o we have nx′ = n0(1 + n20r63E
0
z )−1/2 ∼ n0(1 − 1

2n
2
0r63E

0
z ) and

similarly for ny′ . This gives finally

∆n = |nx′ − ny′ | = n30r63E
0
z (24)

To act as a half-wave plate the phase induced by the field must be π radians, so

φ =
2π

λ
∆nd = π (25)

and the half-wave voltage is

Vπ =
λ

2n30r63
(26)
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Appendix
Wave-vector surface

We consider here the form of the wave equation for the propagation of a plane wave in transparent,
lossless, crystalline material. We start by noting the relationship between the displacement vector D
and the electric field E which are connected by the tensorial permittivity ε; . for simplicity we take
the principal axis system such that, Dx

Dy

Dz

 =

 εxx 0 0
0 εyy 0
0 0 εzz

 Ex
Ey
Ez

 (27)

where n2i ≡ (εii/ε0) are the principal refractive indices. By convention for a uniaxial crystal
nx = ny; this index is referred to as the ordinary refractive index while nz is referred to as the
extraordinary index. If nz > n0 (= nx = ny) the crystal is said to be a positive uniaxial and for the
converse the crystal is called a negative uniaxial.
To solve the wave equation in this more general case we assume a plane monochromatic wave of

form

E = E0 exp i (k.r− ωt) (28)
The operators ∇ and (∂/∂t) in the wave equation act on the fields such that

∇ → ik (29)

∂/∂t → −iω (30)

furthermore the wavevector can be written as

k =
nω

c
k̂ (31)

where the index of refraction n depends on the orientation of the material and the polarisation state
of the electric field. With such monochromatic waves Maxwell’s equations in terms of the complex
amplitudes become

∇.D = 0⇒ k.D = 0 (32)

∇×E = −∂B
∂t
⇒ n

c
k̂×E = B (33)

∇.B = 0⇒ k.B = 0 (34)

∇×H =
∂D

∂t
⇒ n

c
k̂×H = −D (35)

where free charges ρf and free currents jf are taken to be zero.
Thus the wave equation in the crystal may be reduced to the following in a similar way, i.e.

∇× (∇×E) = − ∂

∂t
(∇×B) (36)

which becomes,

n2

c2
k̂×
(
k̂×E

)
= −µD (37)
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On using the well known vector identity for a triple cross product this becomes

n2

c2

[(
k̂ ·E

)
k̂ −E

]
= −µD (38)

Now writing out explicitly the k−vector in terms of a unit vector as

k̂ = x̂sx + ŷsy + ẑsz (39)
which gives for equation 38.

Di=
n2

µc2
[Ei − (k ·E) si] (40)

Writing this as the inverse given that the co-ordinate system chosen was one in which εij is diagonal
we have

E =
µr
ε0


1

n2x
0 0

0
1

n2y
0

0 0
1

n2z

D (41)

substituting the relevant Ei component into equation 40 then gives

Di=
n2

µc2

[
µrDi

ε0n2i
− (k ·E) si

]
(42)

Finally, solving for Di

Di=

(
k̂ ·E

)
si

µc2
[(

1/n2i
)
− (1/n2)

] (43)

which with the help of the first Maxwell equation, k ·D = 0 yields,

s2x
(1/n2x)− (1/n2)

+
s2y(

1/n2y
)
− (1/n2)

+
s2z

(1/n2z)− (1/n2)
= 0 (44)

This is known as Fresnel’s equation and must hold for the original assumption of a plane-wave
solution in the crystal.

This may be re-written as follows

(
1

n2y
− 1

n2

)(
1

n2z
− 1

n2

)
s2x +

(
1

n2x
− 1

n2

)(
1

n2z
− 1

n2

)
s2y +

(
1

n2x
− 1

n2

)(
1

n2y
− 1

n2

)
s2z = 0 (45)

As an example let’s take one principal plane at a time, e.g. the kx − ky plane where sz = 0; this
yields

(
1

n2z
− 1

n2

)[(
1

n2y
− 1

n2

)
s2x +

(
1

n2x
− 1

n2

)
s2y

]
= 0 (46)
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Figure 7: Wave-vector surface

Noting that the unit vector condition requires s2x + s2y = 1 then either

nz = n (47)
or [

s2x
n2y

+
s2y
n2x
− 1

n2

]
= 0 (48)

In the former case we have simply a constant value of the refractive index (n = n0) or in the latter
a refractive index which varies being given by the equation of an ellipse. In this case the unit vector
k̂ = x̂ sinφ+ ŷ cosφ so that

1

n2 (φ)
=

sin2 φ

n2y
+

cos2 φ

n2x
(49)

Similarly results follow for both the ky − kz and.kx − kz planes: there are two solutions one which
is independent of the direction of k called the ordinary wave, and the other which changes with the
k-vector direction and with a value given by the equation of an ellipse, called the extraordinary wave.
The intersection of the two curves in the kx − kz plane corresponds to the crystal’s optical axis. For
extraordinary waves, vectors k and D are not perpendicular means that Poynting’s vector S is no
longer parallel with k; the angle between them ρ is known as the walk off angle; this is also the same
as the angle between D and E It is given by

tan (ρ+ θ) =
n2o
n2e

tan θ (50)
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Figure 8: Walk off. Poynting’s vector and k are no longer collinear

Figure 9: Walf off between S and k
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