Non-linear Optics I
 (Electro-optics)

P.E.G. Baird
MT2012

Domain of Linear Optics

From electromagnetism courses we recall

$$
\begin{equation*}
\mathbf{D}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0} \mathbf{E}(1+\chi) \tag{1}
\end{equation*}
$$

Also at optical frequencies,

$$
\begin{gather*}
n=\sqrt{\varepsilon_{r}}=(1+\chi)^{1 / 2} \sim 1+\frac{1}{2} \chi \cdots \tag{2}\\
P_{i}=\varepsilon_{0} \sum \chi_{i j} E_{j} \tag{3}
\end{gather*}
$$

The medium may not be isotropic and homogeneous; the polarisation P will not in general be collinear with E, and the susceptibility $\chi^{(n)}$ and the permittivity $\overline{\bar{\varepsilon}}$ are tensors (in this case of rank 2)

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics

$$
\begin{equation*}
P(\omega)=\varepsilon_{0} \sum\left[\chi_{i j}^{(1)} E_{j}\left(\omega_{1}\right)+\chi_{i j k}^{(2)} E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right)+\chi_{i j k \ell}^{(3)} E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right) E_{\ell}\left(\omega_{3}\right) \ldots \ldots .\right] \tag{4}
\end{equation*}
$$

Typical values for the second order coefficient $d=\chi^{(2)} / 2 \varepsilon_{0}=10^{-24}$ to $10^{-21} \mathrm{AsV}^{-2}$. Typical values for the third order non-linear susceptibility $\chi^{(3)}$ is 10^{-29} to 10^{-34} (MKS units) for glasses, crystals, semiconductors and organics materials of interest. Only crystals with $N O$ centre of symmetry ${ }^{1}$ have a finite second order susceptibility; for other materials the first non-linear coefficient is $\chi^{(3)}$

[^0]

Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System

The optical properties of an anisotropic medium can be characterised by a geometric construction called the index ellipsoid where $\overline{\bar{\eta}}$ is the so-called impermeability tensor related to the refractive index as given above. The principal axes of the ellipse are the optical principal axes; the principal dimensions along these axes are the principal refractive indices: n_{1}, n_{2}, n_{3}. (Note also that the phase velocity of the wave is proportional to $1 / n$). Uniaxial means $n_{x}=n_{y} \neq n_{z}$ (the optical axis). In the appendix we give an alternative way of looking at the variation of the refractive index with direction in term of the k-vector surface; here the general idea is to compare plane waves of equal energy density travelling in different directions in a crystal. In this description we recognise that for the energy density to remain constant the lengths of the vectors \mathbf{D} and \mathbf{E} must change accordingly; the connection with energy density U_{E} is given by the expression

$$
\begin{equation*}
U_{E}=\frac{1}{2} \mathbf{E} \cdot \mathbf{D} \tag{5}
\end{equation*}
$$

Making use of equation 1 we get

$$
\begin{equation*}
U_{E}=\frac{\mu_{r}}{2 \varepsilon_{0}}\left[\frac{D_{x}^{2}}{n_{x}^{2}}+\frac{D_{y}^{2}}{n_{y}^{2}}+\frac{D_{z}^{2}}{n_{z}^{2}}\right] \tag{6}
\end{equation*}
$$

which on re-arranging gives

$$
\begin{equation*}
\frac{\mu_{r}}{2 U_{E} \varepsilon_{0}}\left[\frac{D_{x}^{2}}{n_{x}^{2}}+\frac{D_{y}^{2}}{n_{y}^{2}}+\frac{D_{z}^{2}}{n_{z}^{2}}\right]=1 \tag{7}
\end{equation*}
$$

If we now make a variable substitution $x^{2} \equiv\left(\mu_{r} D_{x}^{2} / 2 U_{E} \varepsilon_{0}\right)$ and recall that we are dealing with a uniaxial crystal then we arrive at the following equation for the index ellipsoid.

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{8}
\end{equation*}
$$

Thus for an arbitrary angle θ to the z-axis as shown,

$$
\begin{equation*}
n_{e}(\theta)=\left\{\frac{\cos ^{2} \theta}{n_{0}^{2}}+\frac{\sin ^{2} \theta}{n_{e}^{2}}\right\}^{-1 / 2} \tag{9}
\end{equation*}
$$

Figure 3: Index ellipsoid for a $\overline{4} 2 \mathrm{~m}$ crystal

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E_{1}, E_{2}, E_{3}) is applied to the crystal the elements of the tensor $\overline{\bar{\eta}}$ are altered so that each of the 9 elements becomes a function of E and the ellipsoid changes shape. Thus, in equation 4 we let $E_{k}\left(\omega_{2}\right)=E^{0}$ - a d.c. electric field so that,

$$
\begin{equation*}
P(\omega)=\varepsilon_{0}\left[\chi_{i j}^{(1)}+\chi_{i j k}^{(2)} E^{0}\right] E(\omega) \tag{10}
\end{equation*}
$$

Since χ is related to ϵ, the equation can be re-written in terms of the refractive index where each of the elements $\eta_{i j}(E)$, is a function of the appropriate field components, i.e.

$$
\eta_{i j}(E)=\varepsilon_{0} / \varepsilon=1 / n^{2}=\eta_{i j}+\sum_{k} r_{i j k} E_{k}+\sum_{k, l} s_{i j k l} E_{k} E_{l} \ldots \ldots \ldots
$$

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the Kerr effect. Alternatively, we could write, by Taylor expansion, ${ }^{2}$ the refractive index in the presence of an electric field as follows,

$$
n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2} \ldots \ldots
$$

This introduces the connection between the linear electro-optic coefficients and the polarisation of the medium, see equation 10.

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

$$
\begin{equation*}
\frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}+\frac{2 y z}{n_{4}^{2}}+\frac{2 x z}{n_{5}^{2}}+\frac{2 x y}{n_{6}^{2}}=1 \tag{11}
\end{equation*}
$$

[^1]Clearly if the indices $1,2,3, \ldots$ are chosen to be coincident with the principal dielectric axes equation 11 must reduce to equation 8 in the absence of the electric field, i.e. that $1 / n_{4,5,6}^{2}=0$

This introduces the linear electro-optic tensor $r^{L E O}$

$$
\begin{equation*}
\Delta\left(\frac{1}{n^{2}}\right)=\sum r_{i j k} E_{k}^{0} \tag{12}
\end{equation*}
$$

This is a $3 \times 3 \times 3$ matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number to 18 independent elements, written as a 3×6 matrix. $\left[r_{i j k}=\partial \eta_{i j} / \partial E_{k}\right.$ where $\eta=\varepsilon_{0} \varepsilon^{-1}$ and the index ellipsoid is given by $\sum \eta_{i j} x_{i} x_{j}=1$ where $i, j=1,2,3$ with principal indices of refraction n_{1}, n_{2}, n_{3} (see footnote 2) and η is symmetric with respect to interchange of indices i, j. Thus, it follows r (and d) are also invariant under i, j interchange. It is therefore conventional to reduce the i, j index to one symbol I with the correspondence as given in the "look up" table 1]

$j \downarrow \mathrm{i} \longrightarrow$	1	2	3
1	1	6	5
2	6	2	4
3	5	4	3

Table 1 Look up table for $i, j \longrightarrow I$
Any particular Pockels crystal will further reduce the number of non-zero elements as follows. As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has tetragonal ($\overline{4} 2 \mathrm{~m}$) symmetry. The index ellipsoid (see figure 3) is represented by

$$
\left[\begin{array}{c}
\Delta\left(\frac{1}{n^{2}}\right)_{1} \tag{13}\\
\Delta\left(\frac{1}{n^{2}}\right)_{2} \\
\Delta\left(\frac{1}{n^{2}}\right)^{2} \\
\Delta\left(\frac{1}{n^{2}}\right)^{2} \\
\Delta\left(\frac{1}{n^{2}}\right)_{5} \\
\Delta\left(\frac{1}{n^{2}}\right)_{6}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{41} & 0 & 0 \\
0 & r_{52} & 0 \\
0 & 0 & r_{63}
\end{array}\right]\left[\begin{array}{l}
E_{1}^{0} \\
E_{2}^{0} \\
E_{3}^{0}
\end{array}\right]
$$

The crystal is now biaxial.
Or in terms of the polarisation of the medium ${ }^{3}$, which we shall use for optical fields in harmonic generation,

$$
\left[\begin{array}{c}
P_{x} \tag{14}\\
P_{y} \\
P_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{cccccc}
0 & 0 & 0 & d_{14} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{25} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{36}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{2} \\
E_{y}^{2} \\
E_{z}^{2} \\
2 E_{y} E_{z} \\
2 E_{x} E_{z} \\
2 E_{x} E_{y}
\end{array}\right]
$$

If we take as the direction of the applied d.c. field $E^{0}=E_{z}^{0}=E_{3}^{0}$ then the new index ellipsoid will given by

$$
\begin{equation*}
\frac{x^{2}}{n_{0}^{2}}+\frac{y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}+2 r_{63} x y E_{z}^{0}=1 \tag{15}
\end{equation*}
$$

[^2]
$$
n_{1}=n_{n}+\frac{n_{n}{ }^{3}}{\eta} r_{63} E_{z}
$$

Figure 4: Rotation of axes by 45^{0} about the optical axis.

Figure 5: Rotation of Axes

A clockwise rotation take axes $X Y$ onto $x y$:(Equivalently a positive angle to the positive x -axis amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems for a 45^{0} rotation is given by simple trigonometry as follows:

$$
\binom{x}{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \tag{16}\\
1 & 1
\end{array}\right)\binom{X}{Y}
$$

or,

$$
\binom{X}{Y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{17}\\
-1 & 1
\end{array}\right)\binom{x}{y}
$$

In the present case x, y represent the original axes which are transformed to $x^{\prime}, y^{\prime}(\equiv X, Y$ in the figure) by an anticlockwise rotation. Thus inserting.

$$
\begin{equation*}
x=1 / \sqrt{2}\left(x^{\prime}-y^{\prime}\right) \text { and } y=1 / \sqrt{2}\left(x^{\prime}+y^{\prime}\right) \tag{18}
\end{equation*}
$$

into the equation for the ellipsoid 15 we have

$$
\begin{equation*}
\frac{\left(x^{\prime}-y^{\prime}\right)^{2}}{2 n_{o}^{2}}+\frac{\left(x^{\prime}+y^{\prime}\right)^{2}}{2 n_{o}^{2}}+\frac{2\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right)}{2} r_{63} E_{z}^{0}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{19}
\end{equation*}
$$

which when rearranged gives

$$
\begin{equation*}
\frac{x^{\prime 2}}{n_{o}^{2}}+\frac{y^{\prime 2}}{n_{o}^{2}}+\left(x^{\prime 2}-y^{\prime 2}\right) r_{63} E_{z}^{0}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{20}
\end{equation*}
$$

Figure 6: Electro-optic modulator used as an intensity modulator.
leading to

$$
\begin{equation*}
\frac{x^{\prime 2}}{n_{o}^{2}}\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)+\frac{y^{\prime 2}}{n_{o}^{2}}\left(1-n_{o}^{2} r_{63} E_{z}^{0}\right)+\frac{z^{2}}{n_{e}^{2}}=1 \tag{21}
\end{equation*}
$$

This identifies

$$
\begin{equation*}
\frac{1}{n_{x^{\prime}}^{2}}=\frac{\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)}{n_{o}^{2}} \tag{22}
\end{equation*}
$$

Or equivalently

$$
\begin{equation*}
n_{x^{\prime}}^{2}=\frac{n_{o}^{2}}{\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)} \tag{23}
\end{equation*}
$$

Thus, given that $r_{63} E_{z}^{0} \ll n_{o}^{-2}$ we have $n_{x^{\prime}}=n_{0}\left(1+n_{0}^{2} r_{63} E_{z}^{0}\right)^{-1 / 2} \sim n_{0}\left(1-\frac{1}{2} n_{0}^{2} r_{63} E_{z}^{0}\right)$ and similarly for $n_{y^{\prime}}$. This gives finally

$$
\begin{equation*}
\Delta n=\left|n_{x^{\prime}}-n_{y^{\prime}}\right|=n_{0}^{3} r_{63} E_{z}^{0} \tag{24}
\end{equation*}
$$

To act as a half-wave plate the phase induced by the field must be π radians, so

$$
\begin{equation*}
\phi=\frac{2 \pi}{\lambda} \Delta n d=\pi \tag{25}
\end{equation*}
$$

and the half-wave voltage is

$$
\begin{equation*}
V_{\pi}=\frac{\lambda}{2 n_{0}^{3} r_{63}} \tag{26}
\end{equation*}
$$

Appendix

Wave-vector surface

We consider here the form of the wave equation for the propagation of a plane wave in transparent, lossless, crystalline material. We start by noting the relationship between the displacement vector D and the electric field E which are connected by the tensorial permittivity $\overline{\bar{\varepsilon}} ;$. for simplicity we take the principal axis system such that,

$$
\left[\begin{array}{c}
D_{x} \tag{27}\\
D_{y} \\
D_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

where $n_{i}^{2} \equiv\left(\varepsilon_{i i} / \varepsilon_{0}\right)$ are the principal refractive indices. By convention for a uniaxial crystal $n_{x}=n_{y}$; this index is referred to as the ordinary refractive index while n_{z} is referred to as the extraordinary index. If $n_{z}>n_{0}\left(=n_{x}=n_{y}\right)$ the crystal is said to be a positive uniaxial and for the converse the crystal is called a negative uniaxial.

To solve the wave equation in this more general case we assume a plane monochromatic wave of form

$$
\begin{equation*}
E=E_{0} \exp i(\mathbf{k} . \mathbf{r}-\omega t) \tag{28}
\end{equation*}
$$

The operators ∇ and $(\partial / \partial t)$ in the wave equation act on the fields such that

$$
\begin{align*}
\nabla & \rightarrow i \mathbf{k} \tag{29}\\
\partial / \partial t & \rightarrow-i \omega \tag{30}
\end{align*}
$$

furthermore the wavevector can be written as

$$
\begin{equation*}
\mathbf{k}=\frac{n \omega}{c} \widehat{k} \tag{31}
\end{equation*}
$$

where the index of refraction n depends on the orientation of the material and the polarisation state of the electric field. With such monochromatic waves Maxwell's equations in terms of the complex amplitudes become

$$
\begin{gather*}
\nabla \cdot \mathbf{D}=\mathbf{0} \Rightarrow \mathbf{k} \cdot \mathbf{D}=\mathbf{0} \tag{32}\\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \Rightarrow \frac{n}{c} \widehat{k} \times \mathbf{E}=\mathbf{B} \tag{33}\\
\nabla \cdot \mathbf{B}=\mathbf{0} \Rightarrow \mathbf{k} \cdot \mathbf{B}=\mathbf{0} \tag{34}\\
\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t} \Rightarrow \frac{n}{c} \widehat{k} \times \mathbf{H}=-\mathbf{D} \tag{35}
\end{gather*}
$$

where free charges ρ_{f} and free currents j_{f} are taken to be zero.
Thus the wave equation in the crystal may be reduced to the following in a similar way, i.e.

$$
\begin{equation*}
\nabla \times(\nabla \times \mathbf{E})=-\frac{\partial}{\partial t}(\nabla \times \mathbf{B}) \tag{36}
\end{equation*}
$$

which becomes,

$$
\begin{equation*}
\frac{n^{2}}{c^{2}} \widehat{k} \times(\widehat{k} \times \mathbf{E})=-\mu \mathbf{D} \tag{37}
\end{equation*}
$$

On using the well known vector identity for a triple cross product this becomes

$$
\begin{equation*}
\frac{n^{2}}{c^{2}}[(\widehat{k} \cdot \mathbf{E}) \widehat{k}-\mathbf{E}]=-\mu \mathbf{D} \tag{38}
\end{equation*}
$$

Now writing out explicitly the k-vector in terms of a unit vector as

$$
\begin{equation*}
\widehat{k}=\widehat{\mathbf{x}} s_{x}+\widehat{\mathbf{y}} s_{y}+\widehat{\mathbf{z}} s_{z} \tag{39}
\end{equation*}
$$

which gives for equation 38 .

$$
\begin{equation*}
D_{i}=\frac{n^{2}}{\mu c^{2}}\left[E_{i}-(\mathbf{k} \cdot \mathbf{E}) s_{i}\right] \tag{40}
\end{equation*}
$$

Writing this as the inverse given that the co-ordinate system chosen was one in which $\varepsilon_{i j}$ is diagonal we have

$$
\mathbf{E}=\frac{\mu_{r}}{\varepsilon_{0}}\left[\begin{array}{ccc}
\frac{1}{n_{x}^{2}} & 0 & 0 \tag{41}\\
0 & \frac{1}{n_{y}^{2}} & 0 \\
0 & 0 & \frac{1}{n_{z}^{2}}
\end{array}\right] \mathbf{D}
$$

substituting the relevant E_{i} component into equation 40 then gives

$$
\begin{equation*}
D_{i}=\frac{n^{2}}{\mu c^{2}}\left[\frac{\mu_{r} D_{i}}{\varepsilon_{0} n_{i}^{2}}-(\mathbf{k} \cdot \mathbf{E}) s_{i}\right] \tag{42}
\end{equation*}
$$

Finally, solving for D_{i}

$$
\begin{equation*}
D_{i}=\frac{(\widehat{k} \cdot \mathbf{E}) s_{i}}{\mu c^{2}\left[\left(1 / n_{i}^{2}\right)-\left(1 / n^{2}\right)\right]} \tag{43}
\end{equation*}
$$

which with the help of the first Maxwell equation, $\mathbf{k} \cdot \mathbf{D}=\mathbf{0}$ yields,

$$
\begin{equation*}
\frac{s_{x}^{2}}{\left(1 / n_{x}^{2}\right)-\left(1 / n^{2}\right)}+\frac{s_{y}^{2}}{\left(1 / n_{y}^{2}\right)-\left(1 / n^{2}\right)}+\frac{s_{z}^{2}}{\left(1 / n_{z}^{2}\right)-\left(1 / n^{2}\right)}=0 \tag{44}
\end{equation*}
$$

This is known as Fresnel's equation and must hold for the original assumption of a plane-wave solution in the crystal.

This may be re-written as follows

$$
\begin{equation*}
\left(\frac{1}{n_{y}^{2}}-\frac{1}{n^{2}}\right)\left(\frac{1}{n_{z}^{2}}-\frac{1}{n^{2}}\right) s_{x}^{2}+\left(\frac{1}{n_{x}^{2}}-\frac{1}{n^{2}}\right)\left(\frac{1}{n_{z}^{2}}-\frac{1}{n^{2}}\right) s_{y}^{2}+\left(\frac{1}{n_{x}^{2}}-\frac{1}{n^{2}}\right)\left(\frac{1}{n_{y}^{2}}-\frac{1}{n^{2}}\right) s_{z}^{2}=0 \tag{45}
\end{equation*}
$$

As an example let's take one principal plane at a time, e.g. the $k_{x}-k_{y}$ plane where $s_{z}=0$; this yields

$$
\begin{equation*}
\left(\frac{1}{n_{z}^{2}}-\frac{1}{n^{2}}\right)\left[\left(\frac{1}{n_{y}^{2}}-\frac{1}{n^{2}}\right) s_{x}^{2}+\left(\frac{1}{n_{x}^{2}}-\frac{1}{n^{2}}\right) s_{y}^{2}\right]=0 \tag{46}
\end{equation*}
$$

Figure 7: Wave-vector surface

Noting that the unit vector condition requires $s_{x}^{2}+s_{y}^{2}=1$ then either

$$
\begin{equation*}
n_{z}=n \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\frac{s_{x}^{2}}{n_{y}^{2}}+\frac{s_{y}^{2}}{n_{x}^{2}}-\frac{1}{n^{2}}\right]=0 \tag{48}
\end{equation*}
$$

In the former case we have simply a constant value of the refractive index $\left(n=n_{0}\right)$ or in the latter a refractive index which varies being given by the equation of an ellipse. In this case the unit vector $\widehat{k}=\widehat{\mathbf{x}} \sin \phi+\widehat{\mathbf{y}} \cos \phi$ so that

$$
\begin{equation*}
\frac{1}{n^{2}(\phi)}=\frac{\sin ^{2} \phi}{n_{y}^{2}}+\frac{\cos ^{2} \phi}{n_{x}^{2}} \tag{49}
\end{equation*}
$$

Similarly results follow for both the $k_{y}-k_{z}$ and. $k_{x}-k_{z}$ planes: there are two solutions one which is independent of the direction of k called the ordinary wave, and the other which changes with the k-vector direction and with a value given by the equation of an ellipse, called the extraordinary wave. The intersection of the two curves in the $k_{x}-k_{z}$ plane corresponds to the crystal's optical axis. For extraordinary waves, vectors \mathbf{k} and \mathbf{D} are not perpendicular means that Poynting's vector \mathbf{S} is no longer parallel with k; the angle between them ρ is known as the walk off angle; this is also the same as the angle between \mathbf{D} and \mathbf{E} It is given by

$$
\begin{equation*}
\tan (\rho+\theta)=\frac{n_{o}^{2}}{n_{e}^{2}} \tan \theta \tag{50}
\end{equation*}
$$

Figure 8: Walk off. Poynting's vector and k are no longer collinear

Figure 9: Walf off between S and k

References

[1] Lasers and Electro-optics C.C. Davis (CUP) chapters 18, 1920 \& 21
[2] Quantum Electronics A. Yariv (Wiley) chapters 14, \& 16 (3rd edition)
[3] Fundamentals of Photonics B.E.A. Saleh \& M.C. Teich (Wiley) chapters 18, 19 \& 20
[4] Fundamentals of Nonlinear Optics P.E. Powers (CRC Press 2011) chapters $2 \& 3$
[5] Introduction to Nonlinear Optics G. New (Cambridge 2011) chapters 2,3 \& 4
[6] Optics E. Hecht (Addison-Wesley) chapter 8 (2nd edition)
[7] Introduction to Modern Optics G.R.Fowles chapter 6 (optics of solids)

[^0]: ${ }^{1}$ If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change $\Delta n=s E$ in the index. If the direction of the field is reversed the change becomes $\Delta n=s[-E]$, but inversion symmetry requires the two directions to be physically equivalent. This requires $s=-s$ which is possible only for $s=0$. Thus, linear, Pockels cystals require NO centre of symmetry. Note also that these crystals are piezo-electric.

[^1]: 2 By Taylor expanding the refractive index about $E=0$ we can write $n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2} \ldots$
 where the coefficients are derivatives of the refractive index with E in the normal way. Defining $r=-2 a_{1} / n^{3}$ and $s=-a_{2} / n^{3}$ we have for $\eta=\varepsilon_{0} / \varepsilon=1 / n^{2}$ the following field dependent change $\Delta \eta=(d \eta / d n) \Delta n=\left(-2 / n^{3}\right)\left(-\frac{1}{2} r n^{3} E-\right.$ $\left.\frac{1}{2} s n^{3} E^{2} ..\right)$ with $\eta(E)=\eta+r E$

[^2]: 3 The coefficients d and r are related as follows: $d=\frac{\varepsilon_{0} \chi^{(2)}}{2}$ and $r \sim-\frac{4 d}{\varepsilon_{0} n^{4}}$ Be careful about factors of 2 arising from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as $E(t)=E^{0}+$ $\operatorname{Re}\{E(\omega) \exp (-i \omega t)\}$.For the case of H.G. let the coupled optical fields be represented as $E(t)=\operatorname{Re}\left\{E\left(\omega_{1}\right) \exp \left(-i \omega_{1} t\right)+\right.$ $\left.E\left(\omega_{2}\right) \exp \left(-i \omega_{2} t\right)\right\}$.

 For S.H.G. in particular let $\omega_{1}=\omega_{2}$

