Non-linear Optics 1
(Electro-optics)

P.E.G. Baird
MT2012

Domain of Linear Optics

From electromagnetism courses we recall

D =coe;,E=¢0E+P = g0E(1 + x) (1)
Also at optical frequencies,
1/2 1
n=+c =(14+x) N1+§X--~ (2)
Pi=c0) xijE (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be

collinear with E, and the susceptibility x(™ and the permittivity € are tensors (in this case of rank
2)
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Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics
P(w) =0 Y XV Ej (1) + XL B (1) Ex(ws) + X Bj(w1) Ei(wa) Ee(ws)......] (4)

Typical values for the second order coefficient d = x(2) /20 = 1074 to 10721 AsV~2. Typical values
for the third order non-linear susceptibility x©) is 1072 to 1073* (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry' have
a finite second order susceptibility; for other materials the first non-linear coefficient is )

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change

An = sE in the index. If the direction of the field is reversed the change becomes An = s[—E], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = —s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystals are piezo-electric.



Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System

The optical properties of an anisotropic medium can
be characterised by a geometric construction called the index ellipsoid where 7 is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: n1, ng, ns. (Note also that the phase velocity of the wave is proportional to 1/n). Uniazial
means n, = n, # n, (the optical axis). In the appendix we give an alternative way of looking at the
variation of the refractive index with direction in term of the k-vector surface; here the general idea is
to compare plane waves of equal energy density travelling in different directions in a crystal. In this
description we recognise that for the energy density to remain constant the lengths of the vectors D
and E must change accordingly; the connection with energy density Ug is given by the expression

Ug=-E-D (5)

Making use of equation 1 we get

2 D32 2
Mo Dz Y Dz
U — + — + = 6
E 250[n§+n§+ng (6)
which on re-arranging gives
2
2Upeg | m2  nZ  n?

If we now make a variable substitution z? = (,ung /2U E&?o) and recall that we are dealing with a
uniaxial crystal then we arrive at the following equation for the index ellipsoid.

2 2 2
7ty z
=1 (8)

2
ng ng

Thus for an arbitrary angle 6 to the z—axis as shown,

cos20 sin%6 ~1/2
ne) = {50+ 20 )

ng na
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Figure 3: Index ellipsoid for a 42m crystal

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E7, Ea, E3) is applied to the crystal the elements
of the tensor 7] are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ej(ws) = E° - a d.c. electric field so that,

1 2
P(w) = colxj + X\ VBV E(w) (10)
Since y is related to €, the equation can be re-written in terms of the refractive index where each
of the elements 7,;(E), is a function of the appropriate field components, i.e.
”ij(E) =¢go/e = 1/”2 =1 + Zk rije b + Zk,l SijkiEREp........

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,? the refractive index in the presence
of an electric field as follows,

n(E)=ng+ a1 E + %agEQ ......

This introduces the connection between the linear electro-optic coefficients and the polarisation of
the medium, see equation 10.

Linear Electro-optic Tensor
The change to the index ellipsoid when an electric field is applied can be written as follows,

2 2

2

T z 2z  2xz  2x

i (11)
1 2 N3 ny 5 g

By Taylor expanding the refractive index about £ = 0 we can write

n(E) =no+amFE+ %agEz...

where the coefficients are derivatives of the refractive index with E in the normal way. Defining 7 = —2a1/n® and
s = —az/n® we have for 7 = g0/e = 1/n® the following field dependent change An = (dn/dn)An = (—2/n*)(—3rn*E —
1sn®E?%.) with n (E) =n+rE



Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation
11 must reduce to equation 8 in the absence of the electric field, i.e. that 1/ n42175’6 =0

This introduces the linear electro-optic tensor €

A (;) = ripnkE (12)

This is a 3 x 3 X3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3 X 6 matrix. [rijk = 877ij /OE) where n = goe ! and the index
ellipsoid is given by Znijxixj = 1 where 4,7 = 1,2,3 with principal indices of refraction n1,ns, ns
(see footnote 2) and 7 is symmetric with respect to interchange of indices ¢, j. Thus, it follows r (and
d) are also invariant under 4, j interchange. It is therefore conventional to reduce the 4, j index to one
symbol I with the correspondence as given in the “look up” table 1]

ili—|1]2[3
1 1165
2 624
3 5143

Table 1 Look up table for i,j — I
Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (42m) symmetry. The index ellipsoid (see figure 3) is represented by

A (72), 0 0 0

A (), 0 0 0 0

A(#) o o0 o 5

S I Il O (13)
A (72)s 0 752 0 ’

LAGe)gd L O 0 7es

The crystal is now biaxial.

Or in terms of the polarisation of the medium?, which we shall use for optical fields in harmonic
generation,

dy 0 0
0 dos O z (14)
0

00 0
Py |=c]0 00
00 0 0 dsg v

If we take as the direction of the applied d.c. field E® = E? = Eg then th_e new index ellipsoid will
given by

2 2 2
T z
pol L 5t 2rg3zyEY = 1 (15)

0 0

€

3 d = EOX(2)

The coefficients d and r are related as follows: and r ~ —

5 Be careful about factors of 2 arising
eon

from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as E(t) = E° +
Re{E(w) exp(—iwt) }.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(w1) exp(—iw1t) +
E(w2) exp(—iwat)}.

For S.H.G. in particular let w1 = w2



i, = n, + 5 rgk,

Figure 4: Rotation of axes by 45 about the optical axis.
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Figure 5: Rotation of Axes

A clockwise rotation take axes XY onto xy:(Equivalently a positive angle to the positive x-axis
amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems
for a 45° rotation is given by simple trigonometry as follows:

(5)=501 1)) (16)
<§):\%(—11 1><y> (17)

In the present case z,y represent the original axes which are transformed to 2/,y’ (= X,Y in the
figure) by an anticlockwise rotation. Thus inserting.

or,

le/\@(x/—y’) andyzl/\/i(xl—i—y') (18)

into the equation for the ellipsoid 15 we have

(@ —y)? (@ +y)? 20 —y) (@ +yY) o 22
271(2) + 277% + 5 T63Ez + 7173 =1 (19)

which when rearranged gives
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Figure 6: Electro-optic modulator used as an intensity modulator.

leading to
$/2 12 22
— (1 + TL(Q)T63E2) + % (1 — ngrﬁgEg) + — = 1 (21)
7,LO nO n@

This identifies

1 (1 + ngrﬁgEg)

|
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Or equivalently
=—>2 - (23)

—-1/2

Thus, given that re3EY << n_? we have ny = ng(1 + n3resE?) ~ no(l — %ngrﬁgEg) and

similarly for n,. This gives finally
An = |ng — ny| = nires B (24)

To act as a half-wave plate the phase induced by the field must be 7 radians, so

¢ = 2TWAnal =7 (25)

and the half-wave voltage is

A

Vie=—5—
2n8r63



Appendix

Wave-vector surface

We consider here the form of the wave equation for the propagation of a plane wave in transparent,
lossless, crystalline material. We start by noting the relationship between the displacement vector D
and the electric field F which are connected by the tensorial permittivity ;. for simplicity we take
the principal axis system such that,

D, | =] 0 g, 0 E, (27)
DZ 0 O 8zz EZ

where n? = (e4/e0) are the principal refractive indices. By convention for a uniaxial crystal

ng = ny; this index is referred to as the ordinary refractive index while n, is referred to as the
extraordinary index. If n, > ng (= n, = n,) the crystal is said to be a positive uniaxial and for the
converse the crystal is called a negative uniaxial.

To solve the wave equation in this more general case we assume a plane monochromatic wave of
form

E = Epexpi(kor — wt) (28)
The operators V and (0/0t) in the wave equation act on the fields such that

vV — ik (29)
/0t — —iw (30)

furthermore the wavevector can be written as
k=——1% (31)

where the index of refraction n depends on the orientation of the material and the polarisation state
of the electric field. With such monochromatic waves Maxwell’s equations in terms of the complex
amplitudes become

VD=0=kD=0 (32)
VxE=-B _".E-B (33)
ot c
VB=0=kB=0 (34)
vxH=22 " H- D (35)
ot c

where free charges p; and free currents j; are taken to be zero.
Thus the wave equation in the crystal may be reduced to the following in a similar way, i.e.

Vx(VxE):—aat(VxB) (36)
which becomes,
n?~ [~
“rhx (k;xE) — D (37)



On using the well known vector identity for a triple cross product this becomes

n2

5 |(5-E)k-E| =D
c
Now writing out explicitly the k—vector in terms of a unit vector as

which gives for equation 38.

(40)

Writing this as the inverse given that the co-ordinate system chosen was one in which ¢;; is diagonal

we have

— 0 0
n2 )
E=E 0 D
0 0 !
TL2

substituting the relevant E; component into equation 40 then gives

2 D
= | B (k- E) s
pc? | eon;

Finally, solving for D;
<7€\ . E) S;
Di=—3 2 2
pe? [(1/nf) = (1/n?)]

which with the help of the first Maxwell equation, k - D = 0 yields,

2 2 2
Sw Sy 52 _
WD) — (n?) () — () * (Afn2) = (Afn?)

(41)

(42)

(44)

This is known as Fresnel’s equation and must hold for the original assumption of a plane-wave

solution in the crystal.

This may be re-written as follows

11 1Y\, 11 1Y\ 11 1 1Y\ ,
(=) Gema) 2+ (G 3e) Ge )+ (g =) (g =) 20 @

As an example let’s take one principal plane at a time, e.g. the k, — k, plane where s, = 0; this

yields

11 L1, (1 1)l
—_—— — —_——— S —_—— — S =
n? n? ni n2) * n2 n?) Y
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Figure 7: Wave-vector surface

Noting that the unit vector condition requires s2 + SZ =1 then either

n.=n (47)
or
2 2
S 8y 1
Sxo Y~ | = 4
55 1) "

In the former case we have simply a constant value of the refractive index (n = ng) or in the latter
a refractive index which varies being given by the equation of an ellipse. In this case the unit vector
k = Xsin ¢ + ¥ cos ¢ so that

1 12 .2
R o

Similarly results follow for both the k, — k. and.k, — k. planes: there are two solutions one which
is independent of the direction of k called the ordinary wave, and the other which changes with the
k-vector direction and with a value given by the equation of an ellipse, called the extraordinary wave.
The intersection of the two curves in the k, — k., plane corresponds to the crystal’s optical axis. For
extraordinary waves, vectors k and D are not perpendicular means that Poynting’s vector S is no
longer parallel with k; the angle between them p is known as the walk off angle; this is also the same
as the angle between D and E It is given by

n2
tan (p+6) = n—g tan 0 (50)

e
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Figure 8: Walk off. Poynting’s vector and k are no longer collinear
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Figure 9: Walf off between S and k
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