C2: Laser Science and Quantum Information Processing

http://tinyurl.com/OxPhC2

Ultra Strong – using really intense lasers to form plasmas and build particle accelerators, initiate fusion, etc.

Ultra Fast – generating and characterising the shortest possible light pulses

Temporal Profile

Ultra Cold : Form Bose-Einstein Condensates from trapped atoms to study quantum effects

Ultra Weird – harnessing parallel universes to perform impossible information processing tasks

В

Α

R

Ultra Strong Ultra Fast Ultra Cold Ultra Weird

Lasers

Quantum information

An example

• The Mach-Zender interferometer

 Old fashioned optics or ultra-trendy quantum information theory?

How can this happen?

- Fairly easy to understand with classical light waves: interference between the two paths
- Also works when the light is so dim that there is only one photon in the apparatus at any one time
- Also works with electrons, neutrons, buckyballs, etc.

How can this happen?

Elitzur-Vaidman bomb tester

No bomb

Bomb

Bomb

Quantum Information

Counterfactual measurements

 Harnessing the power of parallel universes to do the impossible

 Quantum information theory is what you get when you take linearity seriously

So what do you study?

C2: Laser Science and Quantum Information Processing

Knowledge of the laser physics covered in paper B2.III will be assumed. Lasers: Line broadening mechanisms, linewidths and gain saturation. Q-switched operation. Modelocking. Frequency control and frequency locking. Solid state lasers. Semiconductor lasers. Fibre lasers. Ultrafast lasers: chirped pulse amplification, terawatt and petawatt laser systems.

Examples of laser systems: Nd:Glass, Nd:YAG. Ti:sapphire; Er:Glass fibre lasers and the Er-doped fibre amplifier (EDFA); AlGaAs and GaN semiconductor lasers. **Optics**: Diffraction. Ray matrices and Gaussian beams. Cavity eigenfunctions: the concept of cavity mode, the stability criterion, cavity design. Beamsplitters. Transverse coherence and Michelson stellar interferometer. Longitudinal coherence: optical coherence tomography and Fourier transform spectroscopy. (Not correlation functions, Wiener-Khintchine theorem). Optics in Structured Materials: optical fields in planar waveguides and fibres.

Non-linear Optics: Crystal symmetries and the linear electrooptic tensor. Amplitude and phase modulation of light using the linear electro-optic effect. Second harmonic generation. Critical,non-critical and quasi-phase matching. Sum and difference frequency generation and optical parametric down conversion.

Quantum optics: Elementary introduction to quantum fields and photons. Lightmatter interactions and the Jaynes-Cummings model. Generation and detection of nonclassical states of light: parametric down conversion and photon entanglement, photon action at a beam splitter, bosonic statistics. Berry and Pancharatnam phases. **Quantum mechanics and Quantum Bits**: Two level systems as quantum bits. Superposition states, the Bloch sphere, mixed states, density matrices, Pauli matrices. Single qubit dynamics (gates): NOT, square root of NOT-gate, Hadamard, phase shift, networks of gates, the measurement gate.

Implementations: atom/ ion in a laser field, photon polarisation, spin in a magnetic field. Mechanisms: Raman transitions, Rabi flopping, Ramsey fringes, spin echoes. Decoherence (simple treatment). Separable and inseparable (entangled) states of two spin systems. Two qubit gates: controlled-NOT, controlled-phase. Universality of gates (result only). Characterising an unknown state, state and gate fidelity (very basic), the no-cloning theorem. EPR, the four Bell states, the Bell inequalities. **Quantum Communication:** Elementary ideas about information content. Quantum dense coding. Testing Bell inequalities. Quantum key distribution, the BB84 protocol and detecting eavesdropping (only intercept/resend strategy). EPR based cryptography.

Laser Science

Quantum Information Processing

Quantum Optics

Laser Science (15)

- Lasers: main laser types, Q-switching, modelocking, pulse compression
- Optics: ray matrices, Gaussian beams, coherence
- Non-linear optics: frequency doubling and sum and difference generation

Quantum Information (19)

- Quantum Information: qubits, logic gates, interaction of light and matter
- Technologies: atoms, ions, NMR
- Quantum Computation: Deutsch, Grover, Shor, error correction
- Quantum Communication: Bell states, entanglement, quantum cryptography, teleportation

Quantum Optics (6)

- Quantum theory of light, and the interaction of light and matter
- Non-classical states of light
- Berry's phase and other geometric phases

Things go better with...

- C2 goes well with many options, but C3, C4 and C6 seem to be most popular
- A mixture of theory and experiment; mathematical but not too complicated!
- Can concentrate on one part (but foolish to completely ignore the other parts!)

Finding out more

• C2: http://tinyurl.com/OxPhC2

QIP: Nature 404, 247 (2000)
Lasers: Nature 424, 831 (2003)

Email jonathan.jones@qubit.org