
13 Basics of Information Theory

Exercises

13.1 Consider the encoding AA→ 0, AB→ 10 and B→ 11. Starting from a string of No

messages show that the average number of messages strings used in for the encoding
is given by NAA = No p2/(1+p), NAB = No(1−p)p/(1+p)), and NB = No(1−p)/(1+p).
With the number of encoding steps given by Ns = NAA + NAB + NB show that the
probabilities pAA = p2, pAB = p(1 − p) annd pB = 1 − p follow.

13.2 Alice prepares messages A, B, and C with probabilities pA, pB, and pC , respectively.
Show that her messages contain maximum information for pA = pB = pC = 1/3 and
work out this maximum amount of information.

13.3 Alice creates messages A, B, C, and D. She chooses them with probabilities pA =

1/2, pB = 1/4 and pC = pD = 1/8. How much information is contained in one of
her messages? Find an optimal bit-code for encoding these messages and show that
in this code each bit has equal probability of having values 0 or 1.

13.4 Now imagine that Alice uses trits (with values 0,1,2) instead of bits to encode her
messages and chooses to send A, B, C, D, and E with probabilities pA = pB = 1/3
and pC = pD = pE = 1/9. What is an optimal code in this case? Show that in the
optimal encoding each trit has equal probability of having values 0, 1, and 2.

13.5 Show that the conditional entropy H(X|Y) is always larger than or equal to zero if
local realism is assumed.

13.6 A communication channel transmits two messages A and B. With probability ℓ the
two messages are swapped on the channel but otherwise transmitted faithfully. Cal-
culate the channel capacity making use of its symmetry and show that the channel is
ideal for ℓ = 0 and ℓ = 1.
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14 Quantum Information

Exercises

14.1 Calculate the reduced density operator for each qubit of the Bell state |Ψ+⟩. Show
that this result is the same for each Bell state and give a physical explanation. Use
this to calculate the von Neumann entropy of a two qubit system in a Bell state as
well as the reduced entropies of each of the qubits separately.

14.2 The density operator of two qubits A and B is given by ρAB = (|Ψ−⟩⟨Ψ−|+ |Φ+⟩⟨Φ+|+
|Ψ+⟩⟨Ψ+|+|Φ−⟩⟨Φ−|)/4. Calculate the von Neumann entropy S (ρAB) and the entropies
of the reduced systems S (ρA) and S (ρB). Is the state ρAB entangled? If it is not entan-
gled find the density operator ρAB in the form

ρAB =
∑

j

p jρ
( j)
A ⊗ ρ

( j)
B .

Repeat the above calculations for the state ρ̃AB = (|Ψ−⟩⟨Ψ−| + |Φ+⟩⟨Φ+|)/2.
14.3 The density operator of a two qubit system is given by

ρAB = ρA ⊗ ρB.

Show that the von Neumann entropy of this system is given by S (ρAB) = S (ρA) +
S (ρB).

14.4 Show that the conditional von Neumann entropy S (ρA|ρB) is equal to zero for a pure
state ρAB iff ρAB is not entangled, i.e. if it can be written as

ρAB = ρA ⊗ ρB

and is smaller than zero for any entangled states.
14.5 Solve case (ii) of example 14.3 but for a symmetric channel where both qubits un-

dergo amplitude damping1 each with probability ℓ. This situation is realized if a
central party Charlie produces the entangled state and distributes one qubit to Alice
and the other to Bob.

14.6 When distributing photons the probability of a photon being lost goes exponentially
with the distance L, i.e. ℓ = 1−e−γL. By comparing your results in exercise 14.3 with
those in example 14.3 discuss which setup will be more suitable for the distribution
of entangled pairs of photons.

1 It may be helpful to assume that the two qubits may go through their channels in sequence when solving this
problem.
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15 Quantum Communication

Exercises

15.1 Consider a momentum entanglement interferometer experiment. Calculate the prob-
ability of coincidence clicks for all possible pairs of detectors assuming that the state

|Ψ⟩ = |ab⟩ + |ba⟩
√

2
,

is created in the down-conversion process as a function of the phase shift ϕ.
15.2 If down-conversion happened incoherently photon pairs in state

|Ψ⟩ = 1
√

2

(
eiφ|ab⟩ + |ba⟩

)
would be generated with a phase φ that takes on any value [0, 2π] with equal probabil-
ity. Show that in this scenario the photon pairs are described by the density operator

ρ =
1
2

(|ab⟩ ⟨ab| + |ba⟩ ⟨ba|) .

15.3 Carry out the same calculation as in exercise 15.1 but now for the state generated in
an incoherent process as in 15.2.

15.4 Using the symmetry properties of photons explain how the Bell states |Ψ±⟩ can be
distinguished in a partial Bell state analyzer for polarization encoded photons. Why
can the other two states not be distinguished? Imagine that photons were fermions
(which is not true!). How would the partial Bell state analyzer work in this case?

15.5 For quantum dense coding Bob needs a Bell state analyzer. What is the channel
capacity (number of classical bits transmitted in one use of the channel) if Bob has
an ideal Bell state analyzer? How is this channel capacity reduced if the Bell state
analyzer is only able to identify the two Bell states |Ψ±⟩ but cannot differentiate
between the two Bell states |Φ±⟩?

15.6 Work out descriptions of the quantum dense coding and teleportation protocols for
the case where the EPR source produces the Bell state |Φ+⟩.

15.7 Show that without classical communication no information about the state of qubit 1
is transferred to qubit 3 in the teleportation protocol. Explain why it is impossible to
transmit the quantum state of a qubit from Alice to Bob by classical communication
only.
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4 Quantum Communication

15.8 Alice and Bob carry out the teleportation protocol with an imperfect Bell state ana-
lyzer which cannot distinguish the states |Φ+⟩ and |Φ−⟩. Assume that Alice does not
tell Bob about this imperfection but randomly assumes one of the two states when-
ever the Bell state analyzer gives an ambiguous result. Calculate the fidelity with
which an arbitrary state |ψ⟩ is teleported in this case. Which states are teleported
with maximum fidelity and which states are teleported with minimum fidelity?

15.9 Qubit 1 is entangled with a quantum system 4. Their state can be written as

|Ψ⟩14 =
|0⟩1 ⊗ |ϕ⟩4 + |1⟩1 ⊗ |φ⟩4√

2
.

Show that if the teleportation protocol is applied to qubit 1 the entanglement with
system 4 is swapped to qubit 3. Does this protocol work if qubits 1 and 4 are initially
in a mixed entangled state?



16 Testing EPR

Exercises

16.1 Work out the quantum mechanical expectation values for the combination of observ-
ables Q, R at Alice’s site and S , T at Bob’s site for the setup described in the Section
on Aspect experiments. Show that they violate the CHSH inequality.

16.2 Derive a CHSH type inequality which is violated if the EPR source produces the
state |Φ−⟩.

16.3 In the ZZZ basis a GHZ state is given by

|GHZ⟩ = 1
√

2
(|HHH⟩ + |VVV⟩) .

By rewriting this GHZ state in the bases XYY, YXY and YYX show that measuring
two of the photons in circular polarization determines the polarization of the third
photon in the X basis with certainty. Rewrite the GHZ state in the XXX basis and
show that measuring in this XXX basis violates the expectations of local realism
discussed in the lectures.

16.4 Calculate the probability with which the production of two photon pairs in the setup
discussed in the lecture on GHZ states leads to a click in all four detectors and hence
work out the fraction of events which must be disregarded at the post-selection stage
assuming that a single down-conversion process happens with a probability of 10−3

for each light pulse entering the BBO crystal.
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17 Quantum cryptography

Exercises

17.1 Assume that a communication channel used by Alice and Bob for BB84 key dis-
tribution is capable of transmitting 1000 qubits per second. What is the average key
generation rate that Alice and Bob can achieve if they a) assume that no eavesdropper
can be present and thus do not publicly compare parts of their key; b) an eavesdropper
using intercept/resend strategy on each second qubit should be detected with 99.9%
probability after two seconds. How much mutual information can be established be-
tween Alice’s bit string A and the eavesdropper during these two seconds?

17.2 Calculate the joint probabilities Pab(ϕA, ϕB) introduced in example 17.1 explicitly
and use them to work out E(ϕA, ϕB)). Show that your result is consistent with directly
calculating E(ϕA, ϕB) = ⟨Ψ−|σϕA ⊗ σϕB |Ψ−⟩.

17.3 Show how a difference in the optical path length of the two fibres connecting Alice
and Bob in Figure 17.1(a) leads to errors in the BB84 protocol. Assume that this
phase error is equally distributed in the interval ∆ϕ ∈ [−π/20, π/20]. What is the
probability that Alice and Bob obtain different measurement outcomes when publicly
comparing bits measured in the same basis?

17.4 For the phase encoding systems in Figure 17.1(b) determine the probability for a
photon to be incident on B1 and B2 as a function of the two phases induced by the
two independent phase modulators ϕA and ϕB. Note that for the setup shown in this
figure the photons going along paths SS and LL are assumed not to contribute to the
signal. Explain how this setups can be used to realize the BB84 protocol.
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