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1 Scalar Diffraction Theory

Consider the wave equation for the electric field:

∇2 ~E − n2

c2
∂2
t
~E = 0 (1)

for a plane wave with complex amplitude V̄ (~r, t) and linear polarization ~ε. The amplitude must satisfy:

∇2V̄ − n2

c2
∂2
t V̄ = 0. (2)

Taking a time dependence V̄ (~r, t) = V̄ (~r)e−iωt, then we have the Helmholtz equation:

∇2V̄ − ω2

c2
V̄ = 0. (3)

This can be solved by standard techniques using Green’s function.
Consider a region of space V enclosed between two surfaces S and S ′. In this region the Helmholtz
equation is solved by two functions ψ(~r) and ϕ(~r).

S
S’

Now Green’s Theorem gives

∇ · (ϕ∇ψ) = ϕ∇2ψ +∇ϕ · ∇ψ (4)
∇ · (ψ∇ϕ) = ψ∇2ϕ+∇ϕ · ∇ψ (5)
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Subtracting these

∇ · (ϕ∇ψ − ψ∇ϕ) = ϕ∇2ψ − ψ∇2ϕ

= ϕk2ψ − ψk2ϕ (k2 = ω2/c2)
= 0 (6)

So that ∫
V
d3x∇ · (ϕ∇ψ − ψ∇ϕ) = 0. (7)

Using the divergence theorem:∫
V
d3x∇ · (ϕ∇ψ − ψ∇ϕ) =

∫
S+S′

d~s · (ϕ∇ψ − ψ∇ϕ) = 0. (8)

where d~s is a surface normal as the differential element. Thus∫
S
d~s · (ϕ∇ψ − ψ∇ϕ) = −

∫
S′
d~s · (ϕ∇ψ − ψ∇ϕ) (9)

Let S ′ be a sphere with radius ε, centered at 0, with unit radial vector r̂. The differential surface normal is
then

d~s = r̂ε2 dφdθ sin θ. (10)

0

Now one solution for the field in a spherical cavity is just a spherical wave. Therefore, let ψ = eikε/ε, and r̂
be the unit radial vector from 0, so that

r̂ · ∇ψ =
∂ψ

∂ε
=
(
ik − 1

ε

)
eikε

ε
. (11)

Thus ∫
S′
d~s · (ϕ∇ψ − ψ∇ϕ) = −

∫ 2π

0

dφ

∫ pi

0

dθ sin θε2
[
ϕ(~r)

(
ik − 1

ε

)
eikε

ε
− eikε

ε

∂ϕ(~r)
∂ε

]
= −2π2

{
ϕ(~r)ikε2 − ϕ(~r)

}
eikε + 4πε

∂ϕ(~r)
∂ε

(12)

lim
ε→0

∫
S′
d~s · (ϕ∇ψ − ψ∇ϕ) = −4πϕ(~r) (13)

So that

ϕ(~r) =
1

4π

∫
S
d~s · ϕ(~r′)∇

{
eik|~r−~r

′|

|~r − ~r′|

}
− eik|~r−~r

′|

|~r − ~r′|
∇ϕ(~r′) (14)

This is the Helmholtz−Kirchhoff Theorem.
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We now apply this to the case of diffraction from an aperture. The goal is to find the field at P0 (location ~r
due to the field in the aperture Σ (parts in the aperture are at location ~r′). The aperture lies on the
surface of a volume V that is bounded by Σ + S ′ + S ′′. It is taken that the field is prescribed on Σ; i.e.,
ϕ(~r′) and ∂ϕ

∂n (~r′) are known, and that both are identically zero in the region S ′ of the opaque screen. 1

Then

ϕ(~r) =
∫

Σ

d~s · ϕ(~r′)∇

{
eik|~r−~r

′|

|~r − ~r′|

}
− eik|~r−~r

′|

|~r − ~r′|
∇ϕ(~r′) (15)

Taking the limit as S ′′ → a very large distance away from the aperture screen, there is no contribution
from fields at this surface. Then it follows

ϕ(~r) =
∫

aperture

dxdy ϕ(~r′)
∂

∂z

{
eik|~r−~r

′|

|~r − ~r′|

}
− eik|~r−~r

′|

|~r − ~r′|
∂

∂z
ϕ(~r′) (16)

Then using
∂

∂z

{
eik|~r−~r

′|

|~r − ~r′|

}
=
{
ik − 1

|~r − ~r′|

}
eik|~r−~r

′|

|~r − ~r′|
cos(n̂, ~r − ~r′) (17)

where n̂ is a unit vector in the direction of the surface normal from Σ. The right-hand-side is usually
approximated, for distances |~r − ~r′| that are much greater than on wavelength (2π/k) away from the
surface Σ, as

∂

∂z

{
eik|~r−~r

′|

|~r − ~r′|

}
≈ ik cos(n̂, ~r − ~r′)e

ik|~r−~r′|

|~r − ~r′|
(18)

Evaluating the second term in the Helmholtz-Kirchhoff term requires some approximation. Considering the
case that the derivative is taken in the normal to the aperture, and that this lies in the x-y plane, then we
can approximate this as a derivative with respect to the z-axis. In that case, the dominant contribution to
the derivative will likely come from the rapid change in the field across a wavelength.

1Unfortunately, this overspecifies the problem. The mixed boundary conditions lead to the situation that if both ϕ(~r′) and
∂ϕ
∂n

(~r′) are zero on some part of the surface, then ϕ(~r′) will vanish everywhere. There are more sophisticated ways around this
so-called ”saltus” or ”jump” problem than we shall use here.

3



Therefore, it is reasonable to approximate the term by

∇ϕ(~r′) ∼= ikϕ(~r′) cos(n̂, ~r′ − ~R), (19)

Provided the field ”envelope” is slowly varying on the scale of a wavelength.

To develop this, first consider the case of a point source at ~R on the left half space of Σ, from which a
spherical wave diverges . In this case,

ϕ(~r′) =
eik|~r

′−~R|

|~r′ − ~R|
, (20)

so that
∂

∂z

{
eik|~r−

~R|

|~r − ~R|

}
≈ ik cos(n̂, ~r − ~R)

eik|~r−
~R|

|~r − ~R|
. (21)

For the case of an extended source, we may approximate the derivative in the aperture by replacing the
spherical wave by the actual field,

∂

∂z
φ(~r) ≈ ik cos(n̂, ~r − ~R)φ(~r). (22)

With this ”slowly varying envelope” approximation, the diffraction formula simplifies to :

ϕ(~r) =
∫

Σ

dxdy ϕ(~r′)
eik|~r−~r

′|

|~r − ~r′|
ik

{
cos(n̂, ~r − ~r′)− cos(n̂, ~r′ − ~R)

}
︸ ︷︷ ︸
≈2 for small angles from the surface normal

(23)

If we stay in the paraxial regime, the obliquity factors (the cosines) can be set equal to unity (and −1).
We end up with the Kirchoff diffraction integral

ϕ(~r) =
∫

Σ

dxdy ϕ(x, y)
eik
√

(X−x)2+(Y−y)2+Z2

Z
(24)

4



x

y

z

2 Fraunhofer Diffraction

The Kirchoff diffraction integral can be approximated to a familiar form under a certain set of conditions,
called the Fraunhofer conditions. (x, y) in aperture Σ, P (X,Y, Z) at observation part, θ =angle between

x

y

zO

the z-axis and OP.
Then the argument in the exponent in the integral is :(

(X − x)2 + (Y − y)2 + Z2
)1/2

=
[
(X2 + Y 2 + Z2)− 2Xx− 2Y y + (x2 + y2)

]1/2
(25)

Let the X2 + Y 2 + Z2 = R2 = distance between O and P

(
(X − x)2 + (Y − y)2 + Z2

)1/2
= R

(
1− 2Xx

R2
− 2Y y

R2
+
x2 + y2

R2

)1/2

(26)

For R�maximum radius of the aperture, a ...... distance of P from the z-axis:(
(X − x)2 + (Y − y)2 + Z2

)1/2 ∼= R− Xx

R
− Y y

R
+
x2 + y2

2R
(27)

It is often (though not always) convenient to write X/R = sin θ, Y/R = sinϕ, with the angles as indicated
on the diagram. Thus the Kirchoff integral becomes:

ϕ(X,Y, Z) ∼=
2ik
4πZ

∫
Σ

dxdy ϕ(x, y, 0)eikR e−ik
X
R xe−ik

Y
R y︸ ︷︷ ︸

Fourier Transform-like terms

eik
x2+y2

2R (28)

In the case of a planar 1-D geometry, this simplifies further; since we only need consider points which have
y = 0, Y = 0. Then:

ϕ(X,Z) ∼=
1
λZ

∫
Σ

dx ϕ(x, 0)eikRe−ik sin θxeik
x2
2R (29)
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The integral looks exactly like a Fourier transform except for the term exp(ikx2/2R).
This can be eliminated in several ways:

1. It can be ignored – if it represents a sufficiently small phase accumulation over the range of
integration.

Let us say the maximum extent of the aperture is a. Then the maximum phase due to this term is:

πa2

λR
= F (30)

where F is called the Fresnel number of the arrangement.

It gives the number of half wavelengths that the path from the edge of the aperture to the enter of
the observation plane differs from the path from the center of the aperture to the center of the
observation plane.

a

E

P

O R

EP −OP =
√
R2 + a2 −R

≈ R+
a2

2R
−R

≈ a2

2R

∴
EP −OP

λ/2
= F

Ideally F = 0, but it is usually sufficient to allow F � 1. This is called the Far Zone approximation.

It represents a condition on the distance we must place the observation place from the aperture in
order to see Fourier-transform-like diffraction patterns.

The distance for which the Far-Zone approximation holds is called the Rayleigh distance, and is the
distance at which the diffracted beam becomes larger than the geometrical shadow of the aperture.

θgeo ≈ a/R

θdiff = λ/a

θgeo
θdiff

=
a

R

a

λ
= F

The Rayleigh distance Rd is the radius of R that gives F = 1.

Rd =
a2

λ
(31)
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Geometric shadow

diffraction angle

2. The second way to eliminate the quadratic phase term in the integral is to put a lens immediately
after the aperture:

aperture

focal length f

The field at the observation plane needs to be evaluated again in this case. We note that the field at
the aperture ϕ(x, y) is multiplied by the transfer function of the lens tl(x, y), and the beam allowed
to propagate to the observation plane. The transfer function of the lens is

tl(x, y) = e−ik(x2+y2)/2f (32)

To see that this form is reasonable consider a special case where the lens is plano-convex, of material
with refractive index n , with one surface radius R.

x

The phase ξ(x) at position x accumulated by a plane wave incident from the left of this lens is
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ξ(x) = k∆(x) + nkt(x)

ξ(x) = kt(x)n︸ ︷︷ ︸
path in lens

+ k (t(0)− t(x))︸ ︷︷ ︸
path to lens surface

ξ(x) = k(n− 1)t(x) + kt(0) (33)

and

t(x) = t(0)−
(
R−

√
R2 − x2

)
= t(0)−R+R

(
1 +

x2

R2

)1/2

∼= t(0)−R+R+
x2

2R

∴ ξ(x) = k(n− 1)t(0) + kt(0)− k(n− 1)
x2

2R

ξ(x) = knt(0)− k(n− 1)
x2

2R
(34)

If we now let (n− 1)/R = 1/f , where f is the focal length of the lens (see 1st year optics course):

tl(x, y) = eiknt(0)e−ik(n−1)x2/2R = eiϕ0e−ikx
2/2f (35)

Inserting the lens transmission function into the integral of eq. 29 gives (keeping to 1-D still)

ϕ(X,Z) =
eikR

λZ

∫
Σ

dx ϕ(x, 0)eiϕ0e−ikx
2/2fe−ik sin θxeik

x2
2R (36)

It is clear that if f = R all quadratic terms in x in the integral phases disappear, and we are left with
an F.T.

ϕ(X,Z) =
eikR+iϕ0

λZ

∫
Σ

dx ϕ(x, 0)e−ik sin θx (37)

Note that this is not a ”true” Fourier transform of ϕ(x, 0), because of the additional phase term
outside the integral exp(ikR+ iϕ0). This gives a field-angle(X)-dependent phase across the
observation plane.

R =
√
Z2 +X2

≈ Z +
X2

2Z

R

P

O

X

Z
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Also the factor 1/Z accounts for the ’spreading’ of energy across the observation plane. To see this
we need to go back to the full 2-D model:

ϕ(X,Y, Z) =
eikR

λZ

∫
Σ

dxdy ϕ(x, y)eiϕ0eiϕ0e−ik sin θx−ik sinϕy

=
eikR

λZ
ϕ̃

(
X

λZ
,
Y

λZ

)
(38)

recalling that sin θ = X/R ∼= X/Z and sinϕ = Y/R ∼= Y/Z in the paraxial limit.

Then it must be the case that the total energy transmitted through the aperture is the same as the
total energy recorded in the observation plane.∫

dxdy |ϕ(x, y, 0)|2 =
∫
dXdY |ϕ(X,Y, Z)|2

=
∫
dXdY

1
λ2Z2

∣∣∣∣ϕ̃( X

λZ
,
Y

λZ

)∣∣∣∣2 (39)

Let X̄ = X/λZ, Ȳ = Y/λZ, then∫
dxdy |ϕ(x, y, 0)|2 =

∫
dX̄dȲ |ϕ̃(X̄, Ȳ )|2 (40)

which is true by Parseval’s theorem.

3. The last configuration I wish to consider is one relevant to imaging and illumination - not just in the
optical regime. It is the sort of geometry that arises in most situations where laser light is used to
probe an object. Examples include confocal and nonlinear microscopy, optical tweezers and laser
plasma excitation, as well as the preparation of, say, photonic qubits coded in angular momentum.
The physics is closely related to that of the previous example, in that the light exiting the aperture is
nearly a spherical wave. Here, though, this is achieved by illuminating the aperture with a converging
spherical wave, rather than placing a lens after it. The aperture may then be modelled by a
transmission function, T , that specifies how the field at each point in the aperture is modified. It is
immediately evident how this is related to imaging instruments. Because of this method of
illumination, the field in the observation plane can be made a Fourier Transform of the field in the
object plane, which encodes the structure of the transmission function.

Denote the field in the aperture by

ϕ(x, y, 0) = ψinc(x, y, 0)T (x, y) (41)

where ψinc(x, y, 0) is the incident spherical wave and T (x, y) is the aperture transmission function.

In the paraxial approximation

ψinc(x, y, 0) = e−ikR
′ e−ik(x2+y2)/2R′

λR′
(42)

So it is clear that if R′ = R, then the field at the observation plane is:

ϕ(X,Y, Z) =
eikR

λZ

∫
Σ

dxdy T (x, y)e−ik(x2+y2)/2R′ e−ikR
′

λR′
e−ik sin θx−ik sinϕyeik(x2+y2)/2R

R′ ∼= Z =
eik(R−R′)

λ2Z2

∫
Σ

dxdy T (x, y)e−ik sin θx−ik sinϕyeik
x2+y2

2 ( 1
R−

1
R′ )

=
1

λ2Z2

∫
Σ

dxdy T (x, y)e−ik sin θx−ik sinϕy (43)
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O

Z

R’

R

aperture

observation plane

Source

Lens

aperture

observation

plane

This time the Fourier Transform is exact, and there are no extraneous field-angle dependent phase
terms. But how do we set up this configuration? Simple, we need a converging beam on the aperture,
so we use a lens.

If S′ is arranged to be an image of S, then the above condition is satisfied.

Thus the 3 configurations for obtaining Fourier Transform relations between the aperture function and the
field in the observation plane - the conditions of Fraunhofer diffraction - are:

1. Far-zone - plane wave illumination

R

O

Z

a

This is defined by the approximation that the Fresnel number be very small:

F =
a2

λR
� 1. (44)

2. Lens at aperture - plane wave illumination

Note that the field at the observation plane is not the Fourier-Transform of the field at the aperture
because of field-angle dependent phase. The modulus of the field, however, is the modulus of this
Fourier Transform.
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O

f

3. Lens before aperture - plane or diverging illumination at the lens

O

f

If plane wave illuminate

The observation plane is located at the source image. The field at this plane is an exact Fourier
Transform of the field at the aperture.

The most useful case, and the most general, is when the lens is place in front of the aperture by its focal
length, and the observation plane is in the back focal plane of the lens.
In this case

O

f f

Aperture

The field at O is an exact Fourier transform of the aperture function, with no extraneous phases, provided
the aperture is illuminated with plane waves. This example will be explored in the homework
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