Optical Field Mixing

Second harmonic generation

E=E, cosart

P(E)= g,y E. cos’ axt = %50 1P El(cos2mt +1)

Sum and difference generation
E=FE coswt+E, cosw,t
P(E)= ¢,y'” (E, cosw,t + E, cos w,t)’
= 2¢, 1y E,E, cos w,t cos @,t

= g,1?[cos(@, + @, )t + cos(w, — w, )t]




Osclllating Polarisation

Optical polarisation

Fundamental polarisation

SH Polarisation

Second—harmonic
polarization

Constant _( DC)

polarization

Constant (dc) polarisation




SHG: Efficiency factors

The generated
second harmonic
has to remain “in
step” with the
fundamental wave
which produces

it. This Is known as
phase-matching.

Fundamental
wave, E(o)

Polarization
wave, P(w)

Second harmon
wave, E(2w)

Destructive interference of
wave generated at A by
wave generated at B.




Coherence length
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Efficiency Factors

2. Beam Divergence

1. Walk-off

Crystal




Index ellipsoid

To match the indices
the fundamental wave
propagates as the
ordinary wave while
the second harmonic
as the extraordinary.

Index ellipsoid for uniaxial crystal
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Directions and fields int SHG




Phase-matching

PHASE MATCHING
by Index Matching

Ng(2m) = No(®)
The idea I1s to make
use of dispersion to
achieve a common

Index of refraction and
thereby a common
propagation velocity In
the medium.




Phase-matching - Index ellipsoid

In type | phase-

matching the - (optic) axis
fundamental and
second harmonic
waves travel as
waves of different
types,

l.e. one as the
ordinary the other
as the extraordinary
wave.

The required
condition Is then
Nn1(2w)=n2(w)




Computing the phase-match angle

For the extraordinary wave the index ellipse gives:

cos?f  sin?é




7z (optic axis) direction

Walk-off

Ray direction, ,§

The second
harmonic wave
can walk away
from the
fundamental.

S and k are not
collinear.




Walk-off calculation

tan(0 + p) = (%) :_( ) (
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Maximising the SHG output

nen t
nen t

nen t

ne angle 6 to z-axis Is egual to Om
ne angle to the x-axis equals 45°

ne input beam has a low

divergence

> When the crystal temperature Is constant
(since n =1(T))

> When the crystal Is relatively short
(coherence length)




45 degree, z-cut

Efficiency maximised
Little or no walk-off

High angular tolerance




Depletion & Focus

E
g

¥

Coupled
Equations
now give a
tanh
solution
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Depleted Input Beam

For depletion under perfect
phase-matching:

Where the coupling
IS given by:

Which for low
depletion
reduces to:

Which is identical to our
earlier expression, noting




Optical Parametric Oscillator

Nonlinear X'tal

Conditions for the generation of new optical frequencies:




Parametric processes |

Signal wy; [ _.f‘f.f'fé?f " Up-converted
- A% e > signal
Pump wp ___Z:"‘.::.:;j‘:;:::': R X w], w2 ] w3=w1+w2
Filter

“1 _ Amplified
signal




Parametric processes ||

E(t) = Re{ F(wy) exp(—iwit) + E(ws) exp(—iwst)}

= d[|Ew)] +|B(w)|]
d E(wi)FE(w;)
d E(ws)E(ws)
2d E(w)E(w»)
2d E(w1)E*(wsy)




Parametric Processes |l|

PARAMETRIC UP-CONVERSION

Strong laser pump

Phase matched
non-linear crystal

W4
Weak infra-red source

k1—|—k2:k3 (05

;4
Visible signal




Example: generation of 243nm

Baimer series
656 - 364.5 nm

25-nS.D
1312 - 729 nm
{two-photon)

15-35 1S-25
205 nm i 243 nm
(two-photon) (two-photon)

Lyman-a
121.5 nm

Two-photon transitions in hydrogen




Example: summing in KDP

For this symmetry group: diy = dos 7& dae

For the second harmonic

to propagate as the P?w — 9., E¥Y E¥
extraordinary wave: g k=5 Hk




Symmetry & Kleinman

Since no physical significance is attached to an exchange of Ej and Ek

dy =dy,
And using the contracted form

xx=lLyy=222=3
yz=zy=4;xz=zx=5;xy=yx=6

In addition for a lossless 4‘ d( PE ) =0

medium all d-coefficients that P =-VU(E)
are related by a re- i
arrangement of order of the
subscripts are equal. This
reduces the maximum number
of d’s from 18 to 10, e.g. for P=- OU(E)
KDP: dis=dss — OE,

See Yorv ° 354

Ay 2d;
U(E) = —¢, TJE,.EJ. i 3”‘ EE,E,..

=& x;E; +2d

ijk

2.




Frequency summing in KDP

The form of the polarizablility tensor for these
negative uniaxial crystals with 42m symmetry class
enables generation of the SHG as an extraordinary
wave.

The expression for deff maximises when 6 = 90°and
® = 45° i.e.,

P.sinf = 250(136E§ sin 6 (cos ¢ X sin ¢)

codsg E(Z) sin @ sin 2¢




Phase-matching angles

Fundamental beam
(ordinary wave)

Second harmonic beam
(extraordinary wave)

The fundamental is plane-polarized in the x-y plane —
It propagates as an ordinary wave and generates a
SHG polarization along z. This has to be project along k




Frequency summing in KDP

1 1 1

Energy conservation (w): 243 351
2

Indices must satisfy (k): 1o TZE) _ Te
20l 789 243

Calculating the phase-matching
angle gives almost 90° I.e.,




Temperature tuning the crystal

Since the refractive index Is temperature

dependent it may be possible to phase-match
at 90°by exploiting this variation, I.e.,

n 0, i B n_F AT d-'n:{;, /dT N dng /dT _[(d n,: / ‘dT
351 789 243 351 ), 790 ) o 243" ) s

Solve to find AT.

Finally, the crystal can be cut so as to have
Brewster faces for the fundamental beams; the
SHG is orthogonally-polarised and suffers some
Fresnel loss in a single pass out of the crystal.




The final crystal design

KDP crystal




