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Phase matching

In lecture 2, equation 22 gave an expression for the intensity of the second harmonic generated in
a non-centrosymmetric crystal. The fundamental beam was taken as a plane wave travelling in the
z-direction (i.e. Ex = Ey = 0).

I2ω =
ω2(χSHG))2

2n2ω(nω)2c3ε0
(Iω)2

{

sin(∆kz/2)

∆kz/2

}2

z2 (1)

where I2ω has a phase determined by Eω. When properly phase-matched ∆k = 0 and I2ω increases
with z2. The graph below shows the effect of phase-matching. With ∆k = 0 the sinc function in curly
brackets is equal to unity, and the second harmonic intensity increases with z2; when not perfectly
phase-matched the expression oscillates sinusoidally with a periodicity of 2ℓc representing the fact
that there is destructive interference between the second harmonic beam generated at different points
in the crystal.

Index matching

We now need to understand how we achieve the phase-matching condition for a specific fundamental
wavelength. For this we have to recall our picture of the index ellipsoid, and overlay the fundamental
index variation with that of the second harmonic. The objective will be to see, if for example the
fundamental wave propagates as the ordinary beam and the second harmonic as the extraordinary

wave, there is a point at which nω
0 = n2ω

e . Thus we need both birefringence and dispersion. Analysis
of the equations for the relevant ellipsoids reveals that the phase-matching angle is given by
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Figure 1: Variation of the intensity I2ω with distance z
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Figure 2: Refractive index variation for fundamental and second harmonic beams

Figure 3: Directions of propagation for fundamental and SHG beams.
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θm = cos−1

{

(nω
0 )

−2 − (n2ω
e )−2

(n2ω
0 )−2 − (n2ω

e )−2

}
1

2

(2)

As an example consider frequency doubling in ADP. The polarisation using equation 11 of lecture
1 is

P 2ω
i = 2dijkE

ω
j Eω

k (3)

and given the symmetry of the crystal we have that

d14 = d25 �= d36 (4)

If Kleinman’s conjecture 1 is invoked this reduces further since then

d14 = d36 (5)

so that there is only one independent coefficient for SHG.

For the second harmonic to propagate as the extraordinary wave P 2ω
x = P 2ω

y = 0. Thus the relevant
non-linear coefficient is

P 2ω
z = 2d36E

ω
xEω

y (6)

The second harmonic intensity therefore maximises if :

(a) θ = θm;

(b) φ = 450;

(c) the input beam is of low divergence and has a low bandwidth;

(d) the temperature is constant (since n = f(T ));

(e) the crystal is ”short”.

Walk-off

In the appendix of Lecture I we considered the propagation of light in a uniaxial
crystal. We saw that, in general for the extraordinary ray, the direction of energy flow (Poynting’s
vector) and the wave-vector were not collinear; this leads the undesirable feature that the second
harmonic beam (propagating as, say, the extraordinary beam) can walk away from the fundamental
beam (propagating as the ordinary wave).

Straightforward geometry gives the walk-off angle for the negative uniaxial case, shown in the
figure, as

tan(ρ+ θ) =

(

no

ne

)2

tan θ (7)

1 In most crystals there is no hysteresis in the dependence of P on E, i.e. P is single-valued. Furthermore there is no

physical significance that can be attached to the exchange of labels of the two input fields so that di(jk) = di(kj)
and two subscripts suffice. However, there is a further ”symmetry” consideration known as Kleinman’s conjecture. For the

case of a lossless medium only, the d coefficients which are related by a simple re-arrangement of the order of the subscripts

are equal, i.e. dyyx = dyxy, thus, e.g., d12 = d26; d36 = d14
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Figure 4: The wave-vector k and the direction of S are not collinear

Type I and Type II - Phase-matching
In the preceeding discussion we have assumed

that the only way to achieve phase matching is for the fundamantal to propagate as the ordinary
beam while the second harmonic propagates as the second harmonic wave or vice-versa. This scheme
is known as type I phase-matching and is not the only possibility. In type II phase-matching two
input fields, ω1, ω2, having orthogonal polarisations progate through the crystal generating a sum
or difference frequency wave, ω3. To summarise the difference between the two types we can simply
write the phase-matching condition as follows:

noω3 = neω1 + neω2 (ne > no positive uniaxial)

noω3 = neω1 + neω2 (ne > no negative uniaxial)
noω3 = noω1 + neω2 (ne > no positive uniaxial)
neω3 = neω1 + noω2 (ne > no negative uniaxial)

Note for the case of SHG that ω1 = ω2 and in which case both waves automatically have the same
polarization.

Example of SHG in BBO
Consider the case of frequency doubling the output of a Ti:sapphire laser at 780 nm in beta barium

borate (BBO) which is a negative uniaxial crystal. ne < n0 Thus, it may be possible to find an angle
such that n2ω

e (θ) = nω
o . This is the required phase-matching angle, θm for type I matching

Thus,
1

[n2ω(θ)]2
=

cos2 θm

(n2ω
o )2

+
sin2 θm

(n2ω
e )2

=
1

(nω
o )

2 (8)

Re-arranging gives

sin2 θm =
(1/nω

o )
2 −

(

1/n2ω
o

)2

(1/n2ω
e )2 − (1/n2ω

o )2
(9)
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The relevant refractive indices can be computed from Sellmeier’s2 equation and in this case give:

(nω
o )

2 = 2.76223
(

n2ω
o

)2
= 2.87525

(nω
e )

2 = 2.39192
(

n2ω
e

)2
= 2.46610

which in turn gives,

sin2 θm = 0.2466 (10)

so that
θm = 29.770

On the other hand for type II matching the k-vector equation gives

k
2ω = k

ω
1 + k

ω
2 =

n2ω
e × 2ω

c
=

nω
o × ω

c
+

nω
e × ω

c
(11)

so that

n2ω
e (θm) =

1

2
[nω

o + nω
e (θm)] (12)

Using the ellipsoidal equation to give the extraordinary refractive index as a function of angle θ
for this case gives

1

n2
e(ω, θ)

=
1− sin2 θ

n2
o

+
sin2 θ

n2
e

=
1

n2
o

+ sin2 θ ×
(

1

n2
e

− 1

n2
o

)

(13)

We can’t solve the two equations above analytically but an iterative numerical solution gives an
angle close to 430,that is evaluating ne(ω, θ) with θ = 430 we find ne(ω, θ) = 1.662 and ne(2ω, θ) =
1.6338

1

2
× [1.662 + 1.6052] = 1.6336 cf 1.6338 (14)

Otherwise a graphical solution would be necessary; this give the phase-matching angle to be 43.150.

Focussed Beams
The foregoing discussion has been restricted to the case of incident

plane waves. While this makes the analysis relatively simple it does not in general describe the
situation encountered in practice where much greater conversion efficiency is achieved using focussed
beams. Clearly this means that input arrives with a range of angles and with an intensity which varies
along the propagation direction. Increasing the crystal length will then produce diminishing returns
as the beam diverges either side of its focus. In practice this means matching the crystal length, L, to
the confocal focus (Rayleigh length) of the beam 2z0 = 2(πω2

0n/λ), i.e. to the distance over which the
beam waist increases by a factor of

√
2. However, too tight a focus may lead to losses due to angular

2 Sellmeier’s equation models the tail of the real part of the refractive index dispersion curve and is of the form: n2 = A+
B

λ2
−C
−Dλ2 where A,B, C & D are constantsfor the material and are different for ordinary and extraordinary indices.
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Figure 5:

phase-mismatching. The 450, z−cut arrangement for the crystal gives the greatest angular tolerance
for a given material, but of course this will only be useful if phase-matching can be achieved for the
wavelength of interest by temperature tuning. Also for crystal cuts other than this, the issue of walk
off has to be considered; the vectors S and k will no longer be collinear and the second harmonic
beam will walk away from the fundamental beam producing it.

Depleted Input Beam

Once again the foregoing analysis has made one important assumption,
namely that the fundamental beam is not significantly depleted in the doubling process. Thus, for
high peak powers where high conversion efficiency can be achieved reduction in the fundamental
intensity with distance through the crystal may become significant. In this case it may be shown for
the perfectly phase-matched case (∆k = 0) that

I2ω

Iω
= tanh2[

κL

2
] (15)

where κ is the single coupling parameter in the problem which is given by

κ2 = 8d2
(

µ0

ε0

)3/2 ω2Iω(0)

n2ω(nω)2
(16)

[To do this you will need to solve the two coupled Helmholtz equations - see Lecture 2 and Saleh

& Teich]

Note that when κL
2 << 1 so that tanhx ∼ x we obtain

I2ω

Iω
= 2d2

(

µ0

ε0

)3/2 ω2Iω(0)L2

n2ω(nω)2
(17)

This is to be compared with equation (1) remembering d ≡ 1
2ε0χ

SHG and ∆k = 0.

Parametric processes

Let the time-varying optical field be described by,

E(t) = Re{E(ω1) exp(−iω1t) +E(ω2) exp(−iω2t)} (18)

The non-linear polarisation PNL = 2dE(t)2 now contains components at five frequencies: 0, 2ω1,
2ω2, ω+ = ω1 + ω2, ω− = ω1 − ω2 with amplitudes
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Figure 6: Examples of parametric processes

PNL(0) = d [|E(ω1)|2 + |E(ω2)|2] (19)

PNL(2ω1) = d E(ω1)E(ω1) (20)

PNL(2ω2) = d E(ω2)E(ω2) (21)

PNL(ω+) = 2d E(ω1)E(ω2) (22)

PNL(ω−) = 2d E(ω1)E
∗(ω2) (23)

Thus if waves 1 and 2 are plane waves then E(ω1) = A1 exp(ik1.r) and E(ω2) = A2 exp(ik2.r) and
equation 22 gives PNL(ω+) = 2d A1A2 exp(ik3.r) where ω1 + ω2 = ω3

and k1 + k2 = k3

Equivalently we may say energy conservation requires ω1 + ω2 = ω3 (in the cases of SHG and up-
conversion); ω1 = ω3 − ω2 (in the case of down-conversion), while momentum conservation requires
the vector equation k1 + k2 = k3 to be satisfied.

Worked Example
The two-photon transition (1s-2s) in atomic hydrogen requires radia-

tion at 243nm. We consider here the possibility of generating this radiation by frequency summing in
a crystal of KDP using 351nm radiation from an argon ion laser and tunable radiation at 789nm from
an oxazine dye laser. First the crystal. KDP is somewhat harder than ADP and good quality crystals
can easily be grown and the faces polished to a very high optical quality. Both ADP and KDP are
negative uniaxial crystals of the tetragonal 4̄2m class. The piezoelectric tensor is thus of the form




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Pz


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
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(24)
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Figure 7: Direction of fundamental beam with polarisation projected in xy-plane

For type I phase-matching the fundamental beam propagates as the ordinary wave. The generated
UV is therefore produced by (see figure 5),

P
′

z = Pz sin θ = 2ε0d36E
2
0 sin θ(cosφ× sinφ) (25)

= ε0d36E
2
0 sin θ sin 2φ (26)

This clearly maximizes at φ = 450 At θ = 900 and φ = 450 the effective non-linear coefficient is
deff = d36 (= 0.47×10−12mV−1). For this arrangement there is no walk off and the angular tolerance
is highest.

0.1 Phase-matching.

Conservation of energy requires.

1

243
− 1

351
=

1

λ2
(27)

hence λ2 = 789nm. The refractive indices must now satisfy the equation,

n0

351
+

n′

0

789
=

ne

243
(28)

Refractive index data for both KDP and ADP are given by Zernike in J.Opt.Soc.Am. 54, 1215,
1964. For room temperature, we find n0(351) = 1.53236; n′

0(790) = 1.50226; ne(243) = 1.522638.
Phase-matching at room temperature, therefore, gives

n0

351
+

n′

0

789
=

1

159.558

(

cf.
1.522638

243
=

1

159.5914

)

(29)

i.e. very close ! Exact phase-matching at room temperature can be obtained by angle-tuning to bring
the extraordinary refractive index necessary to produce the exact k3 wave vector. Thus,

θ = sin−1

{

ne(λ3)

nθ
e(λ3)

√

n2
0(λ3)− nθ

e(λ3)2

n2
0(λ3)− n2

e(λ3)

}

(30)
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Figure 8: A Brewster-cut crystal minimises reflection for the input laser beams.

since,
1

n2
e(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
e

(31)

This gives θ = 85.50, i.e. very close to 900. Alternatively phase-matching at θ = 900 can be
achieved by temperature tuning. Data for the refractive index variation with temperature are given
by Vishnevskii & Stefanski (Opt. & Spec. 20, 195, 1966). and by Phillips (Opt. Soc. Am. 56, 629,
1966).

For temperature phase-matching

(

n0

351
+

n′

0

789
− ne

243
= ∆T ×

{(

dn0/dT

351

)

351

+

(

dn0/dT

790

)

790

−
(

dne/dT

243

)

243

})

(32)

Hence ∆T. For intra-cavity mixing or in general for low loss the crystals can be cut so as to have
near Brewster faces for the fundamental beams. For KDP we find Brewter’s angle (tan−1 n) for 789nm
to be 56.350; for 351nm 58.120.The UV radiation at 243nm will emerge at 57.540 but in this case
the polarisation is orthogonal (it propagates as the extraordinary beam) so there will be a single-pass
Fresnel loss.
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