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Electro-optic modulation of light

An electro-optic crystal is essentially a variable phase plate and as such can be used either as an
amplitude (intensity) modulator or as a phase modulator. One arrangement for this was shown in the
last lecture. Of course the field may be applied in various directions and some examples are shown
below.

We shall consider in a little detail here the longitudinal case.

The input beam is specified by

Ex′ = Ey′ = A; Ey = 0 (1)

i.e. linearly polarised along x. The output is thus affected by the phase difference between the x′

and y′ directions which is induced by the electric field along z. The output field is thus,

Ex′(ℓ) = A; Ey′(ℓ) = A exp(−iφ) (2)

The resultant complex field along y is then,

Ey(ℓ) =
A√
2
(exp(−iφ)− 1) (3)

Figure 1: (a) a longitundial field, (b) a transverse field, and (c) a travelling-wave field.
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Figure 2: Longitundal modulator. The λ/4 plate provides a “bias” to 50% transmission

and the transmission ration is

Iout = Iin sin
2(φ/2) (4)

where

φ =
πV

Vλ/2
(5)

The quarter-wave plate allows modulation about the linear part of the transmission curve for fields
close to zero.

A similar intensity modulator can be constructed using a Mach-Zehnder arrangement with the
crystal in one of the two paths. Electro-optic modulation effectively scans the path difference of the
two beam interferometer and therefore scans from say an intensity maximum to a minimum. Biasing
can also be achieved using an additional λ/4 plate as above.

Principle of the Mach-Zehnder Interferometer Optical fibre version of a Mach-Zehnder

Phase modulators.
Using now only the input polariser along say x′, a varying voltage to the

crystal can lead to phase and frequency modulation as follows. Let the light field be specified by

Ein = A cosωt (6)

Eout = A cos(ωt− kx+∆φ) = A cos(ωt− ω

c
(n0 −

n3
0

2
r63Em sinΩt)ℓ) (7)

and the applied voltage by

Vm = V0 sinΩt (8)
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Figure 3: Electro-optic deflection of light.

Then, the phase of the light is modulated like ∆φ = δ sinΩt where the modulation index is given
by

δ =
1

2

2π

λ
n3
0r63V0 = ω0n

3
0r63V0/(2c) (9)

Omitting the constant phase factor ωℓn0/c,the output light field is therefore described by,

Eout = A cos(ω0t+ δ sinΩt) (10)

which can be written as a series of Bessel functions,

Eout = A[J0(δ) cosω0t+ J1(δ) {cos(ω0 +Ω)t− cos(ω0 −Ω)t}
+J2(δ) {cos(ω0 + 2Ω)t+ cos(ω0 − 2Ω)t} ..]

where the Jn(δ) represents a Bessel function of the n th order. The result is that the spectrum of
the output light now contains sidebands shifted by harmonics of the modulator frequency either side
of the central carrier (laser) frequency, i.e. ω ± nΩ.

Electro-optic deflection of light

An optical beam can be dynamically deflected by electri-
cal control of the refractive index of a prism. The angle of deflection produced by a prism with small
apex angle α and refractive index n is θ ∼ (n − 1)α. A change in refractive index ∆n caused by an
electric field E corresponds to a change in the deflection angle of

∆θ = α∆n = −1

2
αrn3E = −1

2
αrn3V

d
(11)

Note here the factor of 1/2 because of the way the crystal is cut: voltage applied along the
z−direction; light polarised along x′−direction (direction of dimension D) and y′-direction coincident
with dimension L.

The resolution of the scanner is of course determined by the angular diffraction δθ ∼ λ0/D where
D is the diameter of the incident laser beam. To minimise this the beam should be as large as
possible and fill the aperture of the prism. Unfortunately as d is increased so to must V to maintain
the same electric field strength E on the crystal.
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Figure 4: Bragg condition for diffraction from a sound wave.

Acousto-optic deflection of light
We also mention here as an aside that modulation

of light beams by sound waves is possible and that acousto-optic devices are commonly used to scan
the frequency of a laser beam or to modulate its intensity. Acousto-optic effects come under the
headings of: Bragg scattering, Raman-Nath or Debeye-Sear scattering and Brillouin scattering. As
an illustration we show below the situation for an acousto-optic device operating in the Bragg regime
i.e.,where the incident light interacts with broad sound wave, phase-fronts. The relevant Bragg
condition is then,

sin θ =
mλ

2λs
(12)

where λs refers to the sound wave and m = 1 for a sinusoidal sound wave disturbance. The sound
wave moving in the upward direction with velocity v+s Doppler shifts the light wave to frequency
υ + fs; similarly the downward propagating sound wave down-shifts the light to frequency υ − fs.
Equivalently we may say that an incident photon with wave-vector k1 collides with a quantised particle
of acoustic energy (a phonon) with wave-vector ks to create a photon of wave-vector k2 which satisfies
momentum conservation through the relationship

k2 = k1 ± ks (13)

Harmonic Generation

In lecture 1 (equation 4) we saw that for a certain class of crystals it was possible to have a χ(2) effect
and thus to induce a polarisation oscillating at the second harmonic frequency using two identical
laser fields. In the equation below we take account there being two equivalent terms (E(ω1)E(ω2) =
E(ω2)E(ω1)) by inserting the factor of 1/2, thus,

P 2ω = ε0
χSHG

2
EωEω (14)

The equation for the second harmonic wave is then
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d2E2ω

dz2
+

(

2ω n2ω

c

)2

E2ω = −µ0(2ω)
2P 2ω (15)

while that for the fundamental wave is

d2Eω

dz2
+

(

ω nω

c

)2

Eω = −µ0(ω)
2Pω (16)

Solutions are of the form

Eω = Aω exp[ikωz]; E2ω = A2ω exp[ik2ωz] (17)

where Aω = A0(z) exp(−iωt)

Substituting solutions of this form into 15, and replacing P 2ω using 14 we find the second harmonic
amplitude is given by,

dA2ω

dz
=

(

i(2ω 1
2χ

SHG)(Aω)2

2n2ωc

)

exp(i∆kz) (18)

where the wave vector mismatch is

∆k = 2kω − k2ω (19)

The intensity (Poynting’s vector1) is thus

I2ω =
1

2
n2ω

√

ε0
µ0

∣

∣A2ω
∣

∣

2
(20)

so that integrating 18 we have finally,

I2ω =
(2ω)2(12χ

SHG)2

2n2ω(nω)2c3ε0
(Iω)2

{

sin(∆kz/2)

∆kz/2

}2

z2 (21)

This is a maximum when z = 2π/∆k = ℓc which introduces the coherence length ℓc

1 Maxwell’s equations lead to the following continuity equation in the absence of any Joule heating term.

∇.S+
∂ρ

∂t
= 0

Or using the divergence theorem,

∫

S.dA = −
∂

∂t

∫

ρdV

where the energy density ρ is given by 1
2
{E.D+H.B} and Poynting’s vector S is equal to 1

2
Re{E×H

∗).Thus the in or
outward flow of energy over a surface is equal to the change in the energy density bounded by the surface. For a plane wave

in vacuo E and H are related by the intrinsic impedance Z0 =
√

µ
0
/ε0. Note that the optical intensity is equal

to the magnitude of the time-averaged Poynting vector, i.e.,I = 〈S〉
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Figure 5: Effect of phase-matching in KDP. The graph shows the variation in SHG ouptut as a
function of the phase-match angle.

Appendix A: The missing steps

Start by taking the curl of the curl E equation and include the polarisation in two parts: linear
and non-linear

∇× (∇×E) = ∇(∇.E)−∇2E = ∇×
(

−∂B

∂t

)

(22)

∇2E =
∂

∂t
(∇× µ0H) =

∂

∂t

(

µ0J+ µ0
∂D

∂t

)

(23)

= µ0
∂2

∂t2
(ε0E+ PL + PNL) = µ0ε0εr

∂2E

∂t2
+ µ0

∂2PNL

∂t2
(24)

∇2E− µ0ε0εr
∂2E

∂t2
= µ0

∂2PNL

∂t2
(25)

Now make the following substitutions:

PNL = ε0
χ

2
EωEω; Eω = Aωe

ikωz (26)

Take the case of plane waves (1D - case) propagating along z, then the 2ω equation (see equation
15) becomes:

d2E2ω

dz2
+

(2ω)2 n2

c2
E2ω = −µ0 (2ω)

2 P2ω (27)

−k22ωA2ω + 2ik2ω
dA2ω

dz
+

(

n2ω2ω

c2

)2

A2ω = −µ0 (2ω)
2 ε0

χ

2
A2

ω (28)
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The first and third terms on the LHS of the equation are equal and opposite so that we get:

i (2ω)2A2
ωχ exp (i∆kz)

2c22k2ω
=

i
(

2ω 1
2χ

SHG
)

A2
ω

2n2ωc
exp (i∆kz) =

dA2ω

dz
(29)

where we have assumed a small variation of A with z and ∆k = 2kω − k2ω. Thus, the equation
reduces as follows:

=⇒
z

∫

0

exp (i∆kz)dz =⇒ sinc {} (30)

Finally, noting I2ω ∝ A2
2ω this leads directly to equations 21.
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