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Domain of Linear Optics

From electromagnetism courses we recall

D = ε0εrE = ε0E+P = ε0E(1 + χ) (1)

Also at optical frequencies,

n =
√
εr = (1 + χ)1/2 ∼ 1 +

1

2
χ.... (2)

Pi = ε0
∑

χijEj (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be
collinear with E, and the susceptibility χ(n) and the permittivity ε are tensors (in this case of rank
2)

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics

P (ω) = ε0
∑

[χ
(1)
ij Ej(ω1) + χ

(2)
ijkEj(ω1)Ek(ω2) + χ

(3)
ijkℓEj(ω1)Ek(ω2)Eℓ(ω3)......] (4)

Typical values for the second order coefficient d = χ(2)/2ε0 = 10−24 to 10−21 AsV−2. Typical values
for the third order non-linear susceptibility χ(3) is 10−29 to 10−34 (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry1 have
a finite second order susceptibility; for other materials the first non-linear coefficient is χ(3)

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change

∆n = sE in the index. If the direction of the field is reversed the change becomes ∆n = s[−E], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = −s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystal are piezo-electric.
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Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System
The optical properties of an anisotropic medium can

be characterised by a geometric construction called the index ellipsoid where η is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: n1, n2, n3. (Note also that the phase velocity of the wave is proportional to 1/n). Uniaxial

means nx = ny �= nz (the optical axis). See appendix.

x2 + y2

n2
0

+
z2

n2
e

= 1 (5)

Thus for an arbitrary angle θ to the z−axis as shown,

n(θ) =

{

cos2 θ

n2
0

+
sin2 θ

n2
e

}−1/2

(6)

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E1, E2, E3) is applied to the crystal the elements
of the tensor η are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ek(ω2) = E0 - a d.c. electric field so that,

P (ω) = ε0[χ
(1)
ij + χ

(2)
ijkE

0]E(ω) (7)

Since χ is related to ǫ, the equation can be re-written in terms of the refractive index where each
of the elements ηij(E), is a function of the appropriate field components, i.e.

ηij(E) = ε0/ε = 1/n2 = ηij +
∑

k rijkEk +
∑

k,l sijklEkEl........
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Figure 3: Index ellipsoid for a 4̄2m crystal

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,2 the refractive index in the presence
of an electric field as follows,

n(E) = n0 + a1E + 1
2a2E

2......

This introduces the connection between the linear electro-optic coefficients and the polarisation of
the medium, see equation (9).

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

x2

n2
1

+
y2

n2
2

+
z2

n2
3

+
2yz

n2
4

+
2xz

n2
5

+
2xy

n2
6

= 1 (8)

Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation
8 must reduce to equation 5 in the absence of the electric field, i.e. that 1/n4,5,6 = 0

This introduces the linear electro-optic tensor rLEO

∆

(

1

n2

)

=
∑

rijkE
0
k (9)

This is a 3×3 ×3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3×6matrix. [rijk = ∂ηij/∂Ek where η = ε0ε

−1 and the index
ellipsoid is given by

∑

ηijxixj = 1 where i, j = 1, 2, 3 with principal indices of refraction n1, n2, n3

(see footnote 2) and η is symmetric with respect to interchange of indices i, j. Thus, it follows r (and
d) are also invariant under i, j interchange. It is therefore conventional to reduce the i, j index to one
symbol I with the correspondence as given in the “look up” table 1]

2 By Taylor expanding the refractive index about E = 0 we can write
n(E) = n0 + a1E + 1

2a2E
2...

where the coefficients are derivatives of the refractive index with E in the normal way. Defining r = −2a1/n
3 and

s = −a2/n
3 we have for η = ε0/ε = 1/n2 the following field dependent change ∆η = (dη/dn)∆n = (−2/n3)(− 1

2
rn3E −

1
2sn

3E2..).
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Figure 4: Rotation of axes by 450 about the optical axis.

j ↓ i−→ 1 2 3
1 1 6 5
2 6 2 4
3 5 4 3

Table 1 Look up table for i, j −→ I

Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (4̄2m) symmetry. The index ellipsoid (see figure 3) is represented by
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∆
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∆
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The crystal is now biaxial .

Or in terms of the polarisation of the medium3, which we shall use for optical fields in harmonic
generation,





Px

Py

Pz



 = ε0





0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36
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










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




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(11)

If we take as the direction of the applied d.c. field E0 = E0
z = E0

3 then the new index ellipsoid will
given by

x2

n2
0

+
y2

n2
0

+
z2

n2
e

+ 2r63xyE
0
z = 1 (12)

3 The coefficients d and r are related as follows: d =
ε0χ

(2)

2
and r ∼ −

4d

ε0n4
Be careful about factors of 2 arising

from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as E(t) = E0 +
Re{E(ω) exp(−iωt)}.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(ω1) exp(−iω1t)+
E(ω2) exp(−iω2t)}.

For S.H.G. in particular let ω1 = ω2
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Figure 5: Electro-optic modulator used as an intensity modulator.

A rotation of the axes by +450 to (x′, y′, z′) then transforms the ellipsoid equation as follows

(

1

n2
0

+ r63E
0
z

)

x′2 +

(

1

n2
0

− r63E
0
z

)

y′2 +
z′2

n2
e

= 1 (13)

Thus, given that r63E
0
z << n−2

o and that n−2
x′ = n−2

o +r63E
0
z which gives nx′ = n0(1+n2

0r63E
0
z )

−1/2

and similarly for ny′ we have finally

∆n = |nx′ − ny′ | = n3
0r63E

0
z (14)

To act as a half-wave plate the phase induced by the field must be π radians, so

φ =
2π

λ
∆nd = π (15)

and the half-wave voltage is

Vπ =
λ

2n3
0r63

(16)
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Appendix
Wave-vector surface

Linear but tensorial χ





Px

Py

Pz



 = ε0





χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33









Ex

Ey

Ez



 (17)

The wave equation including polarisation but not conduction currents J is of the form

∇×(∇×E) +
1

c2
∂2

E

∂t2
= − 1

c2
χ
∂2E

∂t2
(18)

The transparent, insulating crystal can thus sustain a plane monochromatic wave (E0 exp i{k.r−
ωt}) provided the propagation vector satisfies the equation

k×(k×E) +
ω2

c2
E = −ω2

c2
χE (19)

The cartesian components of this equation are thus

(

−k2y − k2z +
ω2

c2

)

Ex + kxkyEy + kxkzEz = −ω2

c2
χ11Ex (20)

and similarly for y− and z− components.

To interpret this result let the wave propagate along one of the principal axes of the crystal, say
z. In this case kz = k and kx = ky = 0 and the components become

(

−k2 + ω2

c2

)

Ex = −ω2

c2
χ11Ex (21)

(

−k2 + ω2

c2

)

Ey = −ω2

c2
χ22Ey (22)

ω2

c2
Ez = −ω2

c2
χ33Ez (23)

The last equation suggests Ez = 0 because neither χ or ω is zero. The wave is transverse. On the
other hand, the first two equations show

k =
ω

c

√

1 + χ11 =
ω

c

√

K11 =
ω

c
n1 (24)

k =
ω

c

√

1 + χ22 =
ω

c

√

K22 =
ω

c
n2 (25)

where n1 , n2 and n3 are the principal indices of refraction.

Now the equations for the components [20] lead to the following condition for non-trivial solution
for the field components not to vanish, i.e.

∣

∣

∣

∣

∣

∣

(n1ω
c )2 − k2y − k2z kxky kxkz

kykx (n2ω
c )2 − k2x − k2z kykz

kzkx kzky (n3ω
c )2 − k2x − k2y

∣

∣

∣

∣

∣

∣

= 0 (26)

This equation gives the wave-vector surface for propagation in the crystal. Thus, for example in
the kz = 0 plane the determinant gives a product of two factors either or both of which must reduce
to zero. This condition gives
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Figure 6: Wave-vector surface for an anisotropic crystal
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Figure 7: Walk off. Poynting’s vector and k are no longer collinear

k2x + k2y =
(n3ω

c

)2
(27)

k2x
(n2ω/c)2

+
k2y

(n1ω/c)2
= 1 (28)

which can be seen as the equation of a circle and an ellipse respectively. For a uniaxial crystal
n1 = n2 �= n3 while for biaxial crystal all principal indices are different.

Recognising that k = v(ω/v2) we can derive the corresponding determinant equation and con-
struct the phase-velocity surface. Finally we can consider the ray-velocity defined by considering the
propagation of a narrow beam of light in the crystal. The surfaces of constant phase with velocity u
given by

u =
v

cos θ
(29)

where θ represents the angle between Poynting vector S (which gives energy flow) and the k−vector.
When we come to discussing harmonic frequency generation in crystals this effect will be referred to
as walk off.
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