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Domain of Linear Optics

From electromagnetism courses we recall

D =¢pe,E =coE+P =¢E(1 + x) (1)
Also at optical frequencies,
1
nz\/57=(1+x)1/2~1+§x---- (2)
P =eo ZXijEj (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be

collinear with E, and the susceptibility (™) and the permittivity Z are tensors (in this case of rank
2)
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Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics
P(w) =e0 Y [ Ej(w1) + X0 By (w1) Ei(w2) + X\ Bj (@1) By(w2) Be(ws)..... (4)

Typical values for the second order coefficient d = x(?) /2eg = 10724 to 10~2! AsV—2. Typical values
for the third order non-linear susceptibility x®) is 1072% to 1034 (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry! have
a finite second order susceptibility; for other materials the first non-linear coefficient is )

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change

An = sE in the index. If the direction of the field is reversed the change becomes An = s[—F], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = —s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystal are piezo-electric.



Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System

The optical properties of an anisotropic medium can
be characterised by a geometric construction called the index ellipsoid where 7 is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: mi, n2, ng. (Note also that the phase velocity of the wave is proportional to 1/n). Uniazial
means n, = ny # n. (the optical axis). See appendix.
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Thus for an arbitrary angle 8 to the z—axis as shown,

cos20  sin%6 —1/2
n@z{ 2+——} ©)

ng n2
Linear Electro-optic Effect (Pockels).

When a steady electric field F with components (E7, Fs, F3) is applied to the crystal the elements
of the tensor 7] are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ej(wz) = E° - a d.c. electric field so that,

P(w) = eolx}) + XA B E(w) (7)

Since y is related to €, the equation can be re-written in terms of the refractive index where each
of the elements 7,;(E), is a function of the appropriate field components, i.e.

0;;(E) = co/e = 1/n* =0y + >, Tiji Bk + Y op Sijt Bk Eieeo....
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Figure 3: Index ellipsoid for a 42m crystal

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,? the refractive index in the presence
of an electric field as follows,

n(E)=nog+ a1 E + %agEQ ......

This introduces the connection between the linear electro-optic coefficients and the polarisation of
the medium, see equation (9).

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

2 2 2

T z 2z  2xz 2

S+ LS T = (8)
ny ny; nj ny n; LT

Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation

8 must reduce to equation 5 in the absence of the electric field, i.e. that 1/ny56 =0

This introduces the linear electro-optic tensor r-#©

A (%) = Y (9)

This is a 3 x 3 x3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3x 6 matrix. [r;, = 8772-]- /OE) where n = gge~! and the index
ellipsoid is given by ) m;;ziz; = 1 where i,j = 1,2,3 with principal indices of refraction ny,na,n3
(see footnote 2) and 7 is symmetric with respect to interchange of indices ¢, j. Thus, it follows r (and
d) are also invariant under 4, j interchange. It is therefore conventional to reduce the i, j index to one
symbol I with the correspondence as given in the “look up” table 1]

By Taylor expanding the refractive index about F¥ = 0 we can write

n(E) =no+ a1 E+ %agEQ...

where the coefficients are derivatives of the refractive index with E in the normal way. Defining r = —2a1/n® and
s = —ay/n® we have for ) = g9/ = 1/n® the following field dependent change An = (dn/dn)An = (—2/n®)(—3rn*E —
1sn®E?.).
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Figure 4: Rotation of axes by 45° about the optical axis.

Jli—=1]2[3
1 1]6]5
2 6124
3 5143

Table 1 Look up table for i,j — I
Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (42m) symmetry. The index ellipsoid (see figure 3) is represented by

(AGE), ] [0 0 0

A(%)g 0 0 0 0

A(F)s _ 0 0 0 (1)

AL T 00 | v
A(n_%)5 8 T(5)2 0

| AGe)g 1 L 63 |

The crystal is now biazial.
Or in terms of the polarisation of the medium?, which we shall use for optical fields in harmonic
generation,

dy 0 0
0 dys O z (11)
0

000
Py | =c|0 00
000 0 dsg

2E.E,
If we take as the direction of the applied d.c. field EY = E? = EY then the new index ellipsoid will
given by

22 2 22 .
— + n_% + o + 2reszyE; =1 (12)

2
no e

(2

3 oX

and r ~ —

The coefficients d and r are related as follows: d = Be careful about factors of 2 arising

€0n4
from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as FE(t) = E° 4
Re{E(w) exp(—iwt)}.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(w1) exp(—iw1it) +
E(w2) exp(—iwat)}.
For S.H.G. in particular let w; = wo
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Figure 5: Electro-optic modulator used as an intensity modulator.

A rotation of the axes by +45° to (z',1/, 2’) then transforms the ellipsoid equation as follows
1 1 2"
_ EO 12 _ EO 12 Z_ -1 13
<n%+7'63 Z>CL’ + o2 resky |y -l—ng (13)
Thus, given that r63ES << no_2 and that n;/Q = no_2 —|—r63E2 which gives n, = np(1 —I—n%rGg,ES)_l/Q
and similarly for n,, we have finally

An = |ng —ny | = ndres E° (14)

To act as a half-wave plate the phase induced by the field must be 7 radians, so

o= 2TWAnd =7 (15)
and the half-wave voltage is
A
Vi = 16
271%7’63 ( )



Appendix

Wave-vector surface

Linear but tensorial x

P, X111 X12 Xi13 E;
Py | =co| Xo1 Xo2 Xos E, (17)
P, X31 X32 X33 E,

The wave equation including polarisation but not conduction currents J is of the form

10°E 1 _O°E

VAVXE Y aom = maxam

(18)

The transparent, insulating crystal can thus sustain a plane monochromatic wave (Egexpi{k.r —
wt}) provided the propagation vector satisfies the equation

2 2
kx(k x E) + ‘;’—2E = —‘;’—2XE (19)
The cartesian components of this equation are thus
) , WP w2

and similarly for y— and z— components.

To interpret this result let the wave propagate along one of the principal axes of the crystal, say
z. In this case k, = k and k; = ky = 0 and the components become

2 2
w w
<—]{32 + _2> Em = __2X11E:1: (21)
C C
(A)Q CLJ2
(-#+%) 5 = ~Swh (22)
2 2
w w
=B = —gXasb: (23)

The last equation suggests E, = 0 because neither y or w is zero. The wave is transverse. On the
other hand, the first two equations show

k =

w w
\/1—|—X11=z\/K11=zn1 (24)
w w
ko= —Vltxm=_VEKn=_n (25)

C
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where nq ,n9 and ng are the principal indices of refraction.

Now the equations for the components [20] lead to the following condition for non-trivial solution
for the field components not to vanish, i.e.

(me)2 _ g2 g2 knky kiok,
kyke (222)? — k2 — k2 Jwks =0 (26)
oky ok, (ma)2 _ g2 p2

This equation gives the wave-vector surface for propagation in the crystal. Thus, for example in
the k, = 0 plane the determinant gives a product of two factors either or both of which must reduce
to zero. This condition gives
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Figure 6: Wave-vector surface for an anisotropic crystal
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Figure 7: Walk off. Poynting’s vector and k are no longer collinear

Naw\ 2
K24k = (i) (27)
k2 ky
(naw/02  (naw/o)?

which can be seen as the equation of a circle and an ellipse respectively. For a uniaxial crystal
n1 = ng # ng while for biazial crystal all principal indices are different.

~ 1 (28)

Recognising that k = v(w/v?) we can derive the corresponding determinant equation and con-
struct the phase-velocity surface. Finally we can consider the ray-velocity defined by considering the
propagation of a narrow beam of light in the crystal. The surfaces of constant phase with velocity u
given by y

“= cos 6 (29)

where 6 represents the angle between Poynting vector S (which gives energy flow) and the k—vector.

When we come to discussing harmonic frequency generation in crystals this effect will be referred to
as walk off.
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