

Outline

- A few basics
- Methodological issues
- Forthcoming surveys

Weighing the universe with horizons (1) Matter-radiation horizon: 123 $(\Omega_m h^2 / 0.13)^{-1}$ Mpc (2) Acoustic horizon at last scattering : 147 $(\Omega_m h^2 / 0.13)^{-0.25} (\Omega_h h^2 / 0.024)^{-0.08}$ Mpc

Acoustic horizon can be seen in CMB and baryon wiggles: Use to probe distance-z relation

$$D(z) = rac{c}{H_0} \int_0^z rac{dz}{[(1-\Omega_m)(1+z)^{3+3w} + \Omega_m(1+z)^3]^{1/2}}$$

can measure w for vacuum (P/ ρ c²)

BAO: state of the art

Percival et al. 2007 arXiv: SDSS + 2dFGRS 590,000 G's at <z> = 0.2 78,000 LRG's at <z> = 0.35

Measuring acoustic scale to 2%

Additional questions

- What is the DM?
- If a relic particle, what is the mass?
- What can we say about neutrino mass?
- Is the vacuum energy a cosmological constant?

Effect of massive neutrinos

Free-stream length: 80 (M/eV)⁻¹ Mpc ($\Omega_m h^2 = M / 93.5 eV$)

M ~ 1 eV causes lower power at almost all scales, or a bump at the largest scales

Discriminating neutrino hierarchies

Limit total neutrino density from (a) Shape change in P(k) (b) reduction in small-scale growth $\Sigma m_v < 0.6 \text{ eV}$ (WMAP++) Should reduce to < 0.2 for ~ 10⁷ redshift surveys: chance of detecting background

Sensitivity to the vacuum

Vacuum affects H(z):

 $H^{2}(z) = H^{2}_{0} [\Omega_{M} (1+z)^{3} + \Omega_{R} (1+z)^{4} + \Omega_{V} (1+z)^{3} (1+w)]$

matter radiation vacuum

Alters D(z) via r = $\int c dz / H(z)$

And growth via 2H dδ/dt term in growth equation

Effects of w are:

(1) Small (need D to 1% for w to 5%)

Rule of 5

(2) Degenerate with changes in Ω_m

To measure w to a few %, we need to have independent data on Ω_m and to be able to control systematics to ~ parts in 1000

The vacuum: current knowledge

Fractional error on BAO scale

% error = (V / 5 h⁻³ Gpc³)^{-1/2} x (k_{max} / 0.2 h Mpc⁻¹)^{-1/2} x (1+1/nP)/2

- Error from balancing cosmic variance & shot noise
- Assumes typical P=2500 (h⁻¹Mpc)³ ⇒ n_{optimal} = 4 x10⁻⁴ (h⁻¹Mpc)⁻³. Similar clustering for many high-z tracers
- Uses only wiggle signature not full P(k). Can do factor ~ 3 better but requires optimism about modelling bias

Density growth and modified gravity

- Peculiar velocities come from f(a)=d ln δ / d ln a
- Peebles approximation: f(a)=d ln δ / d ln a $\simeq \Omega_{m}^{0.6}$
- Roughly independent of Λ (and, indeed, w)
- But DE could be an illusion, indicating failure of Einstein gravity. Density fluctuations perform differently to global a(t) as probe
- Linder parameterization: f(a)=d ln δ / d ln a $\simeq \Omega_m{}^\gamma$
- Interesting values 0.5 0.8

Redshift-Space Distortions

- RSD due to peculiar velocities are quantified by correlation fn ξ(σ,π).
- Two effects visible:
 - Small separations on sky: 'Finger-of-God';
 - Large separations on sky: flattening along line of sight.
- Measure $\beta = f(a) / b$

VVDS redshift-space distortions

10k z's: Guzzo et al. Nature 2008

VImos Public Extragalactic Redshift Survey

- New ESO VLT programme
- P.I. Guzzo (Milan)
- 24 deg² to I_{AB} < 22.5 in CFHTLS fields
- 100k targets at z > 0.5, >50% sampling
- 440 VLT hours
- Main aim is to probe modified gravity via RSD

RSD Precision

% error in β = (V / 20 h⁻³ Gpc³)^{-1/2} x (n / 4x10⁻⁴ h³ Mpc⁻³)^{-0.44}

Guzzo et al. 2007; see White & Percival for more accurate Fisher-matrix estimates

Would probably expect a function of V_{eff} :

$$V_{\text{eff}} = V \left(\frac{1+nP}{nP}\right)^2$$

RSD predictions for VIPERS

Approved 400h VLT programme: 100k z's over 3 years: predict $\Delta f_g = 0.1$ in 2 bins

Combining BAO and RSD

SDSS LRG Redshift-space 2D $\xi(\sigma,\pi)$ Gaztanaga et al. 0807.3551

Note Kaiser flattening has little affect on BAO ring

DETF figure of merit

 $w(a) = w_0 + w_a(1 - a)$: $w = w_0$ today & $w = w_0 + w_a$ in the far past Marginalize over all other parameters and find uncertainties in w_0 and w_a

Pivot redshifts

Assume $w = w_0 + w_a(1-a)$ If observe degeneracy $w_0 = A + Bw_a$, $\Rightarrow w = A + (B+1-a)w_a = w_p + (a_p-a)w_a$ $\Rightarrow z_{pivot} = 1/(1+B) - 1 \Rightarrow FoM = [\sigma(w_p)\sigma(w_a)]^{-1}$

Method	Z pivot
CMB	0.43
BAO z=1	0.54
BAO z=1+z=3	0.85

Difficult to get much baseline

Figures of merit

- DE is just a term in Friedmann: probing non-GR is at least as important as measuring w
- But most people are happy not to consider $\gamma(a)$; thus should avoid too much emphasis on variation in w
- $w = w_0 + w_a (1-a)$ is better regarded as measuring w_p . Rejection of w = -1 less likely from poorly measured w_a
- PCA of w(a) interesting, but not a strong driver
- Suggests focus on γw_p plane

Combining RSD and BAO

BAO depend on just w if matter content is known (assumed from CMB). RSD depend on both w and γ .

Observing f?

- But what we see directly is $\beta = f / b$
- One route to b is from higher-order correlations (cf. 2dFGRS) but would we trust it?
- Safer to say b = $\sigma_{gal}/\sigma_8(z)$
- $\sigma_8(z=1100)$ is known from CMB
- \Rightarrow observe f F, where F = $\sigma_8(z)/\sigma_8(1100)$

d In F / d w = -0.2 d In F / d γ = -0.1 at redshift z = 1

DE-gravity degeneracy

 $\gamma - 2\mathbf{w} = \mathbf{x}\mathbf{1} \pm \mathbf{y}\mathbf{1}$

 $w = x2 \pm y2$

Good to have both errors comparable.

Good case for FoM based on joint area of confidence ellipsoid in this plane

But remember Alcock-Paczynski

Observe correlations in angular and redshift directions

Conversion to distance involves ratio of D(z) and dD/dz: thus geometrical flattening by F = D / (dD/dz) compared to assumed value

• Alcock & Paczynski (1979): clustering is isotropic, so this gives us Λ etc.

• Suto & Matsubara (1996); Ballinger, JP & Heavens (1996): degeneracy between RSD and geometry

$$\beta_{\text{eff}} = 0.5(F - 1)$$

Allowing for Alcock-Paczynski

Fergus Simpson + JAP:

Overall uncertainty in γ can be 3 x figure for w=-1

Cumulative data expected in near term

Name	Telescope	N(z) / 10 ⁶	Dates	Status
SDSS/2dFGRS	SDSS/AAT	0.8	Now	Done (low z)
WiggleZ	AAT(AAOmega)	0.4	2007-2010	Running
FastSound	Subaru(FMOS)	0.6	2009-2012	Proposal
BOSS	SDSS	1.5	2009-2014	Funded
HETDEX	HET(VIRUS)	1	2010-2013	Part funded
WFMOS	Subaru	4	2014-2017	???
BigBOSS	Kitt Peak 4m	30	2015-2025	Proposal

Most data will come at z ~ 1 (U-band bottleneck for LBGs)

Σ WiggleZ/BOSS = 2-3m by ~2012 (~5% on w)

Photo-z surveys similar but poorer precision on this timescale

Euclid/JDEM Context

Precision in band of width $\Delta z = 0.1$. Triangles show average over all bands

WFMOS proposal: 5,000,000 at z=1, 100,000 at z=3: minimum level to match or exceed VIPERS but at higher z. Also attractive level for FMOS, especially if we can achieve a large redshift baseline wrt BOSS