Photometric Redshift Training Sets

Christian Wolf Quarter of the second second

Use of Photometric Redshifts

Applications

- Extremely large stand-alone photo-z surveys
- Search for interesting spectroscopic targets
- To learn about
 - Cosmology & dark energy via BAO and gravitational lensing
 - Galaxy growth embedded in dark matter haloes
 - Galaxy evolution over time and with environment
 - New phenomena

- Strong drive towards huge / all-sky surveys:
 - Dark Energy Survey, PanStarrs
 - VST, VISTA, LSST, IDEM ...
- Beat Poisson
 noise...
- But: impact of systematics?!

The Two Ways of Photo-"Z"eeing

- Model input:
 - <u>Educated guesses</u>
 - I.e. template SEDs and for priors evolving luminosity functions etc.
- Photo-z output:
 - <u>Educated guesses*</u>
 - "What could be there? What is it probably not?"
- Needed for
 - Pioneering new frontier: depth in magnitude or z beyond spectroscopic reach

- Model input:
 - <u>Statistical Distributions</u>
 - I.e. empirically measured n(z) distributions for all locations in flux space
- Photo-z output:
 - <u>Statistical Distributions</u>
 - "What is there? And in which proportions?"
- Needed for
 - Extrapolating to wide area: known mag/z territory with spectroscopic description

*You will never obtain a reliable estimate of an n(z) distribution from a technique that involves more than zero pieces of information which do not represent a true distribution but a best-guess approximation instead...

The Two Ways of Photo-"Z"eeing

Model input: Model input: • • - Educated guesses Statistical Distributions I.e. template SEDs and for - I.e. empirically measured n(z) distributions for all locations in priors evolving luminosity functions etc. flux space Photo-z output: Photo-z output: • <u>Educated guesses*</u> Statistical Distributions – "What could be there? What is "What is there? And in which Work continues on Work continues on • How to get n(z) correctly in Best templates presence of errors? **Best luminosity functions** Problem solved: Best code debugging - Wolf (2009), MN in press – An <u>engineering problem</u> taken care of by PHAT n(z) with <u>Poisson-only errors</u>

*You will never obtain a reliable estimate of an n(z) distribution from a technique that involves more than zero pieces of information which do not represent a true distribution but a best-guess approximation instead...

Reconstruction of Redshift Distributions from ugriz-Photometry of QSOs

<u>Left panel</u>: The n(z) of a QSO sample is reconstructed with errors of $1.08 \times$ Poisson noise (works with any subsample or individual objects as well) using " χ^2 -testing with noisy models"

State of the Art vs. Opportunity

- Current methods
 - Precision sufficient for pre-2010 science
 - But insufficient and critical for the next decade
- Current surveys
 - VVDS and DEEP-2: 20%..50% incomplete at 22..24 mag
 - SDSS (bright survey) 3...4%?
- Propagates into bias
 - $\eta_{\text{non-recov}}$ =0.2 (20% incomplete)

 $\Rightarrow |\langle \delta z \rangle| = 0.2 ! \text{ and } \delta w \sim 1 !$

$$|\langle \delta z
angle| = |\langle \delta z_{ ext{out}}
angle| imes \left(\eta_{ ext{non-recov}} + rac{1}{N_{ ext{model,local}}}
ight)$$

- Poisson-precision results need
 - + Adoption of W 2009 method to remove methodical limitations
 - + Complete "training set" to remove limitations of data
 - Incompleteness = "systematics"
- Issues & goals
 - Lines in the NIR, weak lines at low metallicity, what else?
 - Goal 1..5% incompleteness
 - Provide sub-samples with <1% incompleteness
 - Fundamental limits? Blending?

Templates again ...?

- Alternative:
 - Use template-based photo-z's for spectroscopically incomplete objects
- Pro:
 - Sounds easy...
- Con:
 - <u>Trends</u>: those difficult for z_{spec} are difficult for z_{phot} as well!
 - <u>Trust</u>: if you can't get a z_{spec}, why do you want to believe a z_{phot}?

Sample	R = [17, 23]			
Configuration	Compl. [%]	$f_{0.15}$ [%]	$f_{3\sigma}$ [%]	$\langle \delta_z \rangle \pm \sigma_z$
CC5 vs. CB5, all	99.4	6.3	9.7	-0.007 ± 0.035
CC5 vs. CB5, spectro	100.0	3.2	9.8	-0.006 ± 0.030
CB5 vs. HB5, all	92.6	9.0	8.7	-0.033 ± 0.053
CB5 vs. HB5, spectro	95.7	2.5	2.8	-0.057 ± 0.047

Recommendations

- 1. Investigate: why spectroscopic incompleteness, compare e.g. VVDS with VVDS-ultra-deep
- 2. Observe (pilot) with FMOS the unknown sources in VVDS / DEEP-2 / zCOSMOS / ...
- 3. Confirm where FMOS makes a difference, also how many sources are still left & why
- 4. Assess merit of larger FMOS photo-z calibration survey
- 5. Also: VIMOS-red-upgrade, improved sky, resolution dependence, future instruments (XMS),...