

HerMES & other Herschel Surveys

University of Sussex

Scientific motivation Unique role for Herschel Survey design Status FMOS synergies

Science Questions

When did most stars form?
SFR density distribution c.f. stellar mass density
What are the typical star-formation rates?
Fractions of LIRGS/ULRGS etc.
What are the feedback processes?
Relation between SFR and M*, star-bursts & AGN?
Relation between star-formation and environment?
Merging and halo occupancy
What are the progenitors of high-z red/dead galaxies?

Cosmic History of Star formation Down-sizing?

University of Sussex

Le Floch et al. 2005

115 **Specific SFRs in FIR** University of Sussex 1.5 $\begin{array}{c} \mbox{Log}_{10}(M_{\bullet}/M_{\odot}) \\ \mbox{$10.00-10.25$} \\ \mbox{$10.25-10.50$} \\ \mbox{$10.50-10.75$} \\ \mbox{$10.75-11.00$} \\ \mbox{$11.00-11.40$} \\ \mbox{$11.40-12.00$} \end{array}$ ${\rm Lo}\,{\rm g}_{10}(\,{\rm L_{FIR}M_*}^{-1}/{\rm L_{\odot}M_{\odot}}^{-1}$ 0.5 1.0 0.00.5 10 M. Moj=10 0.5SSFR 0.0 $t^{-1}_{H}(z)$ LOEIO[M. No]=11 -0.510 .5 00 -1.0Lo All galaxies 2.0 1.5 _ 0.1 1.0 Ζ 0.5 $/L_{\odot}M_{\odot}^{-1})$ $\begin{array}{c} {\rm Log}_{10}({\rm M_{\bullet}}/{\rm M_{\odot}})\\ \bullet 10.00-10.25\\ \bullet 10.25-10.50\\ \bullet 10.50-10.75\\ \bullet 10.75-11.00\\ \bullet 11.00-11.40\\ \bullet 11.40-12.00 \end{array}$ ${\rm Lo}\,{\rm g}_{10}({\rm L_{FIR}M_*}^{-1}/{\rm L_{\odot}M_{\odot}}^{-1})$ 0.5 1.0 0.0 5 $t^{-1}_{H}(z)$ 0.0 $\log_{10}(\mathrm{L_{FIR}M_*}^{-1})$ -0.50.5 Log₁₀(sSFR, -0.5-1.00.0 $t^{-1}H(Z)$ Red galaxies 1.0 .5 Blue galaxies 0.50.1 1.0 0.1 1.0 Ζ Ζ

 $0.5\hat{1}$

Unique role of Herschel

Probes the bolometric power from obscured starformation 70-500 micron

Fast mapping allows large samples over significant volumes

The Cosmic Far-Infrared Background Radiation

University of Sussex

The interpreted output plantic health and light in the few infrared and submilling terms and the another the

Constraining Bolometric Luminosity

University of Sussex

Herschel bands will be crucial in constraining the bolometric luminosity of galaxies. This will help untangle the contribution of AGN and star-formation cool/ warm dust and thus constrain the star-formation history. Various model spectra shown here are at z=1.5 and normalized to their bolometric luminosity

Herschel Key Programmes

University of Sussex

Herschel Multi-tiered Extragalactic Survey (HerMES, 900hrs)

PACS Evolutionary Probe (PEP, 650hrs)

The Herschel Thousand Degree Survey (600hrs)

The Great Observatories Origins Deep Survey: far-infrared imaging with Herschel (363hrs)

The Herschel Lensing Survey (292h)

Herschel Survey Fields

Confusion Limits in mJy										
30 beams/src	2.9	11.9	20.6	23.0	19.5					
+/-	1.0	0.9	2.2	5.3	8.4					
4 sigma P(D)	1.3	8.5	20.6	25.9	24.1					
+/-	0.7	2.5	5.0	5.8	6.1					

				I	Area sq. deg	.]	Nur	nber of §	SCANs ir	ı each r	mode					; (i	5-sigm ignorir	a sens 1g con [mJy]	itivity fusion)
Level	Fields	RA	Dec	Nom.	Donut	Cum.	PACS- MED	PACS- SLOW 25"	PACS- SLOW 50"	PARA LLEL	SPIRE- FAST	SPIRE NOM	· Time/ hr PACS	Time/ hr SPIRE	70	110	160	250 ↓	350	500
PACS ultra deep	GOODS-S GOODS-S GOODS-S	03h32m30.4s 03h32m30.4s 03h32m30.4s	-27d48m17s -27d48m17s -27d48m17s	0.012 0.0175 0.0231	0.0117 0.0058 0.0056	0.012 0.0175 0.0231							206.7 above above			0.6 0.8 1.0	0.9 1.2 1.5			
Clusters Deep Cluster Shallow	Various Various			0.01 0.04	0.01 0.04	0.01 0.05	i I	72 30	1			400 200	75.4 above	55.0 77.2		2.0 3.1	3.0 4.7	3.4 4.8	4.6 6.5	4.0 5.7
Super Deep	GOODS-N	12h36m54.9s	+62d14m19s	0.0417	0.0417	0.0917							124.7	31.1		1.5	2.3	4.2	5.7	4.9
Level-1	GOODS-S	03h32m30.4s	-27d48m17s	0.11	0.0869	0.18	· · · · · ·	112	1	4	20	240	229.2	22.9		1.6	2.4	4.2	5.7	4.9
Clusters Highz	Various			0.03	0.03	0.21		24	1			120	above	14.7		3.5	5.2	6.2	8.4	7.3
Level-2	GOODS-N ECDFS	12h36m54.9s 03h32m25s	+62d14m19s -27d48m50s	0.11 0.25	0.0683 0.14	0.28 0.42	:	30	16	4	20	60 38	30.7 34.7	3.8 8.5		3.1 5.9	4.7 8.3	8.8 8.7	11.9 11.8	10.3 10.2
Level 3	Lockman-ROSAT UDS Groth Lockman-North HDFN	10h52m43s 02h17m48s 14h19m17.4s 10h46m00s 12h36m49.4s	+57d28m48s -05d05m45s +52d49m34s +59d01m00s +62d12m58s	0.25 0.25 0.25 0.25 0.25	0.25 0.25 0.25 0.25 0.14	0.67 0.92 1.17 1.42 1.56) 6		24 21 20 18	4 7 7 4	20 20	14 14 14 14 38	35.1 27.0 34.7 34.6	3.2 3.7 3.2 6.7		4.8 5.1 5.2 5.5	6.8 7.2 7.4 7.8	11.1 11.1 11.1 11.1 11.1 11.0	15.2 15.2 15.2 15.2 15.2	13.0 12.9 12.9 13.0 13.0
Level-4	COSMOS UDS VVDS	10h00m28.6s 02h17m48s 02h26m00s	+02d12m21s -05d05m45s -04d30m00s	2 0.7 0.7	2.0 0.5 0.7	3.6 4.0 4.7	52	1	7 7	7 7	e F	40 14 14	213 35.294 49.988	44.2 8.5 8.5		6.2 8.3 8.3	8.7 11.8 11.8	10.7 11.1 11.1	14.6 15.2 15.2	12.7 12.9 12.9
Level-5	XMM ELAIS-N1-SCUBA2 Bootes-SCUBA2 EGS-SCUBA2 CDFS Lockman	02h21m36s 16h10m00s 14h32m06s 14h19m12s 03h32m00s 10h45m00s	-04d39m00s +54d30m00s +34d16m48s +52d48m00s -28d16m00s +58d00m00s	5 2 1.3 8 11	3.6 2.0 2.0 1.1 7.8 10.5	8.3 10.3 12.3 13.4 21.1 31.6				7 7 7 4 4	20 20			44.2 26.1 21.4 24.3 94.6 123.0		20.6 20.6 20.6 27.3 27.3	29.3 29.3 29.3 29.3 38.8 38.8	14.0 14.0 14.0 14.0 14.0 14.0 14.0	19.3 19.3 19.3 19.3 19.3 19.3 19.3	16.3 16.3 16.3 16.3 16.3 16.3
Level-6	XMM ELAIS S1 SWIRE ELAIS N1 SWIRE ELAIS N2 SWIRE NDWFS/Bootes FLS 0444 Akari	02h21m20s 00h38m30s 16h11m00s 16h36m48s 14h32m06s 17h18m00s 04h41m24s	-04d30m00s -44d00m00s +55d00m00s +41d01m45s +34d16m48s +59d30m00s -53d22m12s	9.3 7 9.3 4.8 8 4.7 7	4.3 7.0 7.3 4.8 6.0 4.7 7.0	35.9 42.9 50.2 55.0 61.0 65.7 72.7				2 2 2 2 2 2 2 2 2				14.8 23.1 29.5 17.0 26.0 17.1 23.5		38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5	54.8 54.8 54.8 54.8 54.8 54.8 54.8	26.2 26.2 26.2 26.2 26.2 26.2 26.2 26.2	36.1 36.1 36.1 36.1 36.1 36.1 36.1	30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4
H-ATLAS	Various			550.0	550.0	622.7							1	600		67.0	94.0	45.0	62.0	53.0

Redshift-Luminosity Space Probed by Herschel

University of Sussex

This plot shows the redshift-luminosity space probed in a 4-tier wedding cake survey. Yellow: 0.25 square degrees, 1.7 mJy 5 σ threshold at 120 μ m (PACS); red, blue, and magenta: 0.9, 9, and 90 square degrees, with 5 σ thresholds of 10, 31, and 100 mJy at 250 μ m (**SPIRE**). The **PACS** and first **SPIRE** surveys would be confusion-limited. The luminosities of Arp 220 and M82 are indicated.

Level 1/2 Fields Level 3 Fields Level 4 Fields Level 5 fields 2 Level 6 Fields $\Delta z=0.1$ @ z=1Sim Thickness

> 73 square degrees in total

Well studied fields

GOODS North / HDFN GOODS South CDFS ECDFS Lockman wide & Deep Extended Groth Strip Bootes XMM/VVDS/UDS SWIRE fields (ELAIS N1/N2/S1 FLS AKARI SEP

vers

SERVS – 18 sq. deg. 1muJy at 3.6 micron + 4.5 micron L* at z \sim 5 and 0.1 L* at z=1,

Hvega=22.5

Name	Area (deg ²⁾	Center	Overlapping
ELAIS-S1	3	9.45, -44.0	VIDEO, Hermes L6, ATLAS
XMM-LSS	4.5	35.5, -4.8	VIDEO, Hermes L5
CDFS	4.5	53.08, -28.1	VIDEO, Hermes L2,5, ATLAS
Lockman Hole	4	162.3, +58.11	UDX, Hermes L3,5,S2CLS
ELAIS-N1	2	242.5, +54.5	UDX, Hermes L5, S2CLS

PACS

University of Sussex

Summary FIR/Mid-IR surveys

University of Sussex

Survey	Wavelength	Area	Number	<z></z>
SWIRE	24	50	610k	1.0
SHADES	850	0.25	120	2.2
BLAST	250-500	10	250	0.5
HerMES	110-500	73	120k	1.0
S2CLS	850 (450)	20	10k	2.1

Herschel Launched

Spiral Galaxy M51 ("Whirlpool Galaxy") in the Far Infrared (160µm)

University of Sussex

Herschel/PACS Images of M51 ("Whirlpool Galaxy")

Draft Schedule

EDR

DR1

DR2

Launch 14th May 2009L+5 Oct. '09Science DemonstrationL+6 Nov. '09Routine Obs. StartL+7 Dec. '09ESA SDP WorkshopL+12 May 2010ESA SDP Conference(Prior to AO2)EIL+18 Nov. 2010(ROS+12)DL+42 Nov. 2012(End of Mission)D

Herschel / FMOS synergies

US

Herschel / FMOS synergies

- Confusion limit of Herschel ~ 2000 sq. deg. = 400 / FOV
- Redshift distribution <z>~1 well matched to FMOS
- FMOS may be able to get redshifts for obscured Herschel galaxies inaccessible at other wavelengths
- Herschel will give a bolometric measurement of obscured starformation direct comparison (calibration?) of Halpha measures
- FMOS surveys will gain by being done in Herschel fields
- Surveys of Herschel galaxies could provide "easy" first science

Conclusions

University of Sussex

- Herschel is Now!
- Herschel will probe the peak of the bolometric emission of obscured star-forming galaxies
- HerMES surveys will provide the volume and sample sizes to address questions of galaxy formation with statistical precision (73 sq.deg. >100k sources)
- FMOS/Herschel have strong synergies

Probing Below the nominal Confusion US Limit University of Sussex

Clusters as lenses Source position priors Fluctuations P(D) Stacking

