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N Figure 2.0 The input and output
vectors of a 2 X 2 Hermitian matrix
are related by a circle with the ma-
trix’s largest eigenvalue as radius and
the ellipse that has the eigenvalues
as semi-axes.

Further Quantum Mechanics TT 2013
Problems 2 (weeks 1-2)

Variational Principle

2.1 The 2 x 2 Hermitian matrix H has positive eigenvalues A\; > 3. The vectors (X,Y) and (z,y)

are related by
X T
w(3)-()

Show that the points (A X, A2Y") and (z,y) are related as shown in Figure 2.0. How does this result
generalise to 3 x 3 matrices? Explain the relation of Rayleigh’s theorem to this result.

2.2 We find an upper limit on the ground-state energy of the harmonic oscillator from the trial
wavefunction ¢ (z) = (a? + 22)~!. Using the substitution z = atan, or otherwise, show that

/ dz [¢|* = tra™® / de2?|¢? = ima™! / dzp*p*y = tra™® (2.1)
0 0 0

Hence show that (| H|t) /(1[1) is minimised by setting a = 2/4¢, where £ is the characteristic length
of the oscillator. Show that our upper limit on Ey is fiw//2. Plot the the final trial wavefunction
and the actual ground-state wavefunction and (a) say whether you consider it a good fit, and (b)
how it might be adapted into a better trial wavefunction.

2.3 Show that for the unnormalised spherically-symmetric wavefunction ¢(r) the expectation value
of the gross-structure Hamiltonian of hydrogen is

— n? 2| dY ’ e? 2 20,12
(H) = <2me /drr " Tres /drr|1/)| /drr [¥]°. (2.2)

dr
For the trial wavefunction 1, = e~*" show that
RPb €%
H) = —
(H) 2me  4dmey’
and hence recover the definitions of the Bohr radius and the Rydberg constant.

2.4* Using the result proved in Problem 2.3, show that the trial wavefunction v, = e=b’r/2 yields

—8/(3m)R as an estimate of hydrogen’s ground-state energy, where R is the Rydberg constant.

2.5 Show that the stationary point of (¢)|H |1} associated with an excited state of H is a saddle
point. Hint: consider the state |¢) = cos@|k) + sin 6|l), where 6 is a parameter.
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Time-dependent perturbation theory

2.6 At early times (¢t ~ —00) a harmonic oscillator of mass m and natural angular frequency w is
in its ground state. A perturbation 6 H = Exe~t"/7" is then applied, where £ and 7 are constants.
a. What is the probability that by late times the oscillator transitions to its second excited state,
2)?
b. Show that the probability that the oscillator transitions to the first excited state, |1}, is

2.2
7T87' 2.2
ewT/2

= 2.
2mhw ’ (2:3)

c. Plot P as a function of 7 and comment on its behaviour as w7 — 0 and wr — oo.

2.7 A particle of mass m executes simple harmonic motion at angular frequency w. Initially it is
in its ground state but from ¢ = 0 its motion is disturbed by a steady force F'. Show that at time
t > 0 and to first order in F' the state is

|1/),t> — efiEgt/h|O> + alefiElt/h|O>
where . .
1 ool
dt’ F(t')e" .

\/2mhw/o t)

Calculate (x) () and show that your expression coincides with the classical solution

x(t) = /Ot dt' F(tG(t - 1),

where the Green’s function is G(t — t') = sin[w(t — t')]/mw. Show that a suitable displacement of
the point to which the oscillator’s spring is anchored could give rise to the perturbation.

a; =

2.8* A particle of mass m is initially trapped by the well with potential V(x) = —V5d(z), where

Vs > 0. From t = 0 it is disturbed by the time-dependent potential v(z,t) = —Fxe “!. Tts
subsequent wavefunction can be written
[¥) = a(t)eF0t/70) + /dk {br(B)[k, €) + en(t)|k, 0) e R/, (2.4)

where Ej is the energy of the bound state |0) and Ej, = h?k?/2m and |k, ) and |k, o) are, respectively
the even- and odd-parity states of energy Ej (see Problem 5.17). Obtain the equations of motion

in {a|o>e—iE0f/ﬁ +/dk (i)k|k,e> +ék|k,o>) e—iEkf/ﬁ}

= {a|0>eiE°t/h + /dk (bi|k, e) + cilk,0)) eiEkt/h} .

Given that the free states are normalised such that (k' olk,0) = §(k — k'), show that to first order
in v, by = 0 for all ¢, and that
iF ; in(Qpt/2 Ey — E
ck(t) = %(k,o|a:|0> elft/2 %, where Qp = % —w. (2.6)

Hence show that at late times the probability that the particle has become free is

(2.5)

2rmF2t |(k,o|x|0)|?
Py(t) = 2T [ olOIE] (2.7
h QkZO
Given that from Problem 5.17 we have
1
(z|0) = /Ke K7l where K = m_? and  (x|k,0) = —— sin(kz), (2.8)
h N

show that

(k, o|z|0) = @% (2.9)

Hence show that the probability of becoming free is
ShIFt E¢/|E
Pr(ty = StV E/Pol_ (2.10)
mEg (1+ E¢/|Eol)
where Er > 0 is the final energy. Check that this expression for P is dimensionless and give a
physical explanation of the general form of the energy-dependence of P (t)
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2.9* A particle travelling with momentum p = hk > 0 from —oco encounters the steep-sided
potential well V(z) = —V; < 0 for |z| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

Ve 2
Prefloct = 15 sin”(2ka),
where E = p?/2m. Show that in the limit F > Vj this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.

2.10* Show that the number states g(F)dE d?Q with energy in (E, E + dE) and momentum in
the solid angle d2€) around p = hk of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

L\ > m3/2
g(E)dE d*Q = <2—> ?\/ZEdEdQQ. (2.11)
™

Hence show from Fermi’s golden rule that the cross section for elastic scattering of such particles by
a weak potential V(x) from momentum Ak into the solid angle d?Q) around momentum ik’ is
m2 . ’ 2
do = ——— d*Q /d3xel<k*k Xy (x)| . (2.12)
(2m)%h
Explain in what sense the potential has to be “weak” for this Born approximation to the scattering
cross section to be valid.

2.11 Given that ag = h/(amec) show that the product agk of the Bohr radius and the wavenumber
of a photon of energy FE satisfies

(2.13)

Hence show that the wavenumber k., of an Ha photon satisfies agk, = %a and determine A, /ag.
What is the connection between this result and our estimate that ~ 107 oscillations are required to
complete a radiative decay. Does it imply anything about the way the widths of spectral lines from
allowed atomic transitions varies with frequency?

2.12 Given that a system’s Hamiltonian is of the form
2

p
H= 2.14
L v (214)
show that [z, [H,z]] = h%/m.. By taking the expectation value of this expression in the state |k),
show that
52
> nlelk) P (En = B) = 5 —. (2.15)
Me
n#k
where the sum runs over all the other stationary states.
The oscillator strength of a radiative transition |k) — |n) is defined to be
2me
Jin = =5 (En = By (n|x|k)|* (2.16)

Show that En fn = 1. What is the significance of oscillator strengths for the allowed radiative
transition rates of atoms?



