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Figure 2.0 The input and output

vectors of a 2 × 2 Hermitian matrix

are related by a circle with the ma-

trix’s largest eigenvalue as radius and

the ellipse that has the eigenvalues

as semi-axes.

Further Quantum Mechanics TT 2013

Problems 2 (weeks 1–2)

Variational Principle

2.1 The 2× 2 Hermitian matrix H has positive eigenvalues λ1 > λ2. The vectors (X,Y ) and (x, y)
are related by

H ·
(

X
Y

)

=

(

x
y

)

.

Show that the points (λ1X,λ2Y ) and (x, y) are related as shown in Figure 2.0. How does this result
generalise to 3× 3 matrices? Explain the relation of Rayleigh’s theorem to this result.

2.2 We find an upper limit on the ground-state energy of the harmonic oscillator from the trial
wavefunction ψ(x) = (a2 + x2)−1. Using the substitution x = a tan θ, or otherwise, show that

∫ ∞

0

dx |ψ|2 = 1
4πa

−3

∫ ∞

0

dxx2|ψ|2 = 1
4πa

−1

∫ ∞

0

dxψ∗p2ψ = 1
8πa

−5 (2.1)

Hence show that 〈ψ|H |ψ〉/〈ψ|ψ〉 is minimised by setting a = 2l/4ℓ, where ℓ is the characteristic length
of the oscillator. Show that our upper limit on E0 is h̄ω/

√
2. Plot the the final trial wavefunction

and the actual ground-state wavefunction and (a) say whether you consider it a good fit, and (b)
how it might be adapted into a better trial wavefunction.

2.3 Show that for the unnormalised spherically-symmetric wavefunction ψ(r) the expectation value
of the gross-structure Hamiltonian of hydrogen is

〈H〉 =
(

h̄2

2me

∫

dr r2
∣

∣

∣

∣

dψ

dr

∣

∣

∣

∣

2

− e2

4πǫ0

∫

dr r|ψ|2
)/

∫

dr r2|ψ|2. (2.2)

For the trial wavefunction ψb = e−br show that

〈H〉 = h̄2b2

2me
− e2b

4πǫ0
,

and hence recover the definitions of the Bohr radius and the Rydberg constant.

2.4∗ Using the result proved in Problem 2.3, show that the trial wavefunction ψb = e−b2r2/2 yields
−8/(3π)R as an estimate of hydrogen’s ground-state energy, where R is the Rydberg constant.

2.5 Show that the stationary point of 〈ψ|H |ψ〉 associated with an excited state of H is a saddle
point. Hint: consider the state |ψ〉 = cos θ|k〉+ sin θ|l〉, where θ is a parameter.
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Time-dependent perturbation theory

2.6 At early times (t ∼ −∞) a harmonic oscillator of mass m and natural angular frequency ω is

in its ground state. A perturbation δH = Exe−t2/τ2

is then applied, where E and τ are constants.
a. What is the probability that by late times the oscillator transitions to its second excited state,

|2〉?
b. Show that the probability that the oscillator transitions to the first excited state, |1〉, is

P =
πE2τ2

2mh̄ω
e−ω2τ2/2, (2.3)

c. Plot P as a function of τ and comment on its behaviour as ωτ → 0 and ωτ → ∞.

2.7 A particle of mass m executes simple harmonic motion at angular frequency ω. Initially it is
in its ground state but from t = 0 its motion is disturbed by a steady force F . Show that at time
t > 0 and to first order in F the state is

|ψ, t〉 = e−iE0t/h̄|0〉+ a1e
−iE1t/h̄|0〉

where

a1 =
i√

2mh̄ω

∫ t

0

dt′ F (t′)eiωt′ .

Calculate 〈x〉 (t) and show that your expression coincides with the classical solution

x(t) =

∫ t

0

dt′ F (t′)G(t − t′),

where the Green’s function is G(t − t′) = sin[ω(t − t′)]/mω. Show that a suitable displacement of
the point to which the oscillator’s spring is anchored could give rise to the perturbation.

2.8∗ A particle of mass m is initially trapped by the well with potential V (x) = −Vδδ(x), where
Vδ > 0. From t = 0 it is disturbed by the time-dependent potential v(x, t) = −Fxe−iωt. Its
subsequent wavefunction can be written

|ψ〉 = a(t)e−iE0t/h̄|0〉+
∫

dk {bk(t)|k, e〉+ ck(t)|k, o〉} e−iEkt/h̄, (2.4)

where E0 is the energy of the bound state |0〉 and Ek ≡ h̄2k2/2m and |k, e〉 and |k, o〉 are, respectively
the even- and odd-parity states of energy Ek (see Problem 5.17). Obtain the equations of motion

ih̄

{

ȧ|0〉e−iE0t/h̄ +

∫

dk
(

ḃk|k, e〉+ ċk|k, o〉
)

e−iEkt/h̄

}

= v

{

a|0〉e−iE0t/h̄ +

∫

dk (bk|k, e〉+ ck|k, o〉) e−iEkt/h̄

}

.

(2.5)

Given that the free states are normalised such that 〈k′, o|k, o〉 = δ(k − k′), show that to first order
in v, bk = 0 for all t, and that

ck(t) =
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
, where Ωk ≡ Ek − E0

h̄
− ω. (2.6)

Hence show that at late times the probability that the particle has become free is

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

. (2.7)

Given that from Problem 5.17 we have

〈x|0〉 = √
Ke−K|x| where K =

mVδ

h̄2
and 〈x|k, o〉 = 1√

π
sin(kx), (2.8)

show that

〈k, o|x|0〉 =
√

K

π

4kK

(k2 +K2)2
. (2.9)

Hence show that the probability of becoming free is

Pfr(t) =
8h̄F 2t

mE2
0

√

Ef/|E0|
(1 + Ef/|E0|)4

, (2.10)

where Ef > 0 is the final energy. Check that this expression for Pfr is dimensionless and give a
physical explanation of the general form of the energy-dependence of Pfr(t)
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2.9∗ A particle travelling with momentum p = h̄k > 0 from −∞ encounters the steep-sided
potential well V (x) = −V0 < 0 for |x| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

Preflect ≃
V 2
0

4E2
sin2(2ka),

where E = p2/2m. Show that in the limit E ≫ V0 this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.

2.10∗ Show that the number states g(E) dE d2Ω with energy in (E,E + dE) and momentum in
the solid angle d2Ω around p = h̄k of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

g(E) dE d2Ω =

(

L

2π

)3
m3/2

h̄3
√
2E dE dΩ2. (2.11)

Hence show from Fermi’s golden rule that the cross section for elastic scattering of such particles by
a weak potential V (x) from momentum h̄k into the solid angle d2Ω around momentum h̄k′ is

dσ =
m2

(2π)2h̄4
d2Ω

∣

∣

∣

∣

∫

d3x ei(k−k
′)·xV (x)

∣

∣

∣

∣

2

. (2.12)

Explain in what sense the potential has to be “weak” for thisBorn approximation to the scattering
cross section to be valid.

2.11 Given that a0 = h̄/(αmec) show that the product a0k of the Bohr radius and the wavenumber
of a photon of energy E satisfies

a0k =
E

αmec2
. (2.13)

Hence show that the wavenumber kα of an Hα photon satisfies a0kα = 5
72α and determine λα/a0.

What is the connection between this result and our estimate that ∼ 107 oscillations are required to
complete a radiative decay. Does it imply anything about the way the widths of spectral lines from
allowed atomic transitions varies with frequency?

2.12 Given that a system’s Hamiltonian is of the form

H =
p2

2me
+ V (x) (2.14)

show that [x, [H,x]] = h̄2/me. By taking the expectation value of this expression in the state |k〉,
show that

∑

n6=k

|〈n|x|k〉|2(En − Ek) =
h̄2

2me
, (2.15)

where the sum runs over all the other stationary states.
The oscillator strength of a radiative transition |k〉 → |n〉 is defined to be

fkn ≡ 2me

h̄2
(En − Ek)|〈n|x|k〉|2 (2.16)

Show that
∑

n fkn = 1. What is the significance of oscillator strengths for the allowed radiative
transition rates of atoms?


