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What is a perturbation?
A ‘small’ change H; to the Hamiltonian of a solved problem Hj.
Notation: Perturbed problem H |n) = E,, |n)
But H = Hyp + H; and the unperturbed problem is solved: Hy|ng) = B n0).

When is a perturbation small?
The fundamental assumption of perturbation theory: The unperturbed ket is a good approxi-

mation to the exact ket. The unperturbed kets form a complete set so we can write

n) = Zcm Img) where Z e |? = 1.

The fundamental assumption means then implies:
there 1s one big term in this expansion: ¢, =~ 1 and all other terms are small: ¢, < 1 for
If we don’t care about normalisation (we can always normalise at the end of the calculation,
and it doesn’t affect eigenvalues) then we can in fact divide by ¢,, and define instead

[n) = o) + ) cm mo) -

m#n

The correction to the ket is orthogonal to the unperturbed ket.
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Perturbation Parameters
In perturbation theory there is usually an identifiable physical parameter \ such that H; =
Ah1. For example, a fruitful source of perturbation problems is application of external fields
to atoms. These give perturbations like q¢p = —qFz and —B - u where ¢ is the electric charge,
and p the magnetic dipole moment. Obviously the external field strengths I/ and B can play
the role of A.

We can now attempt an expansion of the unknown ket and eigenvalue as a power series in A:
B, =Y e = 126l = BO 4 ED
p
where the first term is independent of the perturbation, the second term scales linearly with
the perturbation, and so on. In effect we are splitting up the corrections to the eigenvalue

and ket into parts that vary as different powers of A:
E,=E9 +EYD 4+ E2  n) =|ng) + [n1) + |ne) + ...

where B contains a factor A2 and Inq) a factor of A etc.
The question of the convergence of these series is a delicate one (and depends on the prob-
lem). But even if the series don’t converge, we can still use the first few terms to improve our

approximate zeroth order solution.
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Non-degenerate Perturbation Theory
We first apply this approach to a non-degenerate level, so that there is a single zeroth-

order ket |ng) with eigenvalue B, We write down the Schrodinger equation:
(Ho + H) [Ino) + |n1) + [n2)] = (B + BV + EP) [[no) + [n1) + [n2)]

and identify zeroth-, first-, second-order terms from the number of factors of A, and equate

them separately:
Zeroth Order: Hy |ng) = EY Ino)
First Order: Hj|ng) + Hg|ni) = BY Ing) + EY Im1)
Second Order: Hj |ny) + Hy |ng) = EP Ino) + B Inq) + EY In2)

We recognise the unperturbed equation, giving us the Eq(»LO) and |ng) we already know.

The other equations give us the corrections.
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First-Order Correction to Energy
The first-order equation contains two things we don’t know, the correction to the ket |ni),

and the correction to the energy Eg):
Hi [no) + Ho |n1) = ESY [no) + ERY ).

We can isolate these by taking the inner product with one of the unperturbed kets:

Suppose we take the inner product with |ng):
(no| Hi [no) + (no| Ho [n1) = ELY (no| no) + B (no|na).
But on the left we can use the Hermitian property of Hy:
(nol Ho 1) = ((m| Holno)) = (B (m|no))” = B (no|m)

which cancels a term on the right. (In fact, both of these terms are zero since (ng|nq1) =0.)
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First-Order Correction to Energy

This leaves just two terms which we can immediately rearrange to give

(no| Hy |ng)

B —
(no| no)

n

= (no| Hy |no)

since the denominator is 1. (But note we don’t have to do perturbation theory with nor-

malised kets — and if we don’t, then the theory still gives the correct result.)

The first-order energy correction is the expectation of the perturbation in the unperturbed state.
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First-Order Correction to ket
The correction to the ket |n1) is found by taking the inner product with any other unper-
turbed ket |mg):

(mo| Hy |no) + (mo| Ho [n1) = BV (mo|no) + B (mg| n1) .

The term involving EY vanishes and the second term on the left becomes (same argument)
B (mgo|ny). Thus

(mo| Hy |no)
Ey) — En)

m#n

(mo|n1) =

This defines all the amplitudes for |n1) except (ng|n1). But that is just zero because they

are orthogonal. So

_ Imo) (mo| H1 |no)
n1) = Z 7O _ 50

m#n
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Reflections on First-Order Results
(1) That the energy correction is just the expectation is unforgettable — what else could it
be? How else do you get a number out of an operator (H;) and a ket (|ng))? (The answer of
course is an eigenvalue, but that’s exactly what we trying to avoid!) The result is much more

memorable than its derivation.

(2) To look at it another way, eigenvalues are special cases of expectation values:
Hln) = Eyn) — (n|H|n) = E, = (n|Ho|n)+ (n| H |n)

If we make the fundamental assumption that the unperturbed ket is a good approximation to

the exact ket we immediately get the same result E, ~ EY) + (ng| H1 |ng).

(3) If we rearrange the first-order equation we find out why we don’t determine (ng|nq):
Holna) — B 1) = = (Hy = ED) fno)

The corresponding Schrodinger equation is a linear differential equation with an inhomoge-
neous term. The solution we have found is the particular integral, but we can add any multi-

ple of the complementary function, which is |ng)!
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Second-Order Correction to Energy
We only find the second-order correction to the energy, not the ket. This is because we are
usually more interested in eigenvalues than kets, and in general a p’th-order wavefunction
enables us to find an eigenvalue correct to order 2p + 1. (So the first-order ket gives us the

third-order energy as well . . .)
Hy |n1) + Ho |na) = B no) + ELV [na) + EXY) [ng)

As before there are two things we don’t know, ES> and In2).

And as before we can eliminate all the unknown kets by taking the inner product with |ng):

B = (no| H1|n1)

We can of course substitute for |nj):

R =Y (no| Hi [mo) {mo| Hi |no) 3 | (mo| Hy |no) |
" By — By By — By

m#n m#n
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Second-Order Correction to Energy

(Alternatively we could eliminate the H; matrix elements to get

B = 3" (ED = ER) | (mo|na) |

m#n

but this is by no means a normal move!)

These equations indicate the close link between the first-order correction to the ket and the
second-order correction to the energy: you can’t have one without the other! The first form
shows that if [n1) = 0 then so is Eq(f). The final form shows that Eq(f) could only be zero by

some flukey cancellation in the sum over amplitudes.

There is an interesting symmetry of the mixing amplitudes (mg|n1): (mg|n1) = — (ng| m1)".
Thus if a bit of state m is mixed into n by the perturbation then there is an equal but oppo-

site mixing of n into m. This is exactly what we need to preserve orthogonality to first order.

Then we see that states that mix in first order repel in second order. And hence the second-

order correction to the ground state is always negative.
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Example 1: Box with a non-flat bottom

For our first example we take the particle in a box (between 0 and a) with a perturbation:

2
H{ = W cos [ﬂ] .
a
n?m2h?
The unperturbed eigenvalues are E(®) = Sz = n’E; (wheren =1,2,3...)
ma
. . : 2 . [nrzx
and the eigenkets have a simple z-representation (x|ng) = u,(z) = \/j sin [—} :
a a

The first-order energy shift is then

EWY = (no| Hy |no) :/ Un () Hy Uy (x) dz
0

The integral is helped by the use of an addition formula:

Hiun(z) = \/gw cos [2”733] sin [%} - %\/g [sin ((” +a2)m) + sin ((” _GQ)MS)] .

This simplifies to %(unw — un_2) except for the special cases of n =1 and n = 2. For n = 2,

sin (n — 2)mx/a = 0 while for n =1 sin (n — 2)7z/a = —sinnzx/a.
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Example 1: Box with a non-flat bottom

We can summarise the action of H; on the eigenkets as follows:

W

7(\(n+2)0>+\(n—2)0>) for n > 2

Hj [ng) = 4 %]4@ for n = 2
W

\ 7(\3@ — ]10>> for n =1

Thus almost all the ES vanish because H; Ing) is orthogonal to |ng). The only exception is

|44 |44

E§1) — <10‘H1 ’10> = 7<<10‘ 30> — <10’ 1O>) -

This also gives us all the matrix elements of H; to evaluate the ket correction:

ny) =

(only 1 term for n=1,2)

w [(n = 2)o) [(n +2)o) ]
2 [[n2=—(n—2)2E1 [n?—(n+2)?E;
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Finally this allows us to calculate the second-order correction to the energy:

W2 1 1
B = ly 1t f —1.9
" 4 [[nz — (n—2)%E, i [n? — (n+2)2]E1] (only 1 term for n=1,2)
2 > [ _ 0 ,
For example E§ )= T [ﬁ} and Eé )= T [ﬁ - 161&]

This problem can be solved exactly - the Schrodinger equation becomes the Mathieu equa-
tion, and the wavefunctions are Mathieu functions. There is a Mathematica notebook on the

FQM Website which compares the exact and perturbative solutions.
Example 2: Quadratic Stark Effect in Hydrogen

The Stark effect is a perturbation by an electric field E = —V®. There are two charges in the
atom, so the change in the Hamiltonian is H; = +e®(0) — e®(r).
For a uniform E in the z-direction, magnitude £, ®(r) = ®(0) — £z so H; = e€z.
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This Hamiltonian has a useful commutator with the Parity operator P.
[Hy, P] = 0, so the hydrogen eigenkets can be chosen to be eigenkets of P.
(And these are the |nfm) kets.)
But PH, = —H,P, so Hy anti-commutes with P: PH, + HP = 0.

Consider a matrix element between two parity eigenstates (p = +1):
(n'0'm'p'| PHy + H1 P [ndmp) = (p + p') (n'¢'m'p’| Hy [némp) = 0

So either p = —p’, the states have opposite parity, or the matrix element is zero.

Thus all diagonal matrix elements vanish and so does the first-order energy (unless there is
degeneracy). (This argument is perfectly general and applies to all atomic states — the Stark

effect is usually only second-order.) But in Hydrogen there is degeneracy. . . .

9 | (n’0'0] e£2]100) |?
B = ) .

But in the non-degenerate ground state: () (0)
Ey — F
n’/0'#£10 1 n
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Example of Degeneracy: Rigid Rotor

This is a system with moment of inertia I free to rotate about an axis.

L2
The Hamiltonian is thus Hy = 57"

2h2
The energy levels are ET(ZO) = 712_1

1
The ground state is non-degenerate: (¢|0p) = —

V27

But all the excited states are two-fold degenerate, so any basis eigenkets represent an arbi-

trary choice. Two obvious choices are:

c,s basis: +,— basis:
1 .
(9] (1,¢)0) = % oS ¢ (o] (1,+)o) = T exp(+igp)
1 .
(8] (L, 8)0) = — sin (6] (1,-)o) = —= exp(~i0)

\/E

but any linear combination of the degenerate eigenkets is an eigenket.

This means the fundamental assumption is no longer necessarily true!
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In general a perturbation will remove the degeneracy in F,. Imagine what happens if we
could control the pertubation parameter and make it smaller. As the states approach each
other they are each some particular linear combination of our arbitrary basis — but we don’t

know what it 1s.

So the correct zeroth-order wavefunctions |(n, z)¢) are an unknown linear combination of our

original, arbitrary basis |(n,a)o):

[(n,2)0) = ) |(n.a)o) {(n,a)o| (n, 2)o) -

We can now put this (correct but as yet unknown!) ket into the first-order equation:
Hy |(n, 2)o) + Ho|(n, 2)1) = E2 |(n, 2)o) + EiY |(n, 2)1)
We take the inner product with one of our arbitrary basis kets for E,,:

{(n,a)o| H1 |(n, 2)0) + ((n,a)o| Ho |(n, 2)1) = ELY {(n,a)ol (n, 2)0) + E ((n,a)o| (n, 2)1)

Two terms cancel in the same way as the non-degenerate case.
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This leaves just
{(n,a)o| H1 |(n,2)0) = EY ((n,a)o| (n, 2)o)

We simply insert the summation for the unknown state:

> A(n,a)ol Hy |(n,a")o) ((n,a")ol (n, 2)o) = ELY {(n,a)o] (n, 2)o) -

a/

We have as many equations like this as the order of the degeneracy.

Remembering that ((n,a)o| (n, z)g) are elements of a vector, and ((n,a)o| H1 |(n,a’)q) ele-

ments of a matrix, we can write:

Hyc®) = EWe)

An eigenvalue equation!! With a Hermitian matrix in the known (but arbitrary) a basis.

This gives us:
Figenvalues: Each eigenvalue is one of the first-order energy shifts Eq(ll);
Eigenvectors: Each component of the eigenvector gives us one of the amplitudes

((n,a)o| (n,2)p) which define the correct zeroth-order z basis in terms of the a basis.

Again, the result is more memorable than the derivation.
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Example: Perturbed Rotor
We perturb the rigid rotor with an angle-dependent potential V{, sin 2¢.
We choose the +,— basis and find the shifts in n = 1.
The integrals in the matrix elements are of the form

_ 191" v/ +io g
o1 J, ENG ( i ) e dg

(e 07) () == ()

We find Eil) = £V} /2 and eigenvectors

Voo ©_ L (1 Vo —_1 /(1
+2.c _\/51 2.c —\/5 _;

Thus the wavefunction for the state shifted up in energy is

2\1/% (ei¢ + ie—i¢) — ;\—; (cos ¢ + sin qb).

This gives

If we had used these states to start with, the A; matrix would have been diagonal, with the

eigenvalues as the diagonal elements.
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How to avoid Degenerate Perturbation Theory.

It’s obvious that, compared with just evaluating an expectation value in the non-degenerate

case, Degenerate Perturbation Theory is a big deal.
If we knew the correct zeroth-order wavefunctions to start with we would only have to evalu-

ate the expectation values.

Suppose there is an operator S which commutes with both Hy and H;. Then it commutes
with the exact H, and the exact eigenstates are eigenstates of S. So we just use the mutual

eigenbasis of Hy and S, |(n, s)o).

In this basis the off-diagonal elements are all zero (as long as the degenerate states have dif-

ferent s eigenvalues):
((n, 8)o| SHy — H1S[(n,5")0) = (s = 5") ((n, 5)o| H1[(n, ")) =0

In the example given the relevant operator is reflection about the line ¢ = 7 /4,57 /4 so that

the correct eigenfunctions are cos(¢ — 7/4) and sin(¢ — 7/4).
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We can make the Hamiltonion time-dependent if we introduce an interaction with a time-
varying external field. We shall consider the interaction is weak enough to be treated by per-
turbation theory:

H = Hy+ V(t)

where the eigenvalues and eigenkets of Hy are known.

Suppose we prepare the system in an eigenstate — say the ground state.
And V varies harmonically — say as cos wt.

And there’s an excited state at an energy E above the ground state.

This is called absorption spectroscopy. What do we expect?

The example suggests that if £ = hw then the system responds and can end up in the excited

state, and if not, not.

So our physical intuition suggests that the result is discontinuous! This is a hint that we need
to be a bit careful. The combination of discrete energy levels and perfectly-defined frequen-

cies is obviously a tricky one. We shall proceed with caution!
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Basic equations.
The eigenkets of Hy form a complete set, so we can always expand a state in terms of them.

If V =0 then we have seen that the state is in general

() = 3 an exp (<iB,t/h) |n)

so a sensible place to start is to assume an expansion of this form but allowing a,, to vary
with ¢:

Zan exp (—iE,t/h)|n) .

Substitute into the time-dependent Schrodinger equation ihd/dt |1(t)) = (Ho + V) |¢(t)):

Z(hdgﬂ—kanE )exp(—lE t/h)|n) = Zanexp (—iF t/h)(E + V(¢ ))\ ).

n

As expected, there is a cancellation so that a,, only changes because of V:

Zlhddiexp( iE,t/h)|n) = Zanexp (—1E,t/R)V (t)|n) .

n
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Take inner product with |m):
da,,

h? exp (—iFE,t/h) = Z an exp (—iE,t/h) (m| V(t) |n).

or, taking the time-dependence across:
mi § a, exp( - ) ) (m| V(1) |n).

which has an obvious vector/matrix shape:

da ~
ih— =V
i o a

where V has matrix elements that oscillate due to the energy difference between states as

well as due to the time-dependence of V (¢):

Vo = exp (X2 G v ()

We haven’t so far made any approximations.

If the number of states is finite and fairly small we can solve these coupled linear equations

exactly — numerically if necessary.

But in many problems the number of states involved is too large and we must approximate.
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Perturbative Expansion.

We expand a,, in powers of the size of V (¢):
am = a'® +all) a2 where aly is independent of V, a'y & V etc

Substituting this into the equation we get

daly)  daly) d%
ih(a 2 2 Zan< ) +alV) +a@ + .. )

dt dt

Equating powers of V we get a series of equations for the rate of change of each coefficient in

terms of the next lower coefficient:

Zeroth Order: ih

da©)
élzo — a9(t) = a9 (ty).

d < 1 [t
First Order: ih an vana — alV(t) = = / v dt’] a(0)
RYA )

dag)

1 [ /"5
Second Order: ih o Zana(l) — aP(t) = = _/to VinnalD ( )dt]
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We shall only consider particularly simple cases:
The initial state is simple: [1(tg)) = |i), so a = 1 and all the other a(®) are 0.

We also ignore the possibility of diagonal matrix elements Vi = 0. (This is quite com-

mon in any case for parity reasons).
We work to first order only.

Then at a later time

1 [~
aD(t) = _h/ Vinidt  for m #4 and al(.O) (t) = aEO) (tg) =1
ih Jy,

Example 1: Turning on a perturbation.

at
Consider turning on a otherwise time-independent perturbation, V (t) = { ?/ 4 gor i i 8
or
We look at the state at t = 0:
. 0 . .
Wy _ Vi) i(Em — Ei)LY o Wy ml Vi)
a,,’(0) = N exp ; e**dt — a,,’(0) B . +iha
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Sudden and Adiabatic Approximations.

This has two interesting limits:

a — oo: This corresponds to a very quick (‘sudden’) turn-on. In this case a't) — 0: the state

at t = 0 is unchanged from ¢t = —oo (apart from normal time-evolution of |z)).
But after ¢t = 0 we have a Hamiltonian Hy+ V', so the time evolution after ¢ = 0 is in terms of

the eigenkets of the new Hamiltonian |n’):

(0)) =Y |y (n'|i) andso [p(t)) =D et |n/) (n'] i)

n/

a — 0: This corresponds to a very slow turn on, and at ¢ = 0 the state is

19(0)) = |i) + Z Im) <Em‘—VE’Z> = |¢/)  to first order.
mi 1 m

In this case the wavefunction follows the evolving Hamiltonian in the corresponding eigenket.

This is known as the adiabatic approximation, and requires ha < |E; — E,,|.
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Example 2: Transition due to an Oscillating Perturbation.
We now consider an oscillating perturbation, such as we might get from applying EM radia-
tion to an atom:

V=-E()-D=-2ED, coswt

where D is the electric dipole moment of the atom, and I have made the radiation linearly
polarized in the z-direction with amplitude 2€.

We can split the cosine up: coswt = (1/2)[e!“! + e711].

Since the first-order theory is linear in the perturbation we can treat just one term, which we

choose to be e wt.

V(t) = —ED.e™ ",

Then, if the perturbation is turned on at ¢ = 0 when the atom is in state |i), and turned off

at t:
—&D, i) [* (B, — E;)t
aD(t) = i) _ ’Z>/ exp (1( ) )exp —iwt’ dt’
0

ih h

= (m| — €D, |i) exp (1AEL/R) — 1 where AF = E,, — hw — E;
—AFE
— (m| ;é/D; 9 (—iexp (iAE t/2h))sin (AEt/2h)
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The probability of the atom being in state |m) at time ¢ is

_AlmlED. i) [P, (AR
- AE? A Ton

The probability oscillates, and the amplitude of oscillation involves the square of the ratio of

[ ()]

the matrix element squared divided by AFE. This ratio is typically tiny except when AFE = 0.

This has a natural interpretation in terms of the absorption of a quantum of energy hw — a
photon in the case of light. But it will happen for any oscillating perturbation.

However AE = FE; + hw — E,, is the energy imbalance in the process — we have appar-
ently lost/gained an energy of £+ AFE — but only for about one half-cycle of the oscillation
2wh/AE. So the energy imbalance is constrained by

AFE At ~ 27h.

This is the process of ‘borrowing energy’ mentioned in many popular accounts of QM.

If there happens to be a final state |m) exactly on resonance, AE = 0, then the amplitude

does not oscillate but grows linearly with t:

W)y _ (m| = ED: i)
a,,’ (t) = t.

This is the ‘discontinuity’ we naively expected.
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Continuum States — the Free Particle
For a free particle the Hamiltonian is H = p*/2m and this obviously commutes with p.

So we can choose the eigenstates to be the eigenkets of p: p|P) = P |P). Let (x| P) = up(x).

—iha;—P = Pup — up(x)= AexpliPz/h]
T

This is the solution for any value of P, so the possible values of momentum are P = any-
thing, with energy eigenvalues P?/2m — not discrete eigenvalues but a continuous range.

A is a normalisation constant — but the eigenfunctions are not normalisable!

These two problems always occur together: eigenkets belonging to eigenvalues in a continuous
range are unnormalisable. The whole set of states are sometimes referred to as the contin-

uum.
The standard normalisation is ‘6-function normalisation’: (P'| P) = 6(P — P'); A =1/v27h.

But if we think about the uncertainty principle the situation is obvious: in an eigenket the
momentum is sharply defined, Ap = 0 and so the position uncertainty must be infinite.

In fact the eigenket |P) is physically unrealisable. The same is true of the position eigenket
|X'). They still form a basis but physical states must be formed by superposition to make a

wavepacket.
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Example 3: Fermi’s Golden Rule

The ‘almost discontinuous’ result follows from the combination of discrete energy levels and a
single frequency perturbation. The theory looks a bit different when the final state belongs to

the continuum, because there is always a final state exactly on resonance.

We consider a transition from an initial discrete state |i), energy F; to a final continuum |[p),
energy F(p), induced by a perturbation V(t) = Ve ¢t

The first-order amplitude is as above (p42, last line):

o (t) = <i’ ]‘5/ /‘? (—iexp (iAEt/Qh)) sin (AE t/2h)

where AF = E(p) — hw — E;. These amplitudes define the first-order (< V') ket correction:

(1)) = |§) exp(—iEit/h) + /O ~ a1 () exp(—iE,t/R) p) dp

)]2 summed over the final states:

The excitation probability is given by ]a](gl

o0 o0 . 2t2
/ oD (1) dp = / (7] V;;” Sinc2(AE £/2h) dp
0 0

where we have introduced the sinc function sincz = sinz/x.
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The sinc function has a peak at x = 0, falling to zero at x = +x. Thus for any value of £ the
sinc function gives particular weight to final states F(p) for which —2nh/t < AE < 27h/t.
As time goes on this range gets steadily narrower, emphasising states around the energy con-

serving state AE = 0. It makes sense to change variable to the argument of the sinc function:

dE(p) t t

r=(F(p) — FE;,—hw)t/2h and dr=-—"—>—dp= d
(=) & B 25T (B G)

ps = dp/dE(p) is known as the density of states factor. It is a measure of the ‘quantity’ of
final states per unit energy range. (The lower limit z,;, is large and negative.)
o0 PR
| @R = 5z [ 1V o) sine(e) do

Lmin

Fermi’s Golden Rule approximates this result in the limit that the rapid variation of the sinc
function takes place on a scale over which the other factors scarcely change: we can take
them out of the integral (evaluated at the peak, AE = O or E, = E; + hw), and we can

formally extend the range to foo.

[ lapapap = B0 () [ sin o) de

— 0
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The integral is 7, so finally, expressing the result as a rate of excitation:

2
Fermi’s Golden Rule: Rate = %] (p| V |3} |?p(E).

Simplest Possible Example of Fermi’s Golden Rule
The simplest system with a bound state as well as a continuum is a negative delta-function
potential V' (x) = —W(x) — a sort of limiting narrow deep square well.
This has a single bound state:

2
77;17;[/2' and (x|7) = i

i)  with F; = — exp (—mW |z|/h?)

:

and two continuum states for every positive value of F/, one even parity and one odd parity:

2m

R2p? (alp, —) = —L=sin (22)
‘p, :|:> Wlth E(p) = an . p|m| o
(z|p,+) = 7, €08 (T—Hb) where tan ¢ = *7¢

We perturb this system with —Fze~“!, so that only the odd-parity states contribute. Thus
we use the above results with |p) replaced by |p, —).
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Schrodinger Equation:
L d
R ) = Ho ) + V(2) )

so in a time 0t the increment to the ket is

—iH
Slw) = | —=—

—iV(t)
h

[¥) + [9) ]| ot.

The first term provides the usual time-dependence for energy eigenstates |F), rotating them

(clockwise!) in the complex plane with angular frequency E/h.

The second term gives the transitions between eigenstates.

We can project the ket increment onto the energy eigenstates (just the second term):

vy = 30 12) (81 2y o

so so to get to a particular final state E¢ this must be non-zero: the ket increment must not

be orthogonal to |E) (and the more similar they are the bigger the probability of transition).
The initial state is rotating in complex plane at E;/h; the little bit of state |Ey) rotates at

E¢/h, so the successive increments cancel out unless the time-dependence of V' (¢) contains a

part which rotates at the correct difference frequency (Ey — E;)/h.
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33

This gives the expected distribution of material in Trinity Term by lecture:

1 Review of Time-dep’t Perturbation Theory/ Selection Rules
2 Selection Rules / Identical Particles

3 Identical Particles / Atomic Hamiltonian

4 Atomic Units: Hydrogen, Helium

5 Helium: Exact Symmetries, Perturbation Theory

6 Helium: Variational Principle

7 Helium: quick look at modern calculations / Questions.
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Selection Rules are Conservation Laws

Of all the possible transitions between states of an atom only a quite small subset occur at

any significant rate. These possible transitions are determined by Selection Rules.

One way of looking at selection rules is that they represent conservation laws — a transition

not obeying the selection rule would violate the conservation law.

The obvious conservation laws are:
Energy: E; = Ey+hw (for emission/absorption). This is Bohr’s Frequency Rule, and we
have seen how it comes out of time-dependent perurbation theory. It’s not a constraint
on what transitions « — f can occur.
Momentum: This is also conserved in radiative processes, but the emitted or absorbed

momentum is taken up by the atom as a whole.

So more exactly, for emission of a photon with wavevector k = (w/c)n:

2

o D;

& =&+ hw 5i_E@+2M
- where p2

P: = Pr T+ f
Er=F —
YV

This does not constrain the transitions ¢ — f either.
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Angular Momentum: This turns out to give an important selection rule.

A.M of initial state = A.M of final state + A.M. of radiation Field

The Total A.M. of the electrons in the atom is usually given the symbol J.
(If the nucleus is included as well it’s called F', but strictly speaking the selection rule applies
to whatever is the total A.M. of the atom.)

The A.M. of the radiation field can’t be less than 1A, (the spin of the photon), but can be
more: spatial structure in the field can carry additional A.M.

Different interaction multipoles (dipole, quadrupole . . .) carry different amounts of A.M.

We shall just consider the lowest multipole (dipole) and the strongest case (electric).
In this case the A.M. is 15, and the interaction Hamiltonian is —E - D, where D = —e ) . r;

summed over the electrons.

The addition of the angular momentum of the two parts of the system require the Rules for
the Addition of Angular Momenta:
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Rules for the Addition of Angular Momenta
The possible angular momentum quantum numbers for a system composed of two subsystems

with angular momenta quantum numbers of J; and Jy are given by J where:
The maximum value of J is Jnax = J1 + Jo;
The minimum value of J is Jyi, = |J1 — Ja|;
J goes from Jin to Jmax in steps of 1.
The selection rule is simply that there must be a way of couple the two angular momenta of

the final state to give the same as the initial state:

So if the final state involves adding J; and 1, the possible final angular momenta are from
Jr+1to |J; —1|. Obviously this depends on the value of Jy:

If J¢ > 1 then the range of possibilities is J; = J¢ + 1, J¢, J¢ — 1.

If Jp = % then we can have J; = % or %

If J¢ = 0 then the only possible J; is 1.

We can summarize this as AJ=0,£1 04A0.

This expresses the exchange of one unit of A.M. between the atom and the radiation field.

CWPP 15/2/2013



Further Quantum Physics Selection Rules 37

Selection Rules are Symmetries

Another way of looking at selection rules is that they follow from symmetries. For example

the atomic Hamiltonian always commutes with the Parity operator P:
[P,H] =0
and hence we can choose atomic eigenstates to be eigenstates of P. Thus all atomic states

have a parity quantum number of p = +1.

However the electric dipole interaction Hamiltonian anti-commutes with P:
PE-D=-E-DP or {P, Hi,s } = 0.

(This is because P acts on D and not E. If we enlarge the scope of P to act on the field vari-

ables as well then we recover the expected commutator, not anti-commutator.)

Take a matrix element of the anti-commutator (repeat of Stark effect argument):
(f/I PD +DP i) = (ps +pi) (f|D]i) =0

So either p; = —py, the states have opposite parity, or the matrix element is zero.

So the Selection Rule is Parity Changes which is usually summarised as YES

(Conservation law view: Parity is conserved, but both and atom and field change.)
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Selection Rules follow from Commutators

We have already seen this for P; it is also true for J. The relevant commutator is
|Ji, Dj] = i€;6h Dy, or [Jz, Dyl =1ihD, and cyclically.

This is true simply because D is a vector operating on the atomic variables, and J is the to-
tal atomic angular momentum. This is a very powerful argument because of its generality:
S(a) = (1 — i, /h) rotates the atomic state by the infinitesimal angle o around the z-axis.

When we do this the matrix elements of a vector operator must behave as vectors:

(fI8T(@)DyS(e) |i) = (f| Dy |i) — a(f] Dy i) .

If we keep terms to first order on the left:

(f| Dz |i) + % (f| J2Dy — Do J. |i) = (f| Do 1) — a (f] Dy |4) ,

giving the zx version of the commutator.
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We now use the fact that the free-atom states will be eigenstates of angular momentum:
replace |i) with |J;M;) and similarly for the final state. Then the three commutators with J,

give the selection rule on M:
J., D] =0: (JfMys|J.D, — D, J, |J;M;) = (My — M;)h (JsMs| D, |J;M;) =0

The other two are [J,, D,] = ihD,, and [J,, D,| = —ihD, or |J,, D, £iD,| = £h(D, £1iD,).
Again we take a general matrix element:
(JfMy¢| J. Dy — Dy J, |J;M;) = (My — MR {(JsM¢| Dy |J;M;) = £h (JsM¢| Dy |J; M;)
(Mf — Mi + 1)h <Jfo‘ Dj: ‘JzMz> = 0.

We can summarize this as AMj; =0, +1.

We can also derive the AJ rule from a commutator.
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We can use the commutator method to generate more selection rules:

J=L+S where L= Z l;, and S = Z S;

electrons electrons

(Note the emerging typographical convention: we use upper case letters for whole atom quan-

tities and lower case for single electron quantities.)
Now the transition operator D does not involve S at all:

[Si, D] =0 and hence [L;,D,| = [J; — Si, D;] = ihe; 5 Dy.
If the atomic state is an eigenstate of L? and S?:

(Ly Sy Jy M| S*D —DS? | L;S; Ji M;) = (Sf(sfﬂ)—si(siﬂ))h? (LySpJs M| D |LiS;J; M;) = 0

which means the rate is zero unless AS = 0.

The second commutator is the same as the J commutator so the selection rule is identical:

AL=0,+1 054 0.

In multi-electron atoms these rules are only approximate because whereas the state of the

free atom is an eigenstate of J2, it is only approximately an eigenstate of L? and S?2.
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Suppose we have a state of two non-interacting particles in the same gravitational potential

(I’'m only using gravity because if they are non-interacting they had better be electrically

neutrall):
Pt | D3
H == 4 5= 4 mé(r1) + mo(rs)
This acts on a ket [¢)), and there is a complete set of basis kets |r1,rs) = |ry) |r2) represent-

ing a state in which particle 7 is at r;.

What sort of eigenstates can we expect to find?

There is an obvious symmetry — both particles are identical so they appear in the Hamil-
tonian in identical ways. (If they didn’t we could use the difference to distingush between

them.) To make it more formal we introduce an exchange operator Pjo which swaps particle
labels:

Pt _ P
2m  2m
Thus it appears that eigenstates of H can be chosen to be eigenstates of Pis.

P12 tc and hence [Plg, H] = 0.

P?, = 1 and so the eigenstates are either symmetric Pis |¢) = |1) or antisymmetric Pis |¢) =
— |1p). But the vanishing [Pj2, H| commutator doesn’t just apply to this situation: it will be
true for any other interaction we care to introduce. It simply depends on the indistinguisha-

bility of the two particles.
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Thus neither this Hamiltonian nor any other possible Hamiltonian can distinguish between

the two particles so [Py, H] = 0 for all situations.

But this means that two particles in a symmetric state will always remain in a symmetric
state (compare the argument for the Parity selection above). So at the foundation of the
world some of these identical particles were put in symmetric and some into antisymmetric

states . . . this is getting ridiculous!

It is not so! For any given particle the wavefunction is either always symmetric under P;s, or
always antisymmetric, depending on the particle. Particles with symmetric wavefunctions
obey Bose-Einstein statistics, and are known as bosons, and particles with antisymmetric

wavefunctions obey Fermi-Dirac statistics and are known as fermions.
How do we know which is which? The Spin-Statistics Theorem states:
Particles with integer spin are bosons, and particles with half-integer spin are fermions.

Thus electrons, protons, neutrons, *He nuclei are fermions, deuterium nuclei, hydrogen atoms
and alpha particles are bosons.
That electron wavefunctions are antisymmetric under P;5 is known as the Pauli principle.

(Nomenclature complex here.)
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The atom consists of N electrons (charge —e, mass m, labelled 1 to N) and a nucleus (charge
Ze, mass M, labelled 0). The mass of the atom is M = M + Nm.

The Hamiltonian is the energy function of the atom. The biggest terms are obvious:

P2
Hy = Z : Kinetic energy of the electrons
- 2m
Ze?
— Z Electrostatic electron-nucleus potential energy
dmeg R;
o2
+ Z — Electrostatic electron-electron potential energy
Py 47T€0Rij
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1. Relativistic Correction to the Kinetic Energy

This takes the same form as in Hydrogen for each electron:

P4
Hy = Z - 8m3c2

1

2. Kinetic Energy of the Nucleus
Our starting point H, treats the nucleus as fixed at the origin — and so, in effect, infinitely
massive. The configuration of the system is defined by the IV positions R;...Ry.
We can easily give the nucleus a variable position Ry (with corresponding change R; — R;g

in the electron-nuclear distance) and then include a term
P2
Hy = .
2M

However it’s not so simple ...
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By giving the system three more degrees of freedom, it is no longer fixed to the origin - the
whole atom can now move! We need to remove this free-particle degree of freedom to dis-

cover what the energy of the system is in the centre-of-mass frame.
We do this with a co-ordinate change:
M

=R, — Ry Electron 7 relative to Nucleus

rog = Centre of Mass

We need to find out what the new conjugate momenta are — i.e. we have to find out what
the operators P = —thVy and p; = —thV,; represent.

In fact the algebra is shorter if we proceed backwards(!):

1, Oxrg O Oox; O . Oxg O , Oox; O
P il = — i — Py; = — —
X0 = ZhaXo ZhaXo 8:60 th (9X0 (9332 X ih (‘9XZ 8:60 thz: 8XZ (9332

Reading off the partial differentials

M
Pozﬂp—;pi Pi:%’P+pi and hence P:PO+ZPi
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Thus P (the momentum conjugate to rg) represents the total momentum of the atom in the
original reference frame, and hence P /M represents the velocity of the centre of mass V.

Then p; = P; — mV = m(V — V) is the momentum in the centre-of-mass frame.

Thus although our co-ordinate is r; = R; — Ry, the position relative to the nucleus,

the conjugate momentum p; represents the mass x velocity relative to centre of mass.

The momentum of the nucleus in the centre-of-mass frame is Py — MV,
which we define to be pg =Py — MV =—-) . p;.

To complete the calculation we find the total kinetic energy in terms of the new momenta:

ZP¢2+ Py _Z(%P+Pi)2+(%P+PO)2_ P? n p; n 3%
om  2M om IM - 2M —~ 29m  2M

7 7 7

which nicely splits into the free-particle term, the electronic term (but relative to centre of

mass instead of fixed origin) and a new term representing the kinetic energy of the nucleus:

(— Zz Pi)2

H, —
2 IM
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Standard Atomic Units

If we adopt units in which Planck’s constant i, the elementary charge e, the mass of the elec-

tron m, and 4meg are all 1 then we eliminate a lot of scaling factors in Hamiltonians, and

this is the standard set of atomic units. We can use these quantities to define units of mass,

length, time and current, and so they form a complete set of units:

Constant Dimensions
Me [M]
R (M L?>T1
e? /4meq (M L3T~2]
Quantity Unit Name
72
Length [L] moc?dmeg Bohr radius ag
h?)
Ti T
me [T me(€?/4meqy)?
1 e?
Velocity [LT~
elocity | ] pE—
. 2 4 2
Energy [M L?*T 2] Me(€ 22 m€) Hartree Hg
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Scaling the Hydrogen Hamiltonian
The Hamiltonian for the internal motion in any hydrogen-like atom (neglecting relativistic
terms) is
h’ h” Ze? h’ Ze?

VZ__V2_ :__V2_
2m 2M 4meqr 21 4meqr

H=—

where the nucleus has charge Ze and mass M, and yu = m.M/(m, + M) is the reduced mass.
There are quite a lot of different systems described by this Hamiltonian, with different values

of Z and p, or ( = pu/me:

System Z (

Hydrogen I — ”ipm ~ 1
D e

Deuterium 1 mﬂdm 1

‘Het 2 — ”:f‘m 1

Hydrogen-like 7 Z # 1

Muonium 1 — ”:L“m ~ 1
o e

Positronium 1 %

Muonic Z A mz T~ 907
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Scaled Atomic Units
However the constants appearing in this Hamiltonion are not the ones we used to define the
units: we have p instead of m, and Ze? instead of e?. With these replacements we get:
h2 agp

e N2 Q) = Z e ire ~ ZC

uz%et
(4mep)2h?

Energy:  H(Z,() = = (Z*H,.

We switch to these units by defining r =a(Z,Qr E = H(Z,()E and this strips out all
the constants from the Schrodinger equation:
1

1 2
— V%) — —1p = E.
2vw e (G

. . . 6_’r|
This has eigenvalues E,,;,, = ———= and the wavefunctions are, for example, 11990 =

N2 N
This is a remarkable result: all these distinct systems have the same eigenvalues and wave-

functions — apart from the scaling factors. All the system properties for hydrogen can be

scaled appropriately and apply to positronium or He™.
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However if we add in the relativistic correction terms in H this is no longer exactly true:
they have system-dependent scaling factors even after the switch to these variables. (Also,
in the case of Ps, we may have to reconsider terms neglected because of their ‘nuclear’ mass-

dependence)

Consider the relativistic correction to the electron kinetic energy:

=g =~ (ot ) o' = (2070 (%0,

Sm3c2 Sm3c2aq 8

Thus at this level the system-dependent constants remain: we see that in He™ this term is
relatively Z% = 4 times bigger than in Hydrogen (neglecting the small change in (), and abso-
lutely Z* = 16 times bigger.

In positronium it is relatively smaller by ¢3 = 1/8 and absolutely smaller by 1/16, and we
have to include the corresponding term for the positron which in an ordinary nuclear atom is

much smaller because of the M3 dependence.
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Application to Helium-like systems

An atom with two electrons has the Hamiltonian (neglecting all relativistic and magnetic

Ze? e? (—P1 — P2)°
H =
Z (2me 47T€QTZ') + 471'607“12 + 2M

1=1,2

terms)

If we expand out the nuclear kinetic energy:

2 e’ P1 - P2
H =
121:2 ( 47'('607“@) + 471'6()7“12 + M

It looks as though the same Z and p-scaled atomic units will simplify H:

2
02 1 11 pu
H=HZ|Y (Z- )+ -

i=1,2

But in this case we can’t eliminate the system-dependent factors from the scaled Hamiltonion
— the fact that we can for Hydrogen is (yet another) special result. Every He-like system is
a fundamenatally different problem. We shall therefore make the usual choice of mass-scaled

but not Z-scaled units:
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Exact Analysis: Symmetries

_ RS W S
H =71(1,Q) Z(Q M)+ + 7P P2

i=1,2 riz

We start with some analysis on H to find out what properties its eigenkets will have.

A complete set of kets is provided by position and spin eigenstates |r1,r2, 01, 02) in which
particle ¢ is at r;, and has z-component of spin ¢; which can be either :t%.
Thus (a,b, «, 8] 1) where a, b are position vectors, and «, # are +1, is the amplitude for the

configuration with electron 1 at a with spin « and electron 2 at b with spin S.

Obviously [Pi2, H] = 0 and we require fermionic antisymmetry:

<a,b,oz,6]P12 W> — (b,a,@,a!¢> - = <a>b70475‘¢>
We define operators Ri2 and S12 which exchange position and spin labels (Po = R12512):

(a,b,a,ﬁ\ng W> — <b7a70575’¢> <a,b,04,6’512 W> — <a7b757&’¢> .

H contains no spin operators, so that [Ri2, H| = [S12, H] = 0. Hence the eigenkets can be
eigenkets of both Ri5 and Sis.
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We can safely assume that [J, H] = 0, where J = L + S is the total angular momentum.
But since H contains no spin operators [S, H| = 0, and also [L, H] = 0.

However [l;, H| is non-zero because of the electron-electron interaction term:

1 L 1
L., H = [r; A . d re A —
11y, H] 1 N\ P1, s + MP1 P2] an [1 P1, !r12‘

£0

] . _irl N ro
r12]

So the eigenkets can be eigenkets of any component of L and S, but not of the single-electron

angular momenta.

Finally H commutes with parity P (as do all atomic Hamiltonians) [H, P] = 0.

How many of these are simultaneously possible — that is, how many of these operators com-
mute with each other as well as with H?

All except for the fact that the different components of angular momenta do not commute
([Ls, Ly] =1L, etc.) We therefore choose to make the states eigenstates of L? and L, etc.

We then find that [J2, L.] # 0 and [J?,S.] # 0.

Summary: The eigenkets of the approximate Helium H can be chosen to be eigenstates
of Pi5 (with eigenvalue —1), Ry2, S12, P, L?, S?, and either L, S, or J?, J..
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Symmetric and Antisymmetric Spin States
We can easily find the required eigenstates of S1o by considering just the spin part of our ba-
sis kets |01, 09):
Sio |+, +) = |+, +) Siz|+,—) =|—,+)

Si2]|=, =) =|—,—) S12|—=,+) = |+, —)
Thus two of the four states are symmetric, and the other two have no definite symmetry. But

we can easily find normalised symmetric or anti-symmetric combinations:

1 1

512\/—H+ >+’_7+>] TH_ >+‘+7_>] :+ﬁ[’+7_>+‘_7+>]
1 1

512\/— I+, =) == H)]= ﬁ = +) = |+, =) = 7 4 =) = = +)]

So there are three symmetric spin states (512 eigenvalue +1) and one antisymmetric
spin state (S12 eigenvalue —1). These must be combined with spatial states of the opposite

symmetry so that the overall Pjo symmetry is antisymmetric (P;o eigenvalue —1).
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Spin properties of the symmetrised states
Having decided on symmetric and antisymmetric spin states we now expect to find eigen-

states of total spin S% and S,. The S, part is easy:

1
S, =51, + 5o, and we know 1. |+) = 5 |+) .

Thus we can easily deduce
1 1
S|+, +) = 5715 I+, +) = (+1) [+, +) S.|+,—)=0

S:|——) = (_71+_71) — =) =1 |- -) S:|—+)=0

Thus S, eigenvalues: the three symmetric states have +1, 0, —1, and the antisymmetric state
has 0.

The S? part needs a bit more work: S? = (s; +53)? = s7 + 53 + 251 - 3. We can expand the

final term:

251 - So = 251,525 + 251yS2y + 281,52, = S14S2— + S1_So + 251,S9..
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We know the effect of the individual electron s* and sy or s_ operators:

Pl =s(sH D) =) s =0 sl =14,

Hence
S% |+, +) = §+§+0+0+2111++»=2H—H
’ 4 4 2 2 ’ ’
and similarly for |—, —), while for the other two we note that s;1s2_ |—,+) = |+, —) so that

3 3 1 —1
2 . . — ~ < - . .
S\+,>i\,+ﬂ Q{+4i1+22 2)D+,>i\,+>.

Thus all four states are eigenstates of S?, with eigenvalues of 2 or 0. What did we expect?

We are adding two angular momenta of % so we expect the maximum S quantum number to

be 1 and the minimum to be 0. The eigenvalue is S(S + 1) which is thus 2 or 0 . . . perfect!

Thus making the spin states symmetric and antisymmetric under Si5 also made coupled the

spins to 0 or 1. We label these states with S,Mg for total spin and z-component:

L1)=+,4) (1,0 = % 4, =) + |+ =)
1-1)=|——)  [0,0)= % I+, =) — [+, -)].
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Summary of exact properties of eigenstates
The approximate Hamiltonian containing just non-relativistic kinetic energies and electro-

static interactions has eigenstates denoted by 21 L with the following properties:

3G,3P,3D... using the usual letter code, but now in capitals: 0=95,1= P, 2 = D etc.
e Sio eigenvalue +1 with R eigenvalue —1 ;
e P, eigenvalue —1 (only)

S2 eigenvalue S(S + 1) =2 (S = 1, ‘triplets’) and S, eigenvalue Mg = 0, £1;

L? eigenvalue L(L + 1) with L =0,1,2...

e an eigenstate of parity;

NOT an eigenstate of £3 + ¢3;

15,1P 1D...

e 515 eigenvalue —1 with Rq5 eigenvalue +1 ;

e P, eigenvalue —1 (only)

S2 eigenvalue S(S + 1) =0 (S = 0, ‘singlets’) and S, eigenvalue Mg = 0;
L? eigenvalue L(L + 1) with L =0,1,2...

e an eigenstate of parity;

NOT an eigenstate of £2 + £3;
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Perturbation Theory
However these exact properties do not enable us to find the eigenkets or their energies.
The only approach we have to fall back on is Perturbation Theory .

We drop the small nuclear motion terms, and revert to standard atomic units to leave

2 2
p; Z 1
i=to| 3 (5 1)

i=1,2 riz

The term that makes it hard is the 1/r;5 term — without that it is just two uncoupled hy-
drogen Hamiltonians. But the coefficient of 1 is not exactly small in comparison with Z,

especially in Helium. But this approach might just give some insight in helium-like ions of
higher Z.

So we treat the final term using Pertubation Theory.
The unperturbed eigenkets are just products of hydrogenic states with any spin state:

[, b1, mang, ba,ma; S, Ms) = [na, f,ma) [ng, £2,ma) [S, Ms) .
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However these don’t have all the symmetries we want (as well as some quantum numbers —
n and ¢ — we said we didn’t want). But the ground state (ny =no = 1,41 =¥l =0 = s) is
OK:

15> 1S) = |1s) |1s) |0, 0)

where the spatial state is symmetric so the spin state is antisymmetric, and there is no angu-
lar momentum either orbital or spin, and even parity. The zeroth-order energy is two hydro-

genic energies:
Z? 72
EES; = —7 — 7 = —22 in units of HO.

The general state above has zeroth-order energy

Z? Z?
0) . .
EQ  =— 2 a2 in units of Ho.

Taking no — oo gives a prediction for the 1st ionization energy of Z?H,/2, or 54.4 eV for
helium — a rotten prediction! But it makes one useful prediction: the state with both elec-
trons in n = 2 has 1/4 of the binding energy of the ground state, whereas the first ionisation

is predicted to be a half: any doubly excited states are above the first tonisation level.
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So we consider only singly excited states 1sn/:

Ground State: |1s*'S) = |1s) |1s) |0,0)

1 -
Excited Singlet State: |lsnf'L) = [|1s) [ne) + |nf)|1s) |]0,0)

2

- 5

Excited Triplet State: [Lsnl°L) = —[|1s) |nf) — |nf) |1s)

’17M5>

~

These states have all the right eigenvalue properties: spin and space exchange symmetry, par-
ity, eigenstates of $?, L, S, and L,. (No coupling required in orbital angular momentum be-

cause one of the £ is zero!) The only problem is that it is also an eigenstate of £% + /3.

The zeroth-order energies of these states are

zZ? Z®

5 9 in units of Hj.
n

Now we have constructed the correct zeroth-order eigenkets and energies we can do some per-

turbation theory.

CWPP 15/2/2013



Further Quantum Physics Helium 61

First-Order Perturbation Theory

We now evaluate the effect of the electron-electron interaction in perturbation theory:

1 1 1

1
ri2] \/r% —2r1-r2+r§ s V1 —2tcos Oy + t2

where r~ is the larger of |r1]|, |rz2|, and ¢ = r-/r~. But this is just the generating function for

Legendre polynomials so
¢
r

1 > 2
—‘rm‘ — (—r“l) Py(cos f12)
¢=0 >

If we only consider ¢/ = 0, or s, states then we need only consider the first term in the series:
the others introduce angular factors that integrate to zero.

For the ground state we have

1 A 1
Eﬁi = /10;92 (T17T2)T—¢1s2 (r1,72) d°r1 d°ra Ho = — / — 2272272 By dBPry Ho.
>

T I‘>

The integral is 57/8 so Eg% = (5Z/8) Ho.
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In the excited states we now reap the benefits of putting some effort into the symmetries of
the zeroth-order kets: what would otherwise be a degenerate perturbation problem of large
order can be treated as non-degenerate because the kets are all eigenkets of operators com-

muting with Hy and Hy:

20 (15253 ’ 1’15253S>
2 (1s2st| o [1s251S)

In excited states this method yields two classes of integral:

Ei, = / \ﬁbls("“l)fzi!@s(?b)fz d’ry d’ry £ / [P15(71) P2s(71)] i[ﬁbls(ﬁ)%s (r2)] d’r1 d’rs
s T

>

known as direct and exchange integrals (upper sign for singlet, lower for triplet).

Enthusiasts may care to check that this gives

17 16
BN ==+ ) 2%,
Ls2s (81 729) o
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Variational Theorem
To do better than this we must use a more powerful method. The variational theorem allows
us to construct very accurate ground states (or lowest states of given symmetry):
Theorem:
For any ket |a) the expectation value of the Hamiltonian (| H |a) / (a| «) is an upper bound
for the ground state energy.

Proof:
Expand |a) in energy eigenstates |o) = ) . ¢; |E;). Then

(ol H o) 3, 1clPE; o > leil? (B — Eq) -
— a2 L PE = &1
<Oé’ Oé> ZZ ’CZ’ ZZ ’CZ’

since the last term is positive definite. Equality is obtained iff |a) = |E7).

All accurate atomic wavefunctions are based in way or another on the variational theorem,
either constructing the wavefunction as a sum of analytic functions with variable coeflicients,

or as a numerical approximation on a grid of points.

For excited states there is an extension, the HUM (Hylleraas-Undheim-MacDonald) Theorem:
for a set of trial wavefunctions the n’th eigenvalue of the Hamiltonian matrix gives an upper
bound for the n’th excited state.
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A very simple variational wavefunction is provided by an effective-Z model: we observe that
the electron-electron interaction counteracts the electron nulear interaction by tending to

push electrons apart rather than together. So we introduce a different splitting up of H:

2 / /
_ p; Z 1\, 1 Z—Z
= Z(z mw)* Z( ] ) #o.

i=1,2

The ground state eigenfunction of the first term is

73
7 eXp[—Z/(rl + rg)],

and we use this as our variational wavefunction. The expectation value is given by

First term: —Z'2
57"

8
(Z-2')

e-e interaction:

Last term: —22" - = 222 - 7))
giving a total energy of Z'? — (2Z — 5/8)Z’. This has a minimum:
5 5\
=7 — — Emin:_ Z — — .
min 16 ( 16) Ho
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Obviously this is somewhat better for Helium but for the higher Z cases it’s not really any
improvement — because we haven’t tackled the fundamental problem of the correlation in-

duced by the electron-electron interaction.

The real problem stems from the fact that the approximate kets we are using are eigenkets of
¢;. For the groundstate this implies that the variational wavefunction is of the form (ry,r2):

the amplitudes

(rin,mon, o, B])  and  (rin, —ren, «, B[ 9)
are equal. What is needed is an explicit dependence on ri5 as well.

From a perturbation perspective, the effect of the 1/r15 perturbation is to mix other configu-

rations, including a small amount of ‘2p2 1g > into ‘132 1g >

The quantum numbers ¢; are thus approximate: giving a rough indication of the property of

the state but not exactly true: an important idea in atomic physics.
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