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HIGH PRECISION VARIATIONAL CALCULATIONS FOR THE 15?'S STATE OF H~
AND THE 1s* 'S, 1s2s 'S AND 1s2s °S STATES OF HELIUM

G.W.F. DRAKE
Department of Physics, University of Windsor, Windsor, Oniario, Canada N9B 3P4

High precision variational eigenvalues are presented for the 15218 state of H™, and the 1s*'S, 1s25 'S and 1s2s S states of
helium, together with relativistic, mass polarization and relativistic recoil corrections. In addition to the nonrelativistic energy, all
corrections of order a2, p/ M (p/M )2 and alp /M are calculated to an accuracy of better than 10Tf cm ™. Previous results of
similar accuracy are available for the 1snd 1D and 3D states up to n =8. A comparison with the high precision 1s2s 3Slflsnd 3D1
transition frequency measurements of Hlousek et al. indicates that the known quantum electrodynamic (Lamb shift) contribution of
—-0.13488 cm ™" to the ionization energy of the 1s2s *S, state is too small in magnitude by 0.00048(6) cm~!. A discrepancy of this
size can reasonably be accounted for by as yet uncalculated contributions to the two-electron Lamb shift.

1, Introduction

The accuracy of measurements of the helivm
1525 38,-1snd 3D]transition wavelengths for n =4 and
5 by Hlousek et al. {1] is sufficient to determine the
Lamb shift of the 1s2s * S, state to a precision of about
6 parts in 10°. However, the interpretation of the ex-
perimental results has been hampered by an insuffi-
clently accurate knowledge of the nonrelativistic en-
ergics of the states, together with a number of other
non-QED corrections.

We have recently described some new variational
techniques for two-electron atoms [2] in which a Hy-
lleraas-type correlated basis set is “doubled” by includ-
ing each combination of powers of r, r, and ry
(r;o= | — 1 |) twice with different exponential nenlin-
ear parameters, along with the exact screened hydro-
genic wave function. A complete optimization is then
performed with respect to all the nonlinear parameters,
as described below. The basis set was originally desig-
ned with applications to high-lying Rydberg states in
mind, where it gives convergence to a few parts in 10"
for the D-states up to n =28 [2]. However, tests of the
method for the low-lying S and P states indicate that it
works extremely well here also. The S-state results pre-
sented in this paper significantly improve on the accu-
racy of the older tabulations by Accad et al. [3], and at
! least match the accuracy of more recent work by Freund
4 et al. [4] and Baker et al. [5] on the ground state. The
results enable one to extract the QED and higher-order
relativistic effects from the experimental data to the full
extent of the experimental precision.

2. Computational procedure
In this section, the variational basis set is described,
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and the method for optimizing the nonlinear parameters
is briefly outlined.

In the double basis set method, the trial function is
written in the form ¥, = ¥(r, r) 4+ ¥(r,, r,) where,
for S-states

¥(r, n)=ag¥y(ls, ns) + Y, aif,cr{r{r{‘z e~ @ Fir
ik

iLfuk —apr—0,r
+ X by jprirfrp e” TR
if.k

1

and ¥,(1s, ns) is the screened hydrogenic wave func-
tion with nuclear charges Z and Z—1 for the two
electrons. This choice is particularly appropriate for
Rydberg states, but it does no harm for low-lying states.
All terms are included in (1) such that i+j+ k<N,
except that the / =j=k =0 term is omitted from the
first summation so as not to (nearly) duplicate ¥,

(1s, ns). (For H™, the ¥,(1s, 1s) term is omitted instead

since Z — 1 =0 for this case.) Also terms with i > j are
omitted because this would correspond to a further
doubling of the basis set with a, and 8, (r=1, 2)
interchanged.

The optimization of the «’s and B’s is efficiently
accomplished by calculating analytically the derivatives

iE
=WV, |H-E|rn¥(r, n; )

e,
P (72, 13 ), @
E
35 = "X Tl H—Eln¥(n, 1 B)
T

i"]‘p("z’ Ji'1; Bl))! (3)

where (¥, |¥,>=1 and ¥(r, ry; «,) denoles the
terms in (1) which depend explicitly on «,. There is no
contribution to the derivatives from the implicit depen-
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8 G.W.FE. Drake / High precision variational calculation for H ™ and He

dence of E on «, (or 8,) through the linear coefficients
a;; and b, 5 in (1) because the energy is stationary in
first order with respect to variations of the linear coeffi-
cients, The procedure followed was to estimate the
second derivatives by differencing and locate the zero's
of the first derivatives by Newton’s method. Provided
that the initial a’s and B°s are chosen close to a
minimum, the procedure converges in a few iterations,
particularly for large basis sets.

3. Nonrelativistic eigenvalues

Table 1 shows the convergence of the eigenvalues as
the basis set is enlarged for the 1s® 'S state of H™ and
He. Since the ratios of successive differences are ap-
proximately constant for large basis sets, the extrapo-
lated energy is obtained by assuming that higher order
differences continue decreasing as a geomeiric series.
The uncertainty is conservatively estimated as the entire
amount of the extrapolation from the largest N =13
calculation to N = 14.

For H™, the present 190-term calculation matches
the accuracy of Frankowski and Pekeris’s 246-term re-
sult, and the nltimate uncertainty of 1 X 10713 au. is
better than theirs by a factor of about 2000. The eigen-

Table 1

value agrees to about 14 figures with the value obtained
by Baker et al. [5] by summing a 1/Z expansion per-
turbation series to high order. For the ground state of
helium, the ultimate convergence of 0.3 x 10™1* a.u. is
about the same as obtained by Freund ei al. [4]. They
reached this level of accuracy wiih only 230 terms by
including logarithmic terms in the basis set. The good
agreement indicates that logarithmic terms hasten the
rate of convergence, but any essential contribution to
the energy from logarithmic terms is less than 10713
a.u.

Analogous results are given in table 1 for the excited
S-states of helium. Although the 1s2s 'S state is some-
what more slowly convergent than the ground state, the
1525 S state is much more rapidly convergent with an
ultimate uncertainty of only 3 % 107! a.u. This is now
the most accurately known nonrelativistic energy for
any two-eleciron state. For the smaller basis sets, the
results are comparable in accuracy to those obtained by
Frankowski [6] using logarithmic and hyperbolic func-
tions. Double basis sets have also been used by Kono
and Hattori [7], but the auxiliary restrictions they place
on the basis set greatly limit the accuracy of their
results.

It is also of interest to compare the small 44 and 6
term results in table 1 with the rapidly convergent

Convergence of the nonrelativistic eigenvalues for infinite nuclear mass. & is the basis set index such that i + Jjtk<Nineqg. (1)

Numbers in brackets indicate the uncertainties in the final figures quoted

»

N No. of H™ (1s%'8) He (1521S)
terms
4 44 —0.5277507368881 —2.9037241310211
5 68 —0.5277509742432 —2.9037243515899
6 100 --0,5277510091265 —2.9037243739261
7 140 —0.5277510153341 —2.9037243766000
8 190 —0.5277510162993 —2.9037243769652
9 250 —0.527751016497397 —2.903724377020902
10 322 —0.527751016534555 —2.903724377031537
11 406 —0.527751016541944 —2.803724377033508
12 504 - 0.527751016543806 —2.903724377033960
13 616 —0.527751016544203 —2.903724377034073
extrap. —0.527751016544306(85) —2.903724377034105(28)
He (125 '8) He (1525 *S)
4 44 —2.1459736210739 -2,1752293689656
5 68 —2.1459739982741 —2.1752293766738
6 100 —2.1459740362759 —2.175229378076%
7 140 —~2.1459740447865 —2.1752293782159
8 190 —2.1459740458089 —2.1752293782345
9 250 —2,145974046004007 —2.175229378236475
10 322 —2.145974046044291 —~2.175229378236747
11 406 —2.145974046051233 —2.1752293782367820
12 504 —2,145974046053633 —2.1752293782367893
13 616 —2.145974046054143 —2.1752293782367907
extrap. —2.14597404605428(11) —2.1752293782367910(3)
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Fig. 1. Variation of the optimized nonlinear parameters in eq.
(1) with the basis set index ¥ for the 1s? '3 state of helium.

Fig. 2. Variation of the optimized nonlinear parameters in eq.

(1) with the basis set index & for the 1s2s 33 state of helium.

integral-transform wave functions of Thakkar and Smith
[8], in which the expansion ferms are all of the form
exp(—a,ry — Biry — 1i112)- For the ground state of He,
the present results are only slightly inferior to theirs for
basis sets of about the same size, while for the excited
states, the present results appear to be slightly better
(ie. lower energies). For H~, the 68-term value of
—0.527750974 from table 1 lies lower than their 60-term
result of —0.52775094. The present wave functions
therefore achieve about the same degree of “compact-
ness” as theirs.

The variation of the optimum non-linear parameters
with the basis set index N is illustrated in figs. 1 and 2
for the 152 'S and 1s2s S states of helium. The values
of @« and B, are close to-the screened hydrogenic
values, while o, and/or B8, increase almost linearly
with N such that the function +¥ e=#" peaks at about
the same value of . The linear rise in 8, ensures that
the terms in the doubled basis set do not approach
linear dependence as N increases. The w;, B, terms in
(1) are apparently describing the physically expected
long range behaviour of the wave function, while the
a,, f, terms are describing complex inner correlation
effects. However, there are multiple roots corresponding
approximately to pairwise interchanges of the a,, B,
with further multiplicities in some cases. The four-di-
mensional energy surface generated by varying the «’s
and B8’s appears to have a rather complicated structure,
and one must be careful to choose the lowest numeri-
cally stable root for a small basis set and then follow it
by extrapolation to larger basis sets. For example in fig.
2, the anomaly in f, at N =7 appears to be related to
the appearance of a second set of numerically unstable
roots with ay = 8, for N > 7 which lie midway between
the «,, B, lines shown in the figure.

4, Small corrections

Since second-order mass polarization effects are im-
portant for calculations of this accuracy, the eigenvalues
were recalculated with the (p/M)p, - p, mass polariza-
tion operator included explicitly in the Hamiltonian.
The resulting energy shifts can be expressed in the form

AE,(H™ 118)

— 0.03287978125( /M) = 0.059779493(p/M )"
AE, (He 11S)

= 0.1590694751( /M ) — 0.47039190( p/ M)’
AE,(He 218)

= 0.009503864419( /M) — 0.135277( /M)’
AE,(He238) °

= 0.007442130706( p,/M ) — 0.0574958( /M )

I. FEW-ELECTRON SYSTEMS




10 G.W.F, Drake / High precision variational calculation for H ~ and He

in units of 2R, where R,,=[1—(pn/M)|R_, and p is
the reduced electron mass mM/(m+ M). For *He,
(n/M)=1.370745633 x 104, and for H™, (p/M)=
5.44320567 % 10", The leading coefficient above is { p;
- P> calculated for infinite nuclear mass, and the next
coefficient is obtained by subiracting the leading term
from the directly calculated tofal energy shift due to
mass polarization. The above formulas therefore exactly
reproduce the directly calculated energies for the given
values of p/M. Since all the odd coefficients vanish in
the absence of electron correlation, they are all small for
the excited states in comparison with the even terms,
and hence terms beyond (p/M)? are negligible for
these states. For the ground states, the coefficients of
(p/M)? may contain small contributions from higher
order terms due to the subtraction procedure used to
calculate them.

The remaining corrections included in this work are
relativistic, relativistic recoil, Lamb shift and finite
nuclear size effects. In the notation of Bethe and Salpeter
[9], the relativistic corrections are

AErE|= < k4

5ol o

where
H - ﬁgz_( 44 4) (5)
1 8 Pl P2 *
o? -2
H,= _‘i-;-ﬁ[Pl'PzJ”’lz "12‘("12'171)1’2]’ (6)
12
Hy=na?[28(n) —8(r)] )

and H, and H; are the spin-orbit and spin—spin
interactions. For S-states, H; does not-contribute and
5 reduces to

Hy=27a%8(ry,). (8)

For the D states, anomalous magnetic moment correc-
tions are included in the spin-dependent parts of the
AE_, as described in [2].

The relativistic recoil terms are finite mass correc-
tions to the Breit interaction. If the reduced mass Ryd-
berg Ry is used to convert all quantities from a.u. to
cm ™!, then, following Stone [10]

AEgy = (AERR)M"' (8Err)x ()
where l
(AErp)u

=A+4,- —;}[SHl +2(H, + Hy o + Hy + HS)

(10)

with

A=3 (Zez/mMcz)r,:3rlk X p5, (11)
Py

Ay =—3 (Ze*/2mMc?)
Py

X ["EIP;:'PJ"‘ 1 (e 'Pk)pi] (12)
and

(AEgg)x = < 'I’M.P‘ZH“PMP> - <‘P‘ZH;"P> -
| W

Yp i8 the wave function with mass polarization correc-
tions included. Thus (AEgg)x takes into account the
second order cross terms between the Breit interaction
and the mass polarization operator.

The QED energy shift is taken to be the one-electron
energy shift corrected for the electron density at the
nuclens, together with explicit two-electron terms de-
pendent on (§(r;)) and Q. In this approximation, the
energy shift is [11,12]

AE, =AE, | + AE, ,, (14)

where

ALy = %Zaa{ln( Za)* +In[ Z* Ryd/e(nLS)| + 1

+3vZa(F — 3n 2) + (2a)’| - i (Za)’

+Cyy In( Zar)* + Gy .
+%0.4042}(6(r1) +o(n)) (15)
AE, ,= '13(]1‘1]11 a+ )8 (m)) — Fa’0 (16)
and
Q=%}%(rﬁ3(a)+4w(y+ln a)ﬁ(ru)>. (17)

Here, v is Euler's constant and a is the radius of a
sphere centered at r;, =0 which is excluded from the
integration over ry,. The Bethe logarithms are esiimated
from the screened hydrogenic form [13,14]

In[e(nLs)/Z? Ryd| .
=Infeo(nLS)(Z —0)*/Z* Ryd] (18)

where In ¢,(#nLS) is determined from the hydrogenic
Bethe logarithms according to [15,16]

In 6o (nL8) = [In e(1s) + a2 n e(al)] /{1 + n%8,,).

(19}
The hydrogenic Bethe logarithms are tabulated by
Klarsfeld and Maquet [17]. The screening constants o

in eq. (18) have been calculated by Goldman and Drake
[13] for the low-lying S- and P-states from the leading

terms in the 1/Z expansion of the two-electron Bethe
logarithm. The final results for the S-states are '

In[ €(1S)/Ryd] = In[19.7692669( Z — 0.00615)*]

(20)
in[ (2 'S)/Ryd] = In[19.3042687( Z + 0.02040)"]

(21)
in[ €(2 28)/Ryd] = In[19.3942687( Z + 0.01388)"]..

(22)

The coefficients Gy and Cyq in eg. (15) are weakly state
dependent. The values of C; for the 1s and 2s states
are 3.964530 and 4.347589 respectively [18]. In analogy
with eq. (19) for the Bethe logarithm, the two-electron
value for G is taken to be

Cq(nLS) = [Ca(ls) -+ n‘3CﬁI(nl)]/(!+ n_360,,).
(23)

This gives 4.00709 for the 1s2s states. The state depen-
dence of Cgy is not known, but it is expressed to be
similarly small. The value —24 was used for both the 1s
and 2s stafes [19,20].

The correction due to finite nuclear size is given in
lowest order by

AR = 2mZ(R/ay)"

nue 3

(8(r) +8(n)), (24)

where R is the root-mean-square radins of the nuclear
charge distribution and @, is the Bohr radius. The
values used were R = 1.673 fm for He [21] and R = 0.862
fm for H™ {22].

The matrix elements needed to evaluate the above
corrections are summarized in table 2. The final calcula-
tions were all performed in quadruple precision (ap-
proximately 32 decimal digits). A number of general
formulas which are useful in the evaluation of the
matrix elements for states of arbitrary angular momen-
tum are given in ref, [23]. The matrix elements of 8(#)
were calculated by means of the global operator derived
by Hiller et al. [24], with modifications arising from the
(p/M)p,: p, term in the Hamiltonian, The final result
is

1/2Z 1 dr 1
(6(’"1))=E<;——2£—_3112

I I
+M,,1[Vl Vs rlzf‘l (n-vi)vs

-iz"l'Vz]>- (25)

"

The operator in square brackets is the additional contri-
bution due to (p/M)p, - p,. The last term is required to
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Table 2

Values for various matrix elements requires to calculate relativ-
istic and QED corrections to the energy. Bach quantity is
expressed in the form (T} = (Tp>+{T M p/M) a.u., where
(T, )(p /M) is the change in the matrix element when the mass
polarization term py-p,(p/M) is included explicitly in the
Hamiltonian H~ —(v7 + v2)/2— Z/r — Z/r 41/

Matrix T {11)
element

H™ (1s*18)
{pH/4 0.61563964(3) - 0.00063343(3)
(H,)>/a? —0.0088750223(2) 0.0324809408(1)
w(8(r)) 0.516958096(1) —0.02524237(1)
GG 0.008601665(5) —0.01127722(1)
A, /(ePm/MYy  —1.01456268(1)
0 0.0078554(1)

He (152 '8)
(phy4a 13.5220168(1) —0.1758280(1)
{H,) /e —0.01390946907(4) 0.638933826(2)
GO 5.687631443(1) —0.28647130(1)
w(8(r)) 0.33409336(4) —0.0387070(1)
A, flePm /M) —22.6482980(1)
o 0.0787238(1)

He (1525 'S)
{pH/4 10.2796689(1) 0.0200726(2)
{(H,)/a? —0.0092530465(6) 0.142257377(1)
{8(r)) 4.11379236(1) —0.0012624(2)
7{(8(r)d 0.02716989(3) 0.00555329(2)
Ay, ePm/M)  —16.656864(1)
o 0.0054069(1)

He (1525 °8)
{phsa 10.45888519(1) 0.01062391(4)
(H,)/o? —0.001628430062(0)  0.0235281977(0)
T{(8(r)) 4.1480178287(5) 0.006838839(2)
a{8(r;)) 0.0 0.0
A /(PmysMY  —16.905331(1)
g 0.003092499(1)

make the operator Hermitian. Compact general for-
mulas for the evaluation of this and other terms in the
Breit interaction will be given in a future publication.
The use of eq. (25) accelerates the rate of convergence
by about a factor of 20 relative to a direct evaluation of

{8(r)).

5. Resulfs and discussion

The various contributions to the energy are sum-
marized in tables 3 and 4 for the S and D states. Each
quantity is given relative to the corresponding term for
the He* (1s) state so that its negative is a contribution
to the ionization potential. All quantities have con-
verged to at least the number of figures quoted.

Since the Lamb shifts for the D states are much

1. FEW-ELECTRON SYSTEMS
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Table 3

Contributions to the S-state energies (em™'), vsing R, =109737.31569 cm~' [25] and « ' =137.03596. For He, p/M=
1.370745633 X 10" and R,, =109722.273495 cm™ L. For H™, p/M =35.44320567x10~* and R, =109677.583412 cm~'. AED
and AED are the first and second arder mass polarization corrections given in section 4 of the text

H™ (1s*'S) He (1s218) He (1525 'S) He (1525 38)

Eum —6087.328864 —198317.386523 —32033.208405 — 38453131527
AE 3.925830 4.784852 0.285879 0.223861
AE@ —0.003885 —0.001940 —0.000558 —0.000237
AE, 0.304232 0.563780 —0.399270 —1.922044
(AEr)m —0.000483 —0.005162 -0.000495 —0.000188
(AEpp)x —0.000021 0.000325 0.000201 0.000043
AE, . 0.000001 0.000988 0.000067 0.000087
AEp, 0.009706 1.519836 0.101502 0.136100
AEL, —0.005930 —0.140402 —0.011022 —0,001231
Total — 6083.099414 —198310.664244 - 32033.232106 — 38454695136
Table 4

Contributions to the D-state energies {em ™) from ref. [2]. The
physical constants are as defined in table 3

33D, 43D, 53D,
Eur —12209.084724 —6866.166967 —4393.505299
AED 0.000762 0.000886 0.000589
AED —0.000226  —0.000127 —0.000081
AEq —-0.038056  —0.001848 — 0002654
(AEgp)u —0.000034  —0.000016 —0.000009
(AEgp)x 0.000020 0.000008 0.000004 ¥
AE,. 0.000000 0.000000 0.000000
AE —0.000372  —0.000171 —0.000090
AE, , —0.000082  —0.000035 —0.000018
Total —12209.122689 —6866.168268 —4393.507558

) Estimated from the 1,/n> scaling of the 33D value,

smaller than for the S states, a comparison with the
experimental 1525 *S;—1snd 3D transition frequencies
of Hlousek et al. [1], the Giacobino and Biraben [26]
can be interpreted as a measurement of the § state
Lamb shift. As shown in table 5, there is an almost
constant discrepancy of 0.00048(6) cm™" between the-
ory and experiment out of a total Lamb shift contribu-
tion of 0.13497 cm ™", such that the calculated 1s2s 7S,

Table 5
Comparison of experimental and theoretical 2 *S, - # I tran-
sition frequencies (cm ™)

Difference

228,-3°D, 2624557245 26245571%5) D  0.0005(5)
2%8,-4°D, 3158852687 31588.52639(6) ¥ 0.00048(6)
238,-5°D, 3406118758 34061.18709(8) ¥  0.00049(8)

¥ Giacobino and Biraben [26].
Y Hiousek et al. [1].

TFransition Theory Experiment

state lies too low by this amount. Considering the
incomplete state of two-electron Lamb shift calcula-
tions, the agreement is remarkably good. For example,
an upward shift of 0.00048 cm™! is obtained if one
reduces the magnitude of the Bethe logarithm sc¢reening
parameter in eq. (22) from —0.01388 to —0.01306.
Such a change could easily arise from higher order
terms in the 1/Z expansion of the two-€lectron Bethe
logarithm. If one atiributes the entire discrepancy to the
Bethe logarithm, then the experimental value of o for
the 1s2s 3S; state is

Gpp = —0.0131 £ 0.0001.

If terms beyond 1/Z are negligible, then one obtains
o= —0.01388 + Z~'0.0016(2).

Another possible source of the discrepancy is relatry-
istic corrections of O(a*) to the 1s2s ?S; state. How-
ever the leading two terms in the I /Z expansion of this
correction are known [27,28] and they indicate that
there is a great deal of numerical cancellation. The
result is

AERD (1525 38,) = (— 184 + &) a*Z® + 0.043230%Z°
=0.000044 cm!?

relative to He*(1s). This is too small by a factor of 10
to account for the discrepancy. A final resolution of the

problem must await full two-electron relativistic and
QED calculations.

The author is grateful to John D. Morgan III for
communicating his results on the 8§ states of helium in
advance of publication. He has obtained nonrelativistic
eigenvalues in substantial agreement with those pre-
sented here. This research was supported by the Natural
Sciences and Engineering Research Council of Canada.
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