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Abstract

It is argued that the topological approach to the (anti-)symmetrisation condition for the quantum state of a collection
of identical particles, defined in the “reduced” configuration space, is particularly natural from the perspective of de
Broglie-Bohm pilot-wave theory. © 1999 Published by Elsevier Science B.V.

1. Introduction

Probably no detailed treatment of identical parti-
cles in non-relativistic quantum mechanics has been
more influential than that due to Messiah and Green-
berg [1]. At least as far as the strict consequences of
the indistinguishable nature of the particles are con-
cerned, these authors are led more to clarify constraints
on the observables associated with a collection of such
particles than constraints on the state of the collection.
In particular, unlike Girardeau [2] and Mirman {3],
for example, they do not appear to regard it to be a
consequence of the indistinguishability of the particles
that the configuration space wave function satisfies the
condition

Y(xp-11,Xp-12,...,Xp-1y)
=e"P(x1,X2, ..., XN}, (D)

where N is the number of particles, P is an arbi-
trary permutation on the set {1,2,...,N}, and y is
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a real number which may or may not depend on the
point in the configuration space. This seems, indeed,
to be a separate assumption; after all, the square of
the modulus of the wave function in (1) is not (con-
trary to Ref. [3, p. 113]) equal to the probability
of detecting N particles in the spatial configuration
X1,X2,...,%y,* the expression of which should be
invariant under a permutation of the particle labels.
A separate and powerful approach to identical par-
ticles, however, does support the validity of (1), with
the restriction that e!” be a global phase factor. This is
the approach based on the use of a reduced configura-
tion space, in which configurations related by permu-
tations are identified > . As early as 1927, Einstein [5]
had voiced misgivings about Schrédinger’s use of the

“This probability is given by Dl (xpry xporg ...
xp_lN)I?', where the sum is over all N! permutations P; see
Ref. [4, p. 584]. This is of course also the probability of finding
any out of N distinguishable particles at the points x(, x5, ..., xy,
respectively.

3 Notice that if the phase  in (1) is global, that is independent
of the point in configuration space, then the wave function ¢
generally becomes multi-valued (see below), unless of course ¥
is an integer multiple of 7.
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full configuration space formed by the N-fold Carte-
sian product of three-dimensional Euclidean space as
the domain of the wave function, on the grounds that
for a system of N identical particles, there seemed to
be a tension between considering configurations re-
lated by permutations as distinct and the recent results
on particle statistics. Note, however, that if wave func-
tions are defined on the reduced configuration space,
that would seem to force symmetry on the wave func-
tions when written as functions on the full configura-
tion space, that is, y in (1) should be identically zero,
and only bosonic, not fermionic, statistics would be
derivable.

Nevertheless, Einstein was right. Later researchers
were to vindicate the use of the reduced configuration
space in deriving the statistics of identical particles.
In particular, it was in the profound analysis of Laid-
law and DeWitt [6] and particularly Leinaas and
Myrheim [7] that the role of the non-trivial global
topology (multiple connectedness) of the reduced
configuration space was established. These insights
are summarised in the next section. Suffice it to say
here that in the topological approach the condition
(1) above is valid, with el a global phase factor,
even if it is not quite a simple consequence of the
indistinguishability of the particles. And remark-
ably, it can be shown that if the physical space has
at least three dimensions, then the phase factor in
(1) must have the values 1. In other words, the
(anti-)symmetrisation condition on the wave func-
tion — the origin of (fermionic) bosonic statistics — is
now seen to be related to the dimensionality of space,
in contrast to the Messiah and Greenberg analysis
wherein the (anti-)symmetrisation condition receives
the status of a postulate.

Some implications of this topological approach
to the treatment of identical particles within the
framework of the de Broglie-Bohm “pilot-wave” for-
mulation of quantum theory [8-13] have recently
been studied [14]. The purpose of the present paper
is principally to stress one point not emphasised in
Ref. [14], namely that the multiple connectedness
of the reduced configuration space, which seems
somewhat ad hoc in the standard formulation of the
topological approach, receives a natural justification
within de Broglie-Bohm theory. Some brief, and
hopefully pertinent remarks will also be made re-
garding the role of the full configuration space for

distinguishable particles in this theory. (A separate
investigation of identical particles and their statistics
from the point of view of de Broglie-Bohm theory
will be the subject of a further publication.)

2. Topological theory of identical particles

Consider a physical system of N identical parti-
cles that move in a d-dimensional Euclidean® phys-
ical space R“. (To avoid unnecessary complications
we assume the wave function is a product of a spin
part and a spatial part, and that the spins are paral-
lel, as in the main argument of Ref. [7].) In stan-
dard quantum mechanics the wave function of the sys-
tem is defined, as in the case of distinguishable par-
ticles, on the full product configuration space R¥ =
R? x - .- x R?. Now the first occurrence of the claim
that the (anti-)symmetrisation condition on the wave
function associated with this system is related to the di-
mensionality d appeared, to the best of our knowledge,
in the work of Girardeau [2]. This author assumed,
as we have mentioned, the validity of (1) from the
outset, which he regarded as a definitional property of
identical particles. Having taken this step, Girardeau
correctly allowed for the a priori possibility that the
phase y depends on the configuration point, and ex-
ploited this possibility to construct a consistent, if
somewhat idealised, model of three particles with hard
cores moving in one spatial dimension with non-trivial
boundary conditions, in which the wave function fails
to satisfy the (anti-)symmetrisation condition. In an
interesting argument, Girardeau further showed that
such a failure is generally impossible when motion is
extended to three dimensions. (The limitations of this
proof will be seen shortly.)

An arguably more convincing argument to essen-
tially the same end starts with Einstein’s claim above,
that the full configuration space R contains, in the
case of indistinguishable particles, redundant informa-
tion. It would surely seem natural to consider instead
the “reduced” space RV /Sy, which is the quotient of
R obtained by the action of the symmetric group Sy
(the group of permutations P above). Note that in tak-

6 For discussions of various non-Euclidean spaces in connec-
tion with the topological theory to be discussed below, see
Refs. [15,16].
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ing RV /Sy as the appropriate configuration space for
a quantum treatment of the system, one is effectively
operating in an analogous fashion to the standard use
of a reduced configuration (and hence phase) space
in the classical solution to the so-called Gibbs para-
dox related to mixing of identical gases. In both cases,
the identification of points related by a permutation of
particle labels should perhaps not be considered as an
inevitable consequence of the intrinsic nature of the
particles, but rather as a reasonable step whose justifi-
cation lies with the success of the theory built on it” .
At any rate, the detailed procedure for applying quan-
tum theory to RNd /S, rather than the full configu-
ration space R™¥, was demonstrated by Laidlaw and
DeWitt [6] using Feynman formalism for d = 3, and
Leinaas and Myrheim [7] using Schrédinger quanti-
sation for arbitrary d.

Now an important first step in this theory is the re-
moval from R /Sy of all points corresponding to two
or more particles occupying the same spatial position
at the same instant. The removal of such coincidence
points, which are singular in RV /Sy, is sometimes
justified by considering the particles to be “impenetra-
ble”, but of course impenetrability is not a direct con-
sequence of indistinguishability (and does not seem
to hold for bosons). For the moment we shall sim-
ply assume that the appropriate configuration space is
indeed the multiply connected set Q = R¥ /Sy — 4,
where 4 is the set of coincidence points?® .

In order to see the implications of the multiple con-
nectedness of Q, it is convenient (though by no means

7In a penetrating analysis of Gibbs’ paradox, Hestenes [17] has
stressed that appeal to the reduced phase space for the purposes of
determining entropy by counting states is ultimately justified only
in relation to the physical operations of mixing and filtering of
“like” gases. Whether the use of the reduced configuration space
RM /5y in the case of identical quantm particles carries more
a priori justification than the analogous procedure in the case of
classical gas particles is a moot point.

& The insistence on removing the singular points appears to be
part of standard wisdom [18]. We just wish to note, however,
that one can subdivide paths in different equivalence classes ac-
cording to their winding numbers around the singularities and cor-
responding distinct values of the phase factor €7, even retaining
the singular points, if one sets the wave function zero (as a nec-
essary condition for particles other than bosons) at the singular
points, thus allowing for a discontinuous behaviour of the phase
when paths are continuously deformed through a singular point.
(The paths will be considered equivalent if amplitudes and phases
separately are continuous under deformation.)

necessary) to use the Feynman path integral formal-
ism. Feynman paths that connect two points x’ and x
in Q cannot in general be continuously deformed into
each other without crossing a point in 4. This means
that paths in the Feynman propagator K(x,1;x',t')
divide into homotopy classes each of which consists
of paths that are homotopically equivalent. Explic-
itly, denoting the homotopy classes by [a] we may
write [6,18,19]

K(x,6x,0)y =" x(la]) Koy (x, 55,1, (2)

[a}

with y([e]) phase factors and K, (x,t;x',¢') the
Feynman propagator formed by the paths in [«]. Itis
precisely the possibility of having different y({a])
for different [a] that physically distinguishes quan-
tum mechanics on a multiply connected space (such
as ) from quantum mechanics on a simply con-
nected space (such as R¥). A well-known example
of quantum mechanics on a multiply connected space
is the Aharonov-Bohm effect [20] where the y([a])
are given by exp(in;, @), with & the magnetic flux
and np,) the winding number that characterises [a]
around the flux line, which is the singular point. In
the case of identical particles, the possible values of
X ([a]) are determined by the topology of Q. In three
dimensions (d = 3), O can be shown to be doubly
connected and therefore y[a] = £1, whereas in the
two-dimensional case (d = 2), Q is infinitely con-
nected and any y[a] value may occur.

Translating back into the language of wave func-
tions on the full configuration space R4, the implica-
tion of the topological considerations above is that in
three dimensions, the phase factor in (1) is necessar-
ily =1 (corresponding to bosonic and fermionic be-
haviour), but that in the case of particles constrained
to move in two dimensions, the (global) phase factor
could be arbitrary (and the wave function is multi-
valued). (Equivalently, a “statistics field” is intro-
duced to characterise the different types of identi-
cal particles, and the wave function is always single-
valued - in fact symmetric.) Identical particles in R?
that obey intermediate statistics between the bosonic
and fermionic cases are called anyons [21]. The the-
ory of such particles has been successfully applied
to the fractional quantum Hall effect (see Refs. [22-
241), and provides considerable justification for the
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topological approach outlined above. Anyons were in-
dependently predicted using a quite different approach
in Ref. [25]. This approach is not dynamical in the
sense of the de Broglie-Bohm one sketched below, but
it does lead directly to Q as a possible configuration
space.

It may be of interest here briefly to compare these
results with the analysis of Girardeau [2] mentioned
at the beginning of this section. Girardeau attempted
to show that generally the phase factor in (1) equals
+1, and that it is only in the case of three dimensions
(d = 3) that its value must be global, i.e. independent
of the point in the full configuration space. In the case
of particles constrained to move in two dimensions,
this result is inconsistent with the existence of anyons,
for which the phase factor in question is global, being
a property of the kind of particles involved, but not
equal to + 1. However, in his proof, Girardeau assumed
the availability of real-valued wave functions, and it
can be shown in the topological approach that systems
of anyons must have complex-valued wave functions
due to the broken time reversal symmetry associated
with statistics phase factors different from +1 (see
Ref. [19, pp. 134-135]).

3. De Broglie—Bohm theory

Let us return to the issue at the heart of the topolog-
ical approach which is that of the removal of the set 4
of coincidence points from the reduced configuration
space RV /Sy, rendering Q multiply connected. In the
theory of anyons, it has been conjectured [26,27] that
short-range repulsive forces are at work between the
particles; the adoption of such a view in the general
case of identical particles appears however ad hoc.
(Note that within the topological approach it is only
strictly necessary for non-bosonic behaviour.) We now
argue that such ad hocness is removed in the frame-
work of de Broglie-Bohm pilot-wave theory.

Recall that the de Broglie-Bohm formulation of
non-relativistic quantum mechanics [ 8-13] posits, be-
sides the wave function on R for an isolated system
of N particles (in the case of such a system being in
a pure state), a collection of N point corpuscles. It is
the role of the wave function (“pilot-wave”), itself a
solution of the time-dependent Schrédinger equation,
to determine the instantaneous velocities of the cor-

puscles through the guidance equations
mXy =V Sle=x, k=1,...,N, (3)

where X is the velocity of the kth corpuscle with mass
my, § = §(x, t) is the phase of the pilot-wave (in units
of fi) at the configuration point x = (x;,...,xy) and
X = (Xyi,..., Xy) is the instantaneous configuration
of the N corpuscles. (Note that in the case of an exter-
nal field acting on the system and which is represented
by a vector potential, the right-hand side of (3) will
incorporate an additive term linear in the vector poten-
tial, which in particular makes (3) gauge-invariant.)

A feature of pilot-wave theory that is important for
our purposes is this. Whereas in standard quantum me-
chanics the points of the configuration space are in-
terpreted as the possible results of position measure-
ments or detections of the N particles, which are gen-
erally non-localised in R prior to the measurements,
in de Broglie-Bohm theory they are normally inter-
preted as the possible positions of the N de Broglie-
Bohm corpuscles. That is to say, they are truly objec-
tive configurations (as in classical theory), and make
no reference to measurement or detection processes.

In a recent analysis {14] it has been demonstrated
that the reduced configuration space approach is a nat-
ural framework for identical particles in de Broglie-
Bohm theory. The identity of the particles implies that
any two distinct initial configurations of the corpus-
cles that differ only by a permutation yield the same
set of corpuscle trajectories X;(?), k= 1,..., N, in
R?. Again this shows that the full product configu-
ration space R"? contains redundant information. In-
deed, taking the restriction RV¢/Sy as the configu-
ration space, we obtain the same set of trajectories
{Xi (1)} in the physical space R?. The physical con-
figuration space for a system of N identical parti-
cles in de Broglie-Bohm theory is therefore given by
RN /Sy

What is the status of the singular points with re-
spect to the de Broglie-Bohm trajectories? Consider
for simplicity the case of N = 2, and suppose that the
two corpuscles have distinct positions in R? at time #¢
and that they coincide at some finite time ¢ > #o. The
single trajectory in R?? /S, which contains the coinci-
dence point at ¢ will generate two trajectories in the full
configuration space, the point in one at any instant be-
ing obtained from that in the other “mirror” trajectory
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by a permutation of particle labels. But such trajecto-
ries in R2¢ will cross at the coincidence point, a pos-
sibility that is ruled out by the first order nature of the
guidance equations (3). It follows that the coincidence
points are inaccessible from non-coincidence config-
urations at zg. Conversely, the time-reversal symme-
try of the de Broglie~-Bohm trajectories implies that
two identical corpuscles that start at the same point in
space (as two bosonic corpuscles could) will remain
coincident forever. Intuitively, since these initial con-
ditions (pilot-wave and spatial position) are entirely
symmetric with respect to the two corpuscles, and we
are assuming that the symmetry of the pilot-wave is
preserved over time, we do not expect their future or
past trajectories to differ, and so the corpuscles coin-
cide forever, if at all.

If need be, we can put this argument on a more rig-
orous footing. Writing = Re'™/" for the system in
centre of mass coordinates x = x; — x; and xcm =
%(xl + x3), it follows from the symmetry or antisym-
metry (or given the anyonic phase relation) of ¢ that
S(—x) = S(x) + v, which implies that V,S(x) =0
at x = 0. We then obtain immediately from the relation
Vi =1(Vy, —Vy,) that VoS =m3(X; — X3) =0at
x = 0. From the vanishing relative velocity at the co-
incidence points and the first-order nature of the guid-
ance equation ( 3) one concludes that two initially sep-
arated corpuscles for identical particles cannot reach
the same point in the physical space at the same time.

The generalisation of this conclusion to the case of
arbitraty N is straightforward. Thus, the sets corre-
sponding to the M-point coincidences for any M < N,
with their union 4, as well as the set Q = RNd/SN — 4,
are invariant submanifolds of the reduced configura-
tion space R /Sy under the action of the de Broglie~
Bohm dynamics (3). In particular, the space Q of reg-
ular points can be used consistently as a configuration
space for a de Broglie-Bohm theory. Further, removal
of the sets of M-point coincidences seems physically
well motivated, since they correspond to motions for
which M particles coincide for all times — which would
appear as the motion of one particle of M-fold mass
and charge. (And removal of these sets does not affect
the statistical predictions of de Broglie~-Bohm theory,
since they have total |y |>-measure zero.) We thus ar-
gue that within the topological approach to identical
particles the removal of the set 4 of coincidence points
from the reduced configuration space R¥/Sy thus

foliows naturally from de Broglie-Bohm dynamics as
it is defined in the full space R4,

We finish this section by removing a possible
source of confusion. It is well known that the nodal
set (that is, the set of zeros) of the wavefunction can
be shown to be accessible from the outside at most for
a set of initial conditions of |¢|>-measure zero (see
Ref. [28]). It is also well known that the wave func-
tion of a system of bosons (unlike that of a system of
fermions) need not vanish at a coincidence point in
RM_ As a consequence it has been claimed that the de
Broglie-Bohm trajectories of bosonic corpuscles may
cross in the physical space (see Ref. [10, p. 284]).
But we have just seen how de Broglie-Bohm dynam-
ics secures the inaccessibility of singular points in
RN /Sy, or coincidences in RN, without qualifica-
tions and irrespective of whether they also correspond
to nodal points. So, if the above claim is meant in the
sense that particles starting from different points in
space can cross, it is contradicted by our above result.
If on the contrary it means merely that de Broglie-
Bohm theory in the full configuration space is able
to describe coincident bosons, then it is obviously
correct. We have only suggested that it would be
more natural to exclude such coincidences, because
we have shown they would hold forever. The differ-
ence between the case of bosons and that of fermions
lies not in a non-zero probability for coincidence of
bosons (given that the set of coincidences has | |?-
measure zero irrespective of whether or not the wave
function vanishes at the coincidences); it lies rather
in the fact that while at a node the phase of the wave
function is ill-defined, and thus the de Broglie~-Bohm
dynamics breaks down for coincident fermions, the
trajectories of coincident bosons, if one should wish
to retain them, would be well-defined for all times.

4. Distinguishable particles

One can easily convince oneself of the fact that the
first-order nature of the guidance equations (3) im-
plies that the guidance equations will continue to be
first order when the wave function of the system of
identical particles is defined on R¥¢/Sy, so that for
any point in R¥ /Sy there will be a single curve in this
space containing it. This orbit gives rise to N! curves
in R, each related to any other by a permutation
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of particles labels. But suppose the particles are dis-
tinguishable; then the guidance equations tell us that
curves in RM that at a given instant contain points re-
lated by such permutations generally do not continue
to be thus related at other times, and so cannot be gen-
erated from a curve in RV /Sy,

The fact that the correct quantum mechanical treat-
ment of a system of N distinguishable particles re-
quires the wave function to be defined on RV, rather
than RN?/Sy, suggests strongly that the hypothetical
corpuscles in de Broglie-Bohm theory associated with
such a system are pairwise distinct, or “labelled”. Af-
ter all, given both the meaning of the configuration
space in this theory (see above) and the apparent suc-
cess of the topological approach for identical particles,
it would be awkward (but perhaps not inconsistent —
see Footnote 7) to maintain that the point corpuscles
were intrinsically identical, apart from their spatial po-
sitions, while assuming that the correct domain of the
pilot-wave for the system is RV,

What properties possessed by the de Broglie~-Bohm
corpuscles in this case serve to label them? The ob-
vious answer seems to be that it is the same proper-
ties that distinguish the particles in the conventional
theory, viz. mass, charge, magnetic moment etc. In-
deed what else couid they be? But it has not escaped
notice that certain interference experiments involving
single particles seem to suggest that these dynamical
properties pertain to the pilot-wave® . This does not
mean that they cannot also belong to the corpuscle.
Arguments in favour of this “principle of generosity”
(related, e.g., to the “inertia” of the corpuscles) in de
Broglie-Bohm theory - the assignment of such prop-
erties as mass and charge to both the pilot-wave and
the corpuscle — have indeed been given in the liter-
ature (for a review see Ref. [30]). The dynamical
considerations raised in the previous paragraphs pro-
vide in our opinion another argument in favour of the
principle of generosity.

Y See Refs. [29,30]. As an example involving charge [29], con-
sider the Aharonov-Bohm effect [20] referred to in the previous
section. The expression for the phase shift due to the flux in
the shielded solenoid depends on charge being present on spatial
loops within the support of the wave function and enclosing the
solenoid, whereas the trajectory of the de Broglie-Bohm corpuscle
associated with the charged particle does not encircle the solenoid
(see Ref. [11, Section 3.8]).
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