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Abstract 

It is argued that the topological approach to the (anti-)symmetrisation condition for the quantum state of a collection 
of identical particles, defined in the “reduced” configuration space, is particularly natural from the perspective of de 
Broglie-Bohm pilot-wave theory. @ 1999 Published by Elsevier Science B.V. 

1. Introduction 

Probably no detailed treatment of identical parti- 
cles in non-relativistic quantum mechanics has been 
more influential than that due to Messiah and Green- 

berg [ 11. At least as far as the strict consequences of 
the indistinguishable nature of the particles are con- 
cerned, these authors are led more to clarify constraints 

on the observables associated with a collection of such 
particles than constraints on the state of the collection. 
In particular, unlike Girardeau [2] and Mu-man [ 31, 

for example, they do not appear to regard it to be a 
consequence of the indistinguishability of the particles 

that the configuration space wave function satisfies the 
condition 

$I~P-l,,XP-12,. . . ,XP-INI 

=e*Y$(xlrx2.. . . ,xN), (1) 

where N is the number of particles, P is an arbi- 
trary permutation on the set { 1,2,. . . , N}, and y is 

’ E-mail: harvey.brown@philosophy.oxford.ac.uk. 
’ E-mail: eriks@Kvac.uu.se. 
’ E-mall: guido.bacciagaJuppi@philosophy.oxford.ac.uk. 

a real number which may or may not depend on the 
point in the configuration space. This seems, indeed, 

to be a separate assumption; after all, the square of 
the modulus of the wave function in ( 1) is not (con- 

trary to Ref. [ 3, p. 1131) equal to the probability 
of detecting N particles in the spatial configuration 

xl,x2,...,xN, 4 the expression of which should be 
invariant under a permutation of the particle labels. 

A separate and powerful approach to identical par- 

ticles, however, does support the validity of ( 1 ), with 
the restriction that eiY be a global phase factor. This is 

the approach based on the use of a reduced configura- 
tion space, in which configurations related by permu- 
tations are identified 5 . As early as 1927, Einstein [ 51 
had voiced misgivings about Schrodinger’s use of the 

4 This probability is given by ~j$(xp-r,,xp-r2...., 

Xp-1N)12. where the sum is over all N! permutations P; see 
Ref. [4, p. 5841. This is of course also the probability of finding 
any out of N distinguishable particles at the points XI, x2, , XN, 
respectively. 

’ Notice that if the phase y in ( 1) is global, that is independent 
of the point in configuration space, then the wave function $ 
generally becomes multi-valued (see below), unless of course y 
is an integer multiple of rr. 
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full configuration space formed by the N-fold Carte- 

sian product of three-dimensional Euclidean space as 
the domain of the wave function, on the grounds that 
for a system of N identical particles, there seemed to 

be a tension between considering configurations re- 

lated by permutations as distinct and the recent results 
on particle statistics. Note, however, that if wave func- 

tions are defined on the reduced configuration space, 

that would seem to force symmetry on the wave func- 

tions when written as functions on the full configura- 
tion space, that is, y in ( 1) should be identically zero, 

and only bosonic, not fermionic, statistics would be 
derivable. 

Nevertheless, Einstein was right. Later researchers 

were to vindicate the use of the reduced configuration 
space in deriving the statistics of identical particles. 

In particular, it was in the profound analysis of Laid- 
law and Dewitt [6] and particularly Leinaas and 
Myrheim [7] that the role of the non-trivial global 

topology (multiple connectedness) of the reduced 

configuration space was established. These insights 
are summarised in the next section. Suffice it to say 

here that in the topological approach the condition 

(1) above is valid, with eiY a global phase factor, 
even if it is not quite a simple consequence of the 

indistinguishability of the particles. And remark- 
ably, it can be shown that if the physical space has 

at least three dimensions, then the phase factor in 
( 1) must have the values f I, In other words, the 

(anti-)symmetrisation condition on the wave func- 
tion - the origin of (fermionic) bosonic statistics - is 

now seen to be related to the dimensionality of space, 
in contrast to the Messiah and Greenberg analysis 

wherein the (anti-) symmetrisation condition receives 

the status of a postulate. 
Some implications of this topological approach 

to the treatment of identical particles within the 
framework of the de Broglie-Bohm “pilot-wave” for- 

mulation of quantum theory [ 8-131 have recently 
been studied [ 141. The purpose of the present paper 
is principally to stress one point not emphasised in 
Ref. [ 141, namely that the multiple connectedness 
of the reduced configuration space, which seems 
somewhat ad hoc in the standard formulation of the 

topological approach, receives a natural justification 
within de Broglie-Bohm theory. Some brief, and 
hopefully pertinent remarks will also be made re- 
garding the role of the full configuration space for 

distinguishable particles in this theory. (A separate 

investigation of identical particles and their statistics 
from the point of view of de Broglie-Bohm theory 
will be the subject of a further publication.) 

2. Topological theory of identical particles 

Consider a physical system of N identical parti- 
cles that move in a d-dimensional Euclidean6 phys- 

ical space Rd. (To avoid unnecessary complications 
we assume the wave function is a product of a spin 
part and a spatial part, and that the spins are paral- 

lel, as in the main argument of Ref. [7] .) In stan- 
dard quantum mechanics the wave function of the sys- 
tem is defined, as in the case of distinguishable par- 
ticles, on the full product configuration space RNd = 
@ X . . . x Rd. Now the first occurrence of the claim 
that the (anti-)symmetrisation condition on the wave 

function associated with this system is related to the di- 
mensionality d appeared, to the best of our knowledge, 
in the work of Girardeau [2]. This author assumed, 

as we have mentioned, the validity of ( 1) from the 

outset, which he regarded as a definitional property of 
identical particles. Having taken this step, Girardeau 

correctly allowed for the a priori possibility that the 
phase y depends on the configuration point, and ex- 
ploited this possibility to construct a consistent, if 

somewhat idealised, model of three particles with hard 
cores moving in one spatial dimension with non-trivial 

boundary conditions, in which the wave function fails 
to satisfy the (anti-)symmetrisation condition. In an 

interesting argument, Girardeau further showed that 
such a failure is generally impossible when motion is 

extended to three dimensions. (The limitations of this 

proof will be seen shortly.) 
An arguably more convincing argument to essen- 

tially the same end starts with Einstein’s claim above, 

that the full configuration space WNd contains, in the 
case of indistinguishable particles, redundant informa- 
tion. It would surely seem natural to consider instead 
the “reduced” space lRNd/SN, which is the quotient of 

RNd obtained by the action of the symmetric group SN 

(the group of permutations P above). Note that in tak- 

6For discussions of various non-Euclidean spaces in connec- 

tion with the topological theory to be discussed below, see 

Refs. [ 15.161. 
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ing IlP /SN as the appropriate configuration space for 
a quantum treatment of the system, one is effectively 
operating in an analogous fashion to the standard use 
of a reduced configuration (and hence phase) space 
in the classical solution to the so-called Gibbs para- 
dox related to mixing of identical gases. In both cases, 

the identification of points related by a permutation of 
particle labels should perhaps not be considered as an 

inevitable consequence of the intrinsic nature of the 

particles, but rather as a reasonable step whose justifi- 
cation lies with the success of the theory built on it 7 . 
At any rate, the detailed procedure for applying quan- 

tum theory to RNd/SN, rather than the full configu- 
ration space IRNd, was demonstrated by Laidlaw and 

Dewitt [ 61 using Feynman formalism for d = 3, and 

Leinaas and Myrheim [ 71 using Schrijdinger quanti- 
sation for arbitrary d. 

Now an important first step in this theory is the re- 

moval from IRNd/SN of all points corresponding to two 

or more particles occupying the same spatial position 
at the same instant. The removal of such coincidence 
points, which are singular in RNd/SN, is sometimes 

justified by considering the particles to be “impenetra- 

ble”, but of course impenetrability is not a direct con- 
sequence of indistinguishability (and does not seem 

to hold for bosons). For the moment we shall sim- 
ply assume that the appropriate configuration space is 
indeed the multiply connected set Q = IWNd/S~ - A, 
where A is the set of coincidence points 8 . 

In order to see the implications of the multiple con- 
nectedness of Q, it is convenient (though by no means 

’ In a penetrating analysis of Gibbs’ paradox, Hestenes [ 171 has 

stressed that appeal to the reduced phase space for the purposes of 

determining entropy by counting states is ultimately justified only 

in relation to the physical operations of mixing and filtering of 

“like” gases. Whether the use of the reduced configuration space 

RNd/& in the case of identical quantum particIes carries more 

a priori justification than the analogous procedure in the case of 

classical gas particles is a moot point. 

*The insistence on removing the singular points appears to be 

part of standard wisdom [ 181. We just wish to note, however, 

that one can subdivide paths in different equivalence classes ac- 

cording to their winding numbers around the singularities and cor- 

responding distinct values of the phase factor eiY, even retaining 

the singular points, if one sets the wave function zero (as a nec- 

essary condition for particles other than bosons) at the singular 

points, thus allowing for a discontinuous behaviour of the phase 

when paths are continuously deformed through a singular point. 

(The paths will be considered equivalent if amplitudes and phases 

separately are continuous under deformation.) 

necessary) to use the Feynman path integral formal- 

ism. Feynman paths that connect two points X’ and x 
in Q cannot in general be continuously deformed into 

each other without crossing a point in A. This means 
that paths in the Feynman propagator K(x, t; x’, t’) 
divide into homotopy classes each of which consists 
of paths that are homotopically equivalent. Explic- 

itly, denoting the homotopy classes by [(Y] we may 

write [6,18,19] 

K(x, t; x’, t’) = c X( [aI ) KI,I (x, t; x’, t’>, (2) 
lal 

with x( [ a]) phase factors and K[,l (x, t;x’, t’) the 

Feynman propagator formed by the paths in [a]. It is 
precisely the possibility of having different x( [a] ) 
for different [(Y] that physically distinguishes quan- 

tum mechanics on a multiply connected space (such 
as Q) from quantum mechanics on a simply con- 

nected space (such as IRNd). A well-known example 

of quantum mechanics on a multiply connected space 
is the Aharonov-Bohm effect [ 201 where the x( [a] ) 

are given by exp(in(,]@), with r9 the magnetic flux 

and nla] the winding number that characterises [(Y] 
around the flux line, which is the singular point. In 

the case of identical particles, the possible values of 
x( [(u] ) are determined by the topology of Q. In three 
dimensions (d = 3), Q can be shown to be doubly 
connected and therefore x[ cu] = * 1, whereas in the 

two-dimensional case (d = 2), Q is infinitely con- 

nected and any ,y [ CX] value may occur. 

Translating back into the language of wave func- 
tions on the full configuration space IRNd, the implica- 

tion of the topological considerations above is that in 
three dimensions, the phase factor in ( 1) is necessar- 

ily fl (corresponding to bosonic and fermionic be- 
haviour), but that in the case of particles constrained 

to move in two dimensions, the (global) phase factor 
could be arbitrary (and the wave function is multi- 
valued). (Equivalently, a “statistics field” is intro- 
duced to characterise the different types of identi- 
cal particles, and the wave function is always single- 
valued - in fact symmetric.) Identical particles in lR2 

that obey intermediate statistics between the bosonic 
and fermionic cases are called anyons [ 2 11. The the- 
ory of such particles has been successfully applied 
to the fractional quantum Hall effect (see Refs. [ 22- 
24] ), and provides considerable justification for the 
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topological approach outlined above. Anyons were in- 
dependently predicted using a quite different approach 

in Ref. [ 251. This approach is not dynamical in the 

sense of the de Broglie-Bohm one sketched below, but 
it does lead directly to Q as a possible configuration 
space. 

It may be of interest here briefly to compare these 
results with the analysis of Girardeau [ 21 mentioned 

at the beginning of this section. Girardeau attempted 

to show that generally the phase factor in ( 1) equals 

*I, and that it is only in the case of three dimensions 
(d = 3) that its value must be global, i.e. independent 
of the point in the full configuration space. In the case 
of particles constrained to move in two dimensions, 

this result is inconsistent with the existence of anyons, 

for which the phase factor in question is global, being 
a property of the kind of particles involved, but not 
equal to f 1. However, in his proof, Girardeau assumed 
the availability of real-valued wave functions, and it 

can be shown in the topological approach that systems 
of anyons must have complex-valued wave functions 

due to the broken time reversal symmetry associated 
with statistics phase factors different from *l (see 

Ref. [ 19, pp. 134-1351). 

3. De Broglie-Bohm theory 

Let us return to the issue at the heart of the topolog- 
ical approach which is that of the removal of the set A 
of coincidence points from the reduced configuration 

space R?/SN, rendering Q multiply connected. In the 
theory of anyons, it has been conjectured [ 26,271 that 

short-range repulsive forces are at work between the 
particles; the adoption of such a view in the general 
case of identical particles appears however ad hoc. 
(Note that within the topological approach it is only 
strictly necessary for non-bosonic behaviour.) We now 

argue that such ad hotness is removed in the frame- 

work of de Broglie-Bohm pilot-wave theory. 
Recall that the de Broglie-Bohm formulation of 

non-relativistic quantum mechanics [ 8-131 posits, be- 
sides the wave function on BNd for an isolated system 

of N particles (in the case of such a system being in 
a pure state), a collection of N point corpuscles. It is 
the role of the wave function (“pilot-wave”), itself a 
solution of the time-dependent Schrodinger equation, 
to determine the instantaneous velocities of the cor- 

puscles through the guidance equations 

mkkk=VxrS[x=X, k= I,..., N, (3) 

where kk is the velocity of the kth corpuscle with mass 

mk, S = S(x, t) is the phase of the pilot-wave (in units 
of fi) at the configuration point x = (x1, . . . , xN) and 

X = (Xl,. . . , X,) is the instantaneous configuration 
of the N corpuscles. (Note that in the case of an exter- 

nal field acting on the system and which is represented 
by a vector potential, the right-hand side of (3) will 

incorporate an additive term linear in the vector poten- 
tial, which in particular makes (3) gauge-invariant.) 

A feature of pilot-wave theory that is important for 
our purposes is this, Whereas in standard quantum me- 

chanics the points of the configuration space are in- 
terpreted as the possible results of position measure- 

ments or detections of the N particles, which are gen- 
erally non-localised in El* prior to the measurements, 

in de Broglie-Bohm theory they are normally inter- 
preted as the possible positions of the N de Broglie- 

Bohm corpuscles. That is to say, they are truly objec- 
tive configurations (as in classical theory), and make 

no reference to measurement or detection processes. 
In a recent analysis [ 141 it has been demonstrated 

that the reduced configuration space approach is a nat- 
ural framework for identical particles in de Broglie- 

Bohm theory. The identity of the particles implies that 

any two distinct initial configurations of the corpus- 
cles that differ only by a permutation yield the same 

set of corpuscle trajectories Xk( t), k = 1,. . . , N, in 

Rd. Again this shows that the full product configu- 

ration space WNd contains redundant information. In- 

deed, taking the restriction RNd/SN as the configu- 
ration space, we obtain the same set of trajectories 
{Xk( t)} in the physical space Rd. The physical con- 
figuration space for a system of N identical parti- 
cles in de Broglie-Bohm theory is therefore given by 

lIP/SN. 
What is the status of the singular points with re- 

spect to the de Broglie-Bohm trajectories? Consider 
for simplicity the case of N = 2, and suppose that the 
two corpuscles have distinct positions in lR* at time to 
and that they coincide at some finite time t > to. The 
single trajectory in lRti/S2 which contains the coinci- 
dence point at t will generate two trajectories in the full 
configuration space, the point in one at any instant be- 
ing obtained from that in the other “mirror” trajectory 



H.R. Brown et al/Physics Letters A 251 (1999) 229-235 233 

by a permutation of particle labels. But such trajecto- 

ries in JR*” will cross at the coincidence point, a pos- 
sibility that is ruled out by the first order nature of the 
guidance equations (3). It follows that the coincidence 
points are inaccessible from non-coincidence config- 

urations at to. Conversely, the time-reversal symme- 
try of the de Broglie-Bohm trajectories implies that 

two identical corpuscles that start at the same point in 
space (as two bosonic corpuscles could) will remain 
coincident forever. Intuitively, since these initial con- 
ditions (pilot-wave and spatial position) are entirely 

symmetric with respect to the two corpuscles, and we 

are assuming that the symmetry of the pilot-wave is 
preserved over time, we do not expect their future or 

past trajectories to differ, and so the corpuscles coin- 
cide forever, if at all. 

If need be, we can put this argument on a more rig- 
orous footing. Writing Cc, = ReiSf” for the system in 
centre of mass coordinates x = xi - x2 and XcM = 

i (X 1 + x2), it follows from the symmetry or antisym- 

metry (or given the anyonic phase relation) of (/I that 
S( -x) = S(X) + y, which implies that V,S(x) = 0 

at x = 0. We then obtain immediately from the relation 

V,= i(VX, -OX,) thatV,S=mi(%i--22) =Oat 
x = 0. From the vanishing relative velocity at the co- 
incidence points and the first-order nature of the guid- 

ance equation (3) one concludes that two initially sep- 
arated corpuscles for identical particles cannot reach 

the same point in the physical space at the same time. 
The generalisation of this conclusion to the case of 

arbitrary N is straightforward. Thus, the sets corre- 

sponding to the M-point coincidences for any M 6 N, 
with their union A, as well as the set Q = IWNd/S~ - A, 
are invariant submanifolds of the reduced configura- 
tion space lRNd/Sv under the action of the de Broglie- 

Bohm dynamics (3). In particular, the space Q of reg- 
ular points can be used consistently as a configuration 
space for a de Broglie-Bohm theory. Further, removal 

of the sets of M-point coincidences seems physically 
well motivated, since they correspond to motions for 
which M particles coincide for all times - which would 
appear as the motion of one particle of M-fold mass 
and charge. (And removal of these sets does not affect 
the statistical predictions of de Broglie-Bohm theory, 
since they have total (@12-measure zero.) We thus ar- 
gue that within the topological approach to identical 
particles the removal of the set d of coincidence points 
from the reduced configuration space lRNd/S,v thus 

follows naturally from de Broglie-Bohm dynamics as 

it is defined in the full space IwNd. 
We finish this section by removing a possible 

source of confusion. It is well known that the nodal 
set (that is, the set of zeros) of the wavefunction can 
be shown to be accessible from the outside at most for 

a set of initial conditions of I$]*-measure zero (see 

Ref. [ 281). It is also well known that the wave func- 

tion of a system of bosons (unlike that of a system of 
fermions) need not vanish at a coincidence point in 
IwNd. As a consequence it has been claimed that the de 

Broglie-Bohm trajectories of bosonic corpuscles may 
cross in the physical space (see Ref. [ 10, p. 2841). 
But we have just seen how de Broglie-Bohm dynam- 

ics secures the inaccessibility of singular points in 
lRNd/SN, or coincidences in WNd, without qualifica- 

tions and irrespective of whether they also correspond 

to nodal points. So, if the above claim is meant in the 
sense that particles starting from different points in 
space can cross, it is contradicted by our above result. 

If on the contrary it means merely that de Broglie- 
Bohm theory in the full configuration space is able 

to describe coincident bosons, then it is obviously 
correct. We have only suggested that it would be 
more natural to exclude such coincidences, because 

we have shown they would hold forever. The differ- 
ence between the case of bosons and that of fermions 
lies not in a non-zero probability for coincidence of 

bosons (given that the set of coincidences has ]t,!12- 
measure zero irrespective of whether or not the wave 
function vanishes at the coincidences); it lies rather 

in the fact that while at a node the phase of the wave 

function is ill-defined, and thus the de Broglie-Bohm 
dynamics breaks down for coincident fermions, the 
trajectories of coincident bosons, if one should wish 

to retain them, would be well-defined for all times. 

4. Distinguishable particles 

One can easily convince oneself of the fact that the 

first-order nature of the guidance equations (3) im- 
plies that the guidance equations will continue to be 
first order when the wave function of the system of 
identical particles is defined on WNd/S,v, so that for 
any point in IRNd/& there will be a single curve in this 
space containing it. This orbit gives rise to N! curves 
in IRNd, each related to any other by a permutation 
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of particles labels. But suppose the particles are dis- 
tinguishable; then the guidance equations tell us that 
curves in TWNd that at a given instant contain points re- 

lated by such permutations generally do not continue 

to be thus related at other times, and so cannot be gen- 
erated from a curve in RNd/sN. 

The fact that the correct quantum mechanical treat- 
ment of a system of N distinguishable particles re- 

quires the wave function to be defined on RNd, rather 

than RNd/sN, suggests strongly that the hypothetical 
corpuscles in de Broglie-Bohm theory associated with 
such a system are pairwise distinct, or “labelled”. Af- 
ter all, given both the meaning of the configuration 
space in this theory (see above) and the apparent suc- 

cess of the topological approach for identical particles, 
it would be awkward (but perhaps not inconsistent - 

see Footnote 7) to maintain that the point corpuscles 
were intrinsically identical, apart from their spatial po- 

sitions, while assuming that the correct domain of the 
pilot-wave for the system is RNd. 

What properties possessed by the de Broglie-Bohm 
corpuscles in this case serve to label them? The ob- 

vious answer seems to be that it is the same proper- 
ties that distinguish the particles in the conventional 
theory, viz. mass, charge, magnetic moment etc. In- 

deed what else could they be? But it has not escaped 
notice that certain interference experiments involving 
single particles seem to suggest that these dynamical 

properties pertain to the pilot-wave9. This does not 
mean that they cannot also belong to the corpuscle. 
Arguments in favour of this “principle of generosity” 

(related, e.g., to the “inertia” of the corpuscles) in de 
Broglie-Bohm theory - the assignment of such prop- 
erties as mass and charge to both the pilot-wave and 
the corpuscle - have indeed been given in the liter- 

ature (for a review see Ref. [ 301). The dynamical 
considerations raised in the previous paragraphs pro- 
vide in our opinion another argument in favour of the 

principle of generosity. 

‘) See Refs. 129,301. As an example involving charge [29], con- 

sider the Aharonov-Bohm effect [ 201 referred to in the previous 

section. The expression for the phase shift due to the flux in 

the shielded solenoid depends on charge being present on spatial 

loops within the support of the wave function and enclosing the 

solenoid, whereas the trajectory of the de Broglie-Bohm corpuscle 

associated with the charged particle does not encircle the solenoid 
(see Ref. [ 11, Section 3.81). 
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