Quantum Club

Assignment 1

INTRODUCTION TO QUANTUM PHYSICS

- Study Sec. 1.1 of the textbook (A. I. Lvovsky, Quantum Physics: an Introduction Based on Photons).

LINEAR SPACES. BASIS. DIMENSION.

- Study Secs. A.1-2 of the textbook and solve the exercises therein.

Problem 1. ${ }^{1}$ Are the following sets linear spaces:
a) the set of all arithmetic progressions (i.e. each progression is treated as a single element of the set);
b) the set of all geometric progressions;
c) the set of all sequences that satisfy the condition $x_{n+1}=x_{n-1}+x_{n}$ (Fibonacci sequences).

Problem 2. For two bases of a linear space, one is a subset of the other. Show that these bases are identical.

Problem 3. What is the dimension of each of the linear spaces of Ex. A. 1 in the textbook?
Problem 4. Problem 1 from the set
https://users.physics.ox.ac.uk/~lvovsky/yr1maths/MT/MT\ 3\ V\&Mps1.pdf.
Problem 5. Problem 3 from the same set.

Problem 6. Problem 4 from the same set.

Problem 7. Problem 5 from the same set [a proof of the general formula in (c) must be given].
POLARIZATION OF LIGHT

- Study Appendix C of the textbook and solve the exercises therein.
- Download the demonstration at
http://demonstrations.wolfram.com/PolarizationOfAnOpticalWaveThroughPolarizersAndWavePlates/ (to run the demo, if you don't have Mathematica, you will also need the Mathematica plugin for your browser or the Wolfram CDF Player available at http://www.wolfram.com/products/ player/download.cgi). Verify that the transformations of the waves under the action of waveplates is consistent with that described in Section C. 3 of the book.
- Watch the videos https://www.youtube.com/watch?v=_sUVXHfUVsY and https://www.youtube. com/watch?v=EBVNbRN805o.

Problem 8. Complete Ex. C. 2 from the textbook for

[^0]a) $A_{H}=1, A_{V}=1, \varphi_{H}=0, \varphi_{V}=0$;
b) $A_{H}=1, A_{V}=1, \varphi_{H}=0, \varphi_{V}=\pi / 4$.

Problem 9. Complete Ex. C. 7 for the polarization patterns of Problem 8. For the quarter-wave plate, consider both cases $\delta \varphi=\pi / 2$ and $\delta \varphi=-\pi / 2$.

Problem 10. Ho would you convert the polarization pattern of Problem 8(b) to horizontal using one half- and one quarter-wave plates? What should be the angles of both plates?

[^0]: ${ }^{1}$ Problems 1-3 originate from the Russian textbook https://www.mccme.ru/free-books/57/davidovich.pdf.

