Quantum Club

1. The base of a pyramid is a rectangle. Each of the side edges has length l and makes angles α and β with the base edges. Find the volume of the pyramid.
Each side face of the pyramid is an isosceles triangle with base angle α or β. The bases of these triangles - of lengths $2 l \cos \alpha$ and $2 l \cos \beta$-make up the pyramid base, whose area is hence
$4 l^{2} \cos \alpha \cos \beta$ To find the pyramid height, consider its cross-section with a vertical plane through the apex and middles of bases of length $2 l \cos \alpha$. The cross-section is an isosceles triangle with the base $2 l \cos \beta$ and sides $l \sin \alpha$. The height of this triangle (which is the height of the pyramid) is found from the Pythagorean theorem as $\sqrt{(l \cos \beta)^{2}-(l \sin \beta)^{2}}=l \sqrt{\sin ^{2} \alpha-\cos ^{2} \beta}$. Hence the pyramid volume is $\frac{4}{3} l^{3} \cos \alpha \cos \beta \sqrt{\sin ^{2} \alpha-\cos ^{2} \beta}$.
2. Find all solutions to the equation $\sqrt{1+\sin x}-\sqrt{1-\sin x}=1+\cos x$

We can square both sides of equation, but we must keep in mind that the RHS of the original equation is nonnegative, so we must have $\sin x \geq 0$.
$(\sqrt{1+\sin x}-\sqrt{1-\sin x})^{2}=(1+\cos x)^{2}$
$2-2 \sqrt{1-\sin ^{2} x}=(1+\cos x)^{2}$
$2-2 \cos x=(1+\cos x)^{2}$ (if $\left.\cos x>0\right)$ or $2+2 \cos x=(1+\cos x)^{2}($ if $\cos x<0)$
$\cos ^{2} x+4 \cos x-1=0($ if $\cos x>0)$ or $\cos ^{2} x-1=0($ if $\cos x<0)$
$\cos x=-2 \pm \sqrt{5}($ only keep the $+\operatorname{sign})$ or $\cos x=-1$
$x= \pm \arccos (\sqrt{5}-2)+2 \pi n$ or $x=\pi+2 \pi n$
Recalling that $\sin x \geq 0$, we drop the negative solution.
Answer: $x=\arccos (\sqrt{5}-2)+2 \pi n$ or $x=\pi+2 \pi n$
3. Three trains are moving with a constant speed. After some time has elapsed, trains A and C together travelled twice as much distance as did train B, and trains B and C together - three times as much as
A. Which train is the fastest?
$\left\{\begin{array}{l}v_{A}+v_{C}=2 v_{B} \\ v_{B}+v_{C}=3 v_{A}\end{array}\right.$
$\left\{\begin{array}{c}1+\left(v_{C} / v_{A}\right)=2\left(v_{B} / v_{A}\right) \\ \left(v_{B} / v_{A}\right)+\left(v_{C} / v_{A}\right)=3\end{array}\right.$
Solving the simultaneous equations, we find $v_{B} / v_{A}=4 / 3, v_{C} / v_{A}=5 / 3$. Train C is the fastest.
4. Which term is the largest in the decomposition $(\sqrt{5}+\sqrt{2})^{20}$?

$$
(\sqrt{5}+\sqrt{2})^{20}=\sum_{k=0}^{20} C(20, k) \sqrt{5}^{k} \sqrt{2}^{20-k}=\sum_{k=0}^{20} \frac{20!}{k!(20-k)!} \sqrt{5}^{k} \sqrt{2}^{20-k}
$$

The ratio between the $(k+1)$ th and k th terms is $\sqrt{\frac{5}{2}} \frac{20-k}{k+1}$. This is a function of k that increases for
small k but decreases when k approaches 20. It decreases when
$\sqrt{\frac{5}{2}} \frac{20-k}{k+1}>1$
$\sqrt{\frac{5}{2}}(20-k)>k+1$
$k>\frac{20 \sqrt{5 / 2}-1}{\sqrt{5 / 2}+1} \approx 11.9$
Hence the term containing $\sqrt{5}^{12}$ is larger than both the $\sqrt{5}^{11}$ and $\sqrt{5}^{13}$ terms, so it is the largest.
5. Eight chess players A, B, C, D, E, F, G and H are playing in a tournament. Before the tournament, it is randomly decided which players play against each other in the first game. What is the probability that the pairs are $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$ and GH ? The order of players in a pair does not matter, e.g. AB and BA is considered the same pair.
The number of possible pairings can be determined as follows. One can choose 7 possible opponents for A. Then 6 players remain unpaired. For the yet unpaired player with the "smallest" letter, one can choose 5 possible opponents. Then 4 players remain unpaired, for which 3 pairings are possible. Hence the number of possible pairings is $7 \cdot 5 \cdot 3=105$ and the probability of a specific pairing is 1/105.

