Oxford Quantum Club

Entrance test 17 December 2020

Solutions

1. Find $\sin ^{4} x+\cos ^{4} x$, if $\sin x+\cos x=A$ is known.
$A^{2}=\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x=1+2 \sin x \cos x \Rightarrow \sin x \cos x=\frac{A^{2}-1}{2}$
$\sin ^{4} x+\cos ^{4} x=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x=1-2\left(\frac{A^{2}-1}{2}\right)=-\frac{A^{4}}{2}+A^{2}+\frac{1}{2}$
2. Simplify the expression $\cos ^{2}\left(\frac{5}{8} \pi+\alpha\right)-\sin ^{2}\left(\frac{15}{8} \pi+\alpha\right)$.
$\cos ^{2}\left(\frac{5}{8} \pi+\alpha\right)-\sin ^{2}\left(\frac{15}{8} \pi+\alpha\right)=\frac{1}{2}\left[1+\cos \left(\frac{5}{4} \pi+2 \alpha\right)-1+\cos \left(\frac{15}{4} \pi+2 \alpha\right)\right]$
$=\cos \left(\frac{2 \alpha+\frac{15}{4} \pi+2 \alpha+\frac{5}{4} \pi}{2}\right) \cos \left(\frac{\frac{15}{4} \pi-\frac{5}{4} \pi}{2}\right)=\cos \left(2 \alpha+\frac{\pi}{2}\right) \cos \left(\frac{5 \pi}{4}\right)=\frac{\sin 2 \alpha}{\sqrt{2}}$
3. Calculate the integral $\int \sin ^{2} x \cos ^{2} x \mathrm{~d} x$
$\int \sin ^{2} x \cos ^{2} x \mathrm{~d} x=\frac{1}{4} \int \sin ^{2} 2 x \mathrm{~d} x=\frac{1}{8} \int(1-\cos 4 x) \mathrm{d} x=\frac{x}{8}-\frac{1}{32} \sin 4 x+C$
4. a) Prove that the definitions of complex conjugation

- $a+i b \rightarrow a-i b$
- $\left|z^{*}\right|=|z| ; \arg \left(z^{*}\right)=-\arg (z)$
are equivalent.
b) Show that $\left(e^{z}\right)^{*}=e^{\left(z^{*}\right)}$.

For $z=a+i b,\left(e^{z}\right)^{*}=e^{a}(\cos b+i \sin b)^{*}=e^{a}(\cos b-i \sin b)=e^{a-i b}=e^{\left(z^{*}\right)}$
5. For the variance $\left\langle(\Delta x)^{2}\right\rangle \equiv\left\langle(x-\langle x\rangle)^{2}\right\rangle$ (where angular brackets denote averaging) of any random variable x, prove that $\left\langle(\Delta x)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$.
$\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}-2 x\langle x\rangle+\langle x\rangle^{2}\right\rangle=\left\langle x^{2}\right\rangle-2\langle x\rangle\langle x\rangle+\langle x\rangle^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
6. A pile contains identically looking biased coins of one of three types, with the biases (probabilities of Heads) being $1 / 4,1 / 2$, or $3 / 4$ and the probabilities of occurrence $1 / 6,1 / 3$ and $1 / 2$, respectively. A coin is randomly chosen from a pile and tossed twice, producing Heads both times. Find the probability that the coin is of the third type.

Suppose we perform the experiment N times, where N is large. Of these N times,

- we'll obtain the coin of the first type $N / 6$ times, of which two Heads will occur $N / 6 \times(1 / 4)^{2}=$ N/96 times;
- we'll obtain the coin of the second type $N / 3$ times, of which two Heads will occur $N / 3 \times$ $(1 / 2)^{2}=N / 12$ times;
- we'll obtain the coin of the second type $N / 2$ times, of which two Heads will occur $N / 2 \times$ $(3 / 4)^{2}=9 N / 32$ times.
Counting only the above events, the fraction of events in which the coin was of the third time is $\mathrm{pr}_{3}=\frac{9 N / 32}{N / 96+N / 12+9 N / 32}=\frac{3}{4}$.

7. Find the real and imaginary parts of the expression $\cos (\pi / 2+2 i \ln 2)$
$\cos (\pi / 2+2 i \ln 2)=\frac{1}{2}\left[e^{i \pi / 2-2 \ln 2}+e^{-i \pi / 2+2 \ln 2}\right]=\frac{1}{2}\left[i e^{-2 \ln 2}-i e^{2 \ln 2}\right]=\frac{i}{2}\left[\frac{1}{4}-4\right]=-\frac{15 i}{8}$
8. Sketch the trajectory of the tip of the electric field vector of an electromagnetic wave propagating along the z axis. The field vector is parallel to the (x, y) plane and is described by the equation
$\mathbf{E}(z)=\binom{E_{H}(z)}{E_{V}(z)}=\operatorname{Re}\left[\binom{E_{0 H}}{E_{0 V}} e^{i(k z-\omega t)}\right]$,
where the polarization state vector $\binom{E_{0 H}}{E_{0 V}}$ is
$\left.\left.\left.\left.a)\binom{1}{0} ; b\right)\binom{0}{1} ; c\right)\binom{5}{-3} ; d\right)\binom{5 i}{-3} ; e\right)\binom{5}{3+4 i}^{*}$

