
Thermodynamics
2nd year physics

A. M. Steane 2000, revised 2004, 2006

We will base our tutorials around Adkins, Equilibrium Thermodynamics, 2nd ed (McGraw-Hill).
Zemansky, Heat and Thermodynamics is good for experimental methods. Read also the relevant
chapter in Feynman Lectures vol 1 for more physical insight.

1st tutorial: The First Law

Read Adkins chapters 1 to 3.

Terminology

Function of state. It is important to be clear in your mind about what we mean by a function
of state. Most physical quantities we tend to use in physics are functions of state, for example
mass, volume, charge, pressure, electric field, temperature, entropy. A formal definition is

A function of state is a physical quantity whose change, when a system passes between
any given pair of states, is independent of the path taken.

(the ‘path’ is the set of intermediate states that the system passes through during the change).
The idea is that if a physical quantity has this property, then its value depends only on the state
of the system, not on how the system got into that state, so that is why we call it a ‘function of
state’. Heat and work are not functions of state, because they don’t obey the formal definition
above, and this is because they each describe an energy exchange process, not a physical property.

Some terminology concerning differentials. You will meet the terminology ‘exact’ and
‘inexact’ differential. The distinction is important, but I think this choice of terminology is not
very good. It has become established however and now we are stuck with it. I prefer another
terminology: ‘proper’ and ‘improper’. The word ‘inexact’ is a bit misleading because it appears
to suggest a lack of precision, but this is not what it is meant to mean. All it means is the
following:

1. Any small quantity can be called a differential.

2. If the small quantity is a change in a function of state, then it is an exact differential. If
is not a change in any function of state, then it is an inexact differential. An inexact (or
improper) differential refers to a small amount of something, but it is not a small change in
any function of state.

Problems

The problems consist of some which are brief, intended to illustrate a concept, and others which
are longer and require careful argument. To guide you on the type of answer required, the quick
ones are marked ‘¤’. It you don’t see the ‘¤’ mark, you need to make sure you answer carefully,
or you will get muddled later on.
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1¤ exact/inexact differential. (a) Consider the following small quantity: y2dx + xydy. Find
the integral of this quantity from (x, y) = (0, 0) to (x, y) = (1, 1), first along the path consisting
of two straight line portions (0,0) to (0,1) to (1,1), and then along the diagonal line x = y.
Comment.
(b) Now consider the small quantity y2dx+2xydy. Find (by trial and error or any other method)
a function f of which this is the total differential.

2¤ Function of state. Our physical system will be a lake of water. Some of the properties of
the lake are the depth of the water, the temperature, the salinity, etc. Suppose that water can
enter the lake by two routes: either by flowing down a river into the lake, or by falling as rain.
Suppose it can leave the lake by two routes: evaporation, or flowing out into the outlet stream.
Suppose further that there is no difference between rain water and river water: once the water is
in the lake, it is not possible to tell where it came from.

Which of the following quantities are functions of state?:

1. The depth of the water

2. The total volume of water in the lake

3. The amount of rain water in the lake

4. The temperature of the water

5. The amount of river water in the lake

3. Quasistatic et al. Draw a Venn diagram to show the relationships between the following
concepts: reversible, irreversible, quasistatic, isentropic.
Your diagram should have four regions on it. Give an example process for each region.
Where does the process of slowly squeezing toothpaste out of a tube lie on the diagram?

N.B. the word ‘adiabatic’ has two meanings in physics: in one convention it means merely no
heat transfer (same as ‘adiathermal’) in the other it means a process which is both reversible and
involves no heat transfer (same as ‘isentropic’); I will adopt the second convention.

4. Define carefully what we mean by a reversible process in thermodynamics. (It is better to do
this without using the word ‘hysteresis’. However, if you want to invoke that concept, you may,
but then you must also explain what it means.)

Thermometry

5¤ A constant volume gas thermometer contains a gas whose equation of state is
(

p +
a

V 2

)
(V − b) = RT

and another, of identical construction, contains a different gas which obeys the ideal gas law
pV = RT . The thermometers are calibrated at the ice and steam points. Show that they will
give identical readings for a temperature. (Assume that the thermometers are constructed so
that all the gas is at the temperature being measured).

6. 1 mole of a certain gas at low pressure obeys the equation given in the previous question, with
a = 0.08 Jm3, b = 3× 10−5 m3, and the other symbols have their usual meanings.
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(a) Find the equation of state for n moles of this gas. [Hint: don’t guess—in the past, all
students who thought the answer could be written down without thought have got it wrong.
Rather, consider a system of n moles of the gas, having pressure pn, Vn, Tn. Then you are
looking for the equation relating Tn to pn and Vn. You can get it by picturing the n moles as if
they consisted of n ‘lumps’ of 1 mole each sitting next to each other, in conditions where each
lump obeys the equation above.]
(b) A constant volume gas thermometer of volume 10−3 m3 contains 0.05 mole of this gas. What
is the pressure in the thermometer at 95◦C? Compare this with the pressure of the same amount
of ideal gas at the same temperature and volume.

Partial maths

7. w is a function of three variables x, y and z. Prove that

(a)
(

∂w

∂x

)

y,z
=

1(
∂x
∂w

)
y,z

,

(b)
(

∂w

∂x

)

y,z

(
∂x

∂z

)

w,y

(
∂z

∂w

)

x,y
= −1.

These are the reciprocal and reciprocity relations for functions of three variables.

8. A and B are both functions of two variables x and y, and A/B = C. Show that

(
∂x

∂y

)

C

=

(
∂ln B

∂y

)
x
−

(
∂ln A
∂y

)
x(

∂ln A
∂x

)
y
−

(
∂ln B
∂x

)
y

(Develop the left hand side, and don’t forget that for any function f , (d/dx)(ln f) = (1/f)df/dx).

Work

9¤ Derive the formula d−W = −pdV , for work done by reversible compression of a gas, by starting
from classical mechanics. How is the formula modified if there is friction?

10. [Comment for Physics and Philosophy students: you don’t need anything beyond school
electromagnetism to answer this problem. Everything is defined in the question.] In some cir-
cumstances the work required to magnetise a piece of material is given by

d−W = B · dm

where B is the magnetic field which would have been present in the absence of the material, and
m is the total magnetic moment of the lump of material1. Assume the material and the field are
uniform, then the dipole moment per unit volume (called magnetisation) is M = m/V . At high
temperatures the behaviour is well approximated by Curie’s Law, χH = a/T , where a = 0.19 K,
in which the susceptibility χH is defined by M = χHH and H is defined through the formula
B = µ0(H + M).

(a) Use the above information to find the relationship between B, M and χ.
(b) Hence obtain the equation of state (formula relating T to B and m) for a lump of material

1N.B. a careful argument is needed to derive this formula, because another formula d−W = −m · dB is valid in
another case, depending on how the system is defined.
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of given volume V .
(d) Calculate the work done on a specimen of volume 10−5 m3 by placing it in a solenoid and
increasing the magnetic field from zero to 1 Tesla at 4.2 K.

Thermodynamic reasoning

11. Use the first law to show that
(

∂U

∂V

)

T
=

Cp − CV

V βp
− p

where βp is the coefficient of volume expansivity and the other symbols have their usual meanings.
Hint: consider a path, consisting of two straight line portions, between two points on an isother-
mal.

12. Gas is contained at high pressure in a cylinder insulated on the outside. The volume of the
cylinder can be varied by moving an insulated frictionless piston. The heat capacities of cylinder
and gas are comparable. Sketch on one diagram the pressure-volume relations for the gas,

(a) if the pressure is reduced to atmospheric slowly enough for the temperature of the cylinder
to be equal to that of the gas at all stages;
(b) if the pressure is reduced to atmospheric fast enough (but still quasistatically) for the cylinder
not to cool at first; the pressure is then maintained at atmospheric until the cylinder and gas
attain the same temperature.

Use the first law to explain (convincingly!) why the temperature reached in process (a) must be
lower than the final temperature reached in process (b).

13. Write down the first law and hence express cV and cp in terms of a derivative of U and
other quantities. For an ideal gas, U depends only on temperature, and this means that

(
∂U
∂T

)
p

=
(

∂U
∂T

)
V

= dU/dT (we will prove this later. N.B. it is not true in general, only for an ideal gas).
Using this and the equation of state, find cp − cV for an ideal gas.

14. The first law of thermodynamics is often quoted in the form “Heat is a form of energy (as is
work) and energy is conserved.” This is a perfectly respectable statement, and is the one given by
Feynman. However, Adkins in section 3.2 gives a somewhat different statement. Discuss carefully
the relationship between these two ways of quoting the first law.
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2nd tutorial: The Second Law and entropy

Read Adkins chapters 4,5 and Feynman vol. 1 chapter 44

Problems

In the following, when you need to use the specific heat capacity of water, use the value
4200 J K−1 kg−1 and assume it does not depend on temperature.
(Think about whether this is at constant pressure or constant volume, or whether the distinction
makes much difference for water).
For the molar gas constant, use R = 8.3 J K−1 mole−1.
For Celcius to Kelvin conversions use 0 ◦C = 273 K.

Basic ideas

1¤ Does the Carnot cycle refer only to an ideal gas, or is there a Carnot cycle for any system?

2¤ Let us refer to the standard diagram showing heat flow and work for a heat engine operating
between two thermal reservoirs as an energy flow diagram. Draw the simplest energy flow diagram
you can think of which shows a heat engine which is impossible by the Kelvin statement of the
2nd law, and another which is impossible by the Clausius statement.

3¤ [standard proofs but make sure you understand and can state them clearly] Prove that the
Clausius statement of the 2nd law is true if and only if the Kelvin statement is true.

The following comments on logic may help. For the ‘if’ part you must prove that K ⇒ C, for the
‘only if’ part you must prove that not-K ⇒ not-C. These are two separate jobs because while
the statement ‘there are blue cows’ logically implies ‘there are cows’, the second does not imply
the former. To prove that K ⇒ C it is sufficient to prove that not-C ⇒ not-K (think about it!).

4¤ In each cycle, a heat engine absorbs heat Q1 from a thermal reservoir at temperature T1 and
delivers heat Q2 to a reservoir at a lower temperature T2, and produces work W .
(a) How is the efficiency of the heat engine defined?
(b) Write down the relationship between the heats and the temperatures for the case of a re-
versible engine. How would your expression change for a non-reversible engine?
(c) What is the maximum possible efficiency of a heat engine operating between these two reser-
voirs?

5. Consider the following discussion of Newton’s 2nd law, and then answer the question on
temperature at the end.

The usual statement of Newton’s 2nd law has a weakness in that it talks about “force” without
defining what is meant. We can avoid this weakness as follows. Define “force” to mean that
which causes the momentum of a body to change (but we say nothing yet about the size of the
force). Consider various physical systems which can supply a force, e.g. an elastic band (note, I
don’t assume Hooke’s law) or a rocket motor. We argue that when a given force-providing system
is in the same conditions then it must provide the same force, no matter what object it may be
pushing or pulling. For example, a given elastic band of given length and temperature pulls by
a given amount. (If this were not so, we could find physical situations where it would lead to
impossible behaviour such as a self-accelerating closed system). Now imagine we have two bodies
whose ‘quantity of matter’ is different, and we would like to have a sensible definition of ‘quantity
of matter’. We proceed as follows. We attach the force-providing system (elastic band) to body
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1, and maintain the force-providing system in fixed conditions (by pulling on the other end of the
band to keep its length constant). The body will accelerate. We measure its acceleration, a1 (this
can be measured without ambiguity because it only involves distance and time). Now attach the
force-providing system to the other body, 2, and repeat the experiment, making sure the force-
providing system is in the same conditions in the two experiments. Thus obtain acceleration a2.
Now repeat the experiments with a number of quite different force-providing systems (e.g. rocket
motor, attracting capacitor plates, surface tension, etc.). It is found that in such experiments,
the ratio a1/a2 is independent of the force-providing system and of the speeds involved (as long
as no friction or viscosity is present). We therefore can take it to be a property of the bodies
1 and 2 alone. We then arrive at a definition of inertial mass: we define inertial mass M to be
such that the inertial masses of two bodies 1 and 2 are in the ratio of their accelerations when
the same force is applied to each:

M1

M2
=

a2

a1
.

This allows all masses to be related to some given mass which can be taken as the unit of mass.
The choice of unit mass is arbitrary.

How is absolute thermodynamic temperature defined?

6. Prove Clausius’s theorem, and hence that entropy is a function of state.

1st Law, heat and work

7. One mole of an ideal gas with γ = cp/cV = 1.4 is taken from its initial state of 290 K and
21 × 10−3 m3 to a final state of 330 K and 22 × 10−3 m3. This transformation is carried out
quasistatically along a straight line on a p− V diagram. Calculate the change in internal energy,
the work done and the heat absorbed by the system.

8. Write down the formula relating p and V during an adiabatic expansion of an ideal gas whose
heat capacities are independent of temperature. A ideal gas is taken between the same initial
and final states as in the previous question, by an adiabatic expansion followed by heating at
constant volume. Calculate the work done and heat absorbed.

9. A machine compresses 10 mole/minute of helium, assumed to behave as an ideal gas, from
1 to 106 Pa pressure. What rate of flow of cooling water, initially at 290 K, is needed if the
compression is to be made isothermal at 300 K?

Heat engines

10. A building is maintained at a temperature T by means of an ideal heat pump which uses a
river at temperature T0 as a source of heat. The heat pump consumes power W , and the building
loses heat to its surroundings at a rate α(T − T0). Show that T is given by

T = T0 +
W

2α

(
1 +

√
1 + 4αT0/W

)

11. A heat engine operates between a tank containing 103 m3 of water and a river at a constant
temperature of 10◦C. If the temperature of the tank is initially 100◦C, what is the maximum
amount of work which the heat engine can perform? Answer the problem algebraically before
you substitute in the numbers [You need to treat a small amount of heat dQ and then perform an
integration]. Show that your result can be expressed in the form W = ∆U −T0∆S, and interpret
the symbols physically.
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12. Two identical bodies of constant heat capacity Cp at temperatures T1 and T2 respectively
are used as reservoirs for a heat engine. If the bodies remain at constant pressure, show that the
amount of work obtainable is

W = Cp (T1 + T2 − 2Tf )

where Tf is the final temperature attained by both bodies. Show that if the most efficient engine
is used, then T 2

f = T1T2.

13. A possible ideal-gas cycle operates as follows.
(i) from an initial state (p1, V1) the gas is cooled at constant pressure to (p1, V2).
(ii) the gas is heated at constant volume to (p2, V2).
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the thermal efficiency is

1− γ
(V1/V2)− 1
(p2/p1)− 1

(You may quote the fact that in an adiabatic change of an ideal gas, pV γ stays constant, where
γ = cp/cV .)

14. (optional—only attempt it when you have completed the rest). The air-standard Otto cycle
gives a simplified account of the events occuring in a petrol engine. The cycle is described in the
text books. Show that the efficiency is given by 1− r1−γ where r is the compression ratio.

Entropy

15. Give a careful statement of the relationship between entropy and heat. Is entropy extensive
or intensive? What dimensions does it have? Under what circumstances can it make sense to
think of entropy ‘flowing’ from one place to another?

16. A mug of tea has been left to cool from 90◦C to 18◦C . If there is 0.2 kg of tea in the mug,
and the tea has specific heat capacity 4200 J K−1 kg−1, show that the entropy of the tea has
decreased by 185.7 J K−1. Comment on the sign of this result.

17. 1 kg of water is warmed from 20◦C to 100◦C (a) by placing it in contact with a large
reservoir at 100◦C, (b) by placing it first in contact with a reservoir at 50◦C until it reaches that
temperature, and then in contact with the reservoir at 100◦C, and (c) by operating a reversible
heat engine between it and the reservoir at 100◦C. In each case, what are the entropy changes
of (i) the water, (ii) the reservoirs, and (iii) the universe? (Assume the heat capacity of water is
independent of temperature).

18. Calculate the change in entropy of 1 kg of water when it is heated from 15 to 100◦C and
completely vaporized, all at 1 atm pressure.
Does the change in entropy imply any irreversibility in the process?
(The latent heat of vaporization of water at a pressure of 1 atm is 2.3× 106 J kg−1.)

19. Calculate the changes in entropy of the universe as a result of the following processes:
(a) A copper block of mass 400 g and thermal capacity 150 J K−1 at 100◦C is placed in a lake at
10◦C
(b) The same block, now at 10◦C , is dropped from a height 100 m into the lake.
(c) Two similar blocks at 100◦C and 10◦C are joined together (hint: save time by first realising
what the final temperature must be, given that all the heat lost by one block is received by the
other, and then reuse previous calculations)
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(d) A capacitor of capacitance 1 µF is connected to a battery of e.m.f. 100 V at 0◦C . (NB think
carefully about what happens when a capacitor is charged from a battery.)
(e) The same capacitor after being charged to 100 V is discharged through a resistor at 0◦C .
(f) One mole of gas at 0◦C is expanded reversibly and isothermally to twice its initial volume.
(g) One mole of gas at 0◦C is expanded reversibly and adiabatically to twice its initial volume.
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3rd tutorial: thermodynamic potentials and Joule-Kelvin process

Read Adkins chapter 7,8,9 and recall the final sections of chapter 3. (we will skip chapter 6 but
you should have a skim read of it for your general knowledge). The parts of chapter 8 which will
be considered in the next tutorial (i.e. adiabatic demagnetisation and radiation) can be omitted
at this stage, and we will not be considering thermoelectric effects (end of chapter 9). For further
information on liquification of gases, you may like to consult Zemansky.

Problems

Basic concepts

1¤ (a) Using the first law dU = TdS − pdV to provide a reminder, write down the definitions of
the four thermodynamic potentials U , H, F , G for a simple p-V system (in terms of U , S, T , p,
V ), and give dU, dH, dF, dG in terms of T, S, p, V and their derivatives.
(b) Derive all the Maxwell relations.

2¤ (a) Sketch an isotherm and an adiabat passing through a given point p, V on the indicator
diagram for a gas. Hence show that more work energy can be extracted from a gas in an isother-
mal expansion than in an adiabatic one. Where has the energy for this extra work come from?
(b) Why is the Helmholtz function F sometimes called ‘free energy’?
(c) Give an example of a physical process which can take place at constant pressure and temper-
ature. What thermodynamic potential is unchanged in such a process?
(d) By modifying part (c) or otherwise, give an example of an adiathermal reversible physical
process in which a volume change can take place at constant pressure. What thermodynamic
potential is unchanged in such a process?
(e) In a free expansion (also called Joule expansion), we know U does not change, and no work
is done. However, the entropy must increase because the process is irreversible. Are these state-
ments compatible with the 1st law dU = TdS − pdV ? How is the work done related to pdV in
general?

3. A piece of rubber of length L is subject to work by hydrostatic pressure and a tensional force
f .
(a) Construct an expression for dU .
(b) Generate the potentials which have as proper variables (S,V,f) and (S,p,f)
(c) Derive the Maxwell relation (first developing any potential you may need)

(
∂S

∂L

)

T,p
= −

(
∂f

∂T

)

p,L

Energy, heat capacity and equation of state

4. (a) Show that (
∂U

∂V

)

T
= T

(
∂p

∂T

)

V
− p

N.B. This is a remarkable result which we could not know from the 1st law alone. It is completely
general.
(b) Show that, if only the equation of state of a system is known, then it is possible to calculate
the work done in an isothermal process, but not in an adiabatic one.
(c) By considering U as a function of T and V , or otherwise, show that knowledge of the equation
of state and CV (the heat capacity at constant volume) is sufficient to enable the internal energy
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change ∆U to be calculated for any process. Write down the integral expressing ∆U in terms of
the other information.
(d) Hence show how the work done in an adiabatic process could be obtained.

Expansions: basic methods

6. Derive the following general relations

(a)
(

∂T

∂V

)

U
= − 1

CV

(
T

(
∂p

∂T

)

V
− p

)

(b)
(

∂T

∂V

)

S
= − 1

CV
T

(
∂p

∂T

)

V

(c)
(

∂T

∂p

)

H

=
1
Cp

(
T

(
∂V

∂T

)

p
− V

)

In each case the quantity of the left hand side is the appropriate thing to consider for a named
type of expansion. Identify the type of expansion, by giving the names of the people it is named
after, if any, and briefly describing what takes place.

7. Using the relations derived in question 6, verify that for an ideal gas
(

∂T
∂V

)
U

= 0 and
(

∂T
∂p

)
H

=

0, and that
(

∂T
∂V

)
S

leads to the familiar relation pV γ = constant along an isentrope.

8. A gas obeys the equation p(V − b) = RT and has cV independent of temperature. Show that
(a) the internal energy is a function of temperature only, (b) the ratio γ = cp/cV is independent
of temperature and pressure, (c) the equation of an adiabatic change has the form p(V − b)γ =
constant.

Joule-Kelvin effect

9¤. (a) Locate the Joule-Kelvin effect on your Venn diagram from 1st problem sheet, question
3. (b) Prove that enthalpy is constant in a Joule-Kelvin expansion.

10. Describe a practical apparatus for the liquification of 4He using the Joule-Kelvin effect. (For
4He the normal boiling point is near 4 K and the inversion temperature for the Joule-Kelvin effect
is about 50 K).

11. At modest pressures the equation of state of a real gas can be written as pV = RT + Bp
where B is a function of T only. Find an expression for the Joule-Kelvin inversion temperature
in terms of B and dB/dT .

For Helium gas between 5 K and 60 K, B can be represented as B = m − (n/T ) where m =
15.3 × 10−6 m3 mole−1 and n = 352 × 106 m3 K mole−1. From this information, estimate the
inversion temperature for helium. For an expansion starting below the inversion temperature,
comment on the efficiency of the process (i.e. cooling per unit pressure change) as the temperature
falls.

In a helium liquifier, compressed helium gas at 14 K is fed to the expansion valve, where a fraction
x liquifies and the remaining fraction (1−x) is rejected as gas at 14 K and atmospheric pressure.
If the specific enthalpy of helium gas at 14 K is given by

h = a + b(p− p0)2
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where a = 71.5 kJ kg−1, b = 1.3 × 10−12 kJ kg−1Pa−2 and p0 = 3.34 MPa (= 33.4 atm),
and the specific enthalpy of liquid helium at atmospheric pressure is 10 kJ kg−1determine what
input pressure will allow x to achieve a maximum value, and show that this maximum value is
approximately 0.18.

12. Write down the equation of state of a general Van der Waals gas. Determine whether a
Joule-Kelvin expansion produces heating or cooling:
(a) when the attractive force between the molecules is neglected, but the molecular volume is
taken into account
(b) when the molecular volume is neglected, but the attractive force is taken into account
Give a brief physical explanation of these observations, bearing in mind that for an ideal gas
there is no temperature change.
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4th tutorial: thermal radiation, phase change, heat conduction

Read Adkins parts of chapter 8 you may have skipped before, and chapter 10 sections 10.1 to
10.5. Glance at the rest of chapter 10, so that you are aware of at least one example of a 2nd
order phase transition.

Thermal radiation: basic ideas

The basic proofs here are easy to write down, but it is a lot harder to be clear in one’s mind about
what the proofs and the symbols really mean.

1¤ (a) Give the SI units for the following quantities: energy density u (that is, energy per unit
volume), and spectral energy density ρ (that is, energy per unit volume per unit frequency range).
(b) Write down the expression relating u and ρ.
(c) If ρ is the energy density per unit frequency range, and η is the energy density per unit
wavelength range, write down the expression relating ρ and η for electromagnetic radiation.
(d) Derive the relationship between energy density u and energy flux φ for a collimated beam
of light. [Hint: consider the volume of light which passes across a given area in a given time].
(Energy flux is also called intensity, it is power per unit area.)
(e) Which of these properties, u, ρ or φ is a typical photo-detector, such as our eyes, directly
sensitive to?

[N.B. some authors use u(ν) and u(λ) for ρ and η, which is poor notation. Others use uν , and
uλ, which is acceptable.]

2¤ An otherwise empty enclosure has electromagnetic radiation inside it which is in thermal
equilibrium with the walls of the enclosure. Give an argument to show that the energy per
unit volume (u) of the radiation must depend only on the temperature, not on the shape or
composition of the cavity walls.

3¤ Give an argument to show that the spectral energy density ρ of such cavity radiation must
depend only on frequency and temperature.

4¤ A potter’s kiln is loaded with various pots, of various colours and textures. The kiln has a
well-sealed door so that the interior can reach a close approximation to thermal equilibrium, and
is heated until the interior glows orange. A window in the wall is made small enough to allow an
observer to look in without noticeably disturbing the conditions inside the cavity. Describe what
will be seen through the window.

Radiation having the form of the radiation found inside a thermal cavity is called thermal radia-
tion.

5¤ Prove that, in conditions of thermal equilibrium, any body which absorbs all the radiation
incident on it must emit precisely thermal radiation, not some other kind. (This is why thermal
radiation is also called black body radiation). It seems intuitively clear that the temperature of
the radiation emitted should be the same as that of the body emitting it, but have you proved
this as well? (If not, then do so).

6¤ Let the emissivity ε be defined as the ratio between the spectral emissive power e of a surface
at given temperature, and the spectral emissive power of a black body at the same temperature.
Prove that ε(ν) = α(ν) where α is the absorptivity of the surface.
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7. In the previous question you derived Kirchoff’s law. However, to understand it properly we
need to agree on what is meant by the concept of ‘emissive power’ of a surface. Bearing in mind
that glass is a good absorber of infrared radiation, sketch on the same (clearly labelled) graph:
(a) the spectral emissive power of a bathroom mirror at room temperature, as a function of
wavelength, in the wavelength range 400 nm to 100 µm.
(b) the spectral energy density of radiation incident on a detector placed close to the mirror,
when the mirror (still at room temperature) is used to reflect sunlight onto the detector.

8. A confused student puts forward the following argument. “Red paint appears red (under white
light illumination), and this is to do with the fact that it absorbs other colours such as green and
blue. Therefore, according to Kirchoff’s law, it should be a good emitter of green and blue, and
a relatively poor emitter of red. Therefore it should appear blue-green, and not red after all.”
This is a contradiction. Where did the student go wrong?

9. Describe one kind of electromagnetic radiation which you can think of which is not black body
radiation, even approximately, and identify some features which distinguish it from black body
radiation.

Phase change

10. Outline the conditions required for equilibrium between phases of a substance with respect
to first-order phase transitions, and derive the Clausius-Clapeyron equation

dp

dT
=

L

T (V v − V l)

stating the physical meaning of the symbols. [N.B. Be careful: whereas Adkins gives a derivation,
Blundell and Blundell do not: two of the steps they make are merely stated without justification.
You need to justify whatever steps you write down.]

11. The gradient of the melting line of water on a p–T diagram close to 0◦ C is −1.4× 107 Pa/K.
At 0◦ C, the specific volume of water is 1.00 × 10−3 m3kg−1 and of ice is 1.09 × 10−3 m3kg−1.
Using this information, deduce the latent heat of fusion of ice.

12 (optional). Using the Clausius-Clapeyron equation show that, provided equilibrium between
liquid and vapour is maintained, and assuming the specific heats of the two phases are constant,
the latent heat of vapourisation L varies with temperature as follows:

dL

dT
=

L

T
+ cv

p − cl
p −

L

V v − V l




(
∂V v

∂T

)

p
−

(
∂V l

∂T

)

p




where V v and V l are volumes per mole of vapour and liquid respectively, and cv
p, cl

p are heat
capacities per mole at constant pressure.
Hint (if you need it): use the idea introduced in problem 17.

13. (a) State the functional form for the variation with height of pressure in the atmosphere, at
fixed temperature. [Look it up if you don’t know it already].
(b) From the Clausius Clapeyron equation, roughly estimate the temperature at which water
boils at the top of mount Everest (altitude 8854 m). [The air pressure is about 0.5 atmosphere
at a height of 18 km, L = 4.5× 104 J mol−1for water.]
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14. A pool of liquid in equilibrium with its vapour is converted totally into vapour in conditions
of fixed temperature and pressure. What happens to the internal energy, the enthalpy, the
Helmholtz free energy and the Gibbs free energy?

Heat conduction and the diffusion equation

15. By considering conservation of energy in a situation of heat flow, derive the heat diffusion
equation

∂2T

∂z2
=

C

K

∂T

∂t

for a 1-dimensional problem (or ∇2T = (C/K)∂T/∂t in 3 dimensions).

16. The temperature at the surface of a thick wall of specific heat capacity C and thermal
conductivity K is given by T0 sinωt. Find an expression for the temperature at a distance z into
the wall. Use this analysis to explain the value of a cellar for storing wine.

17. Blundell problem 7.1.
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