Lecture 8. Relativity and electromagnetism

1. Force per unit charge $\longrightarrow \mathbf{f} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B})$

Change frame: $\mathbf{f} \to \mathbf{f}'$, hence:

Transformation of electromagnetic field

$$\begin{split} \mathbf{E}_{\parallel}' &= \mathbf{E}_{\parallel} \\ \mathbf{E}_{\perp}' &= \gamma \left(\mathbf{E}_{\perp} + \mathbf{v} \wedge \mathbf{B} \right), \\ \mathbf{B}_{\parallel}' &= \mathbf{B}_{\parallel} \\ \mathbf{B}_{\perp}' &= \gamma \left(\mathbf{B}_{\perp} - \mathbf{v} \wedge \mathbf{E}/c^2 \right), \end{split}$$

where S' has velocity v in S.

e.g. capacitor, particle beam

- 2. Correct understanding of $J = (\rho c, j)$ and charge conservation.
- 3. Fields due to a moving point charge:

$$\mathbf{E}' = \frac{\gamma Q \mathbf{r}'}{4\pi\epsilon_0 (\gamma^2 (x')^2 + (y')^2 + (z')^2)^{3/2}},$$

$$\mathbf{B}' = -\frac{\mathbf{v} \wedge \mathbf{E}'}{c^2}.$$

Lecture 9. 4-vector potential; Maxwell's equations; introducing tensors

- 1. Lorentz covariance of Maxwell's equations
- 2. Scalar and vector potential

$$\mathbf{B} = \mathbf{\nabla} \wedge \mathbf{A},$$

$$\mathbf{E} = -\mathbf{\nabla} \phi - \frac{\partial \mathbf{A}}{\partial t}$$

 \longrightarrow automatically satisfy M2, M3.

- 3. Gauge transformation: $\begin{cases} \mathbf{A} \rightarrow \mathbf{A} + \nabla \chi, \\ \phi \rightarrow \phi \frac{\partial \chi}{\partial t} \end{cases}$
- 4. 4-vector potential

$$A \equiv \begin{pmatrix} \phi/c \\ A \end{pmatrix}$$
, Gauge transformation: $A \to A + \Box \chi$

5. Lorenz gauge, Maxwell's equations in a manifestly covariant form:

Maxwell's equations (!)

$$\Box^2 A = \frac{-1}{c^2 \epsilon_0} J$$
, with $\Box \cdot A = 0$.

- 6. General idea of 3-dimensional tensors such as conductivity, susceptibility,
- 7. Outer product $\mathbb{F} = \mathsf{A}\mathsf{B}^T \Rightarrow \mathbb{F}' = \Lambda \mathbb{F}\Lambda^T$. Also $\mathbb{F} \cdot \mathsf{B} \equiv \mathbb{F}g\mathsf{B}$

Maxwell equations and Lorentz force equation:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \tag{M1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{M2}$$

$$\nabla \wedge \mathbf{E} = -\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t} \tag{M3}$$

$$c^{2}\nabla \wedge \mathbf{B} = \frac{\mathbf{j}}{\epsilon_{0}} + \frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t}, \qquad (M4)$$
$$\mathbf{f} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B})$$

Change frame:

$$\begin{pmatrix} \rho c \\ j_x \\ j_y \\ j_z \end{pmatrix} = \Lambda^{-1} \begin{pmatrix} \rho' c \\ j'_x \\ j'_y \\ j'_z \end{pmatrix}, \qquad \begin{aligned} \mathbf{E}_{\parallel} &= \mathbf{E}'_{\parallel} \\ \mathbf{E}_{\perp} &= \gamma \left(\mathbf{E}'_{\perp} - \mathbf{v} \wedge \mathbf{B}' \right), \\ \mathbf{B}_{\parallel} &= \mathbf{B}'_{\parallel} \\ \mathbf{B}_{\perp} &= \gamma \left(\mathbf{B}'_{\perp} + \mathbf{v} \wedge \mathbf{E}' / c^2 \right). \end{aligned}$$

$$\frac{\partial(\cdots)}{\partial x} = \frac{\partial(\cdots)}{\partial t'} \frac{\partial t'}{\partial x} + \frac{\partial(\cdots)}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial(\cdots)}{\partial y'} \frac{\partial y'}{\partial x} + \frac{\partial(\cdots)}{\partial z'} \frac{\partial z'}{\partial x}$$

$$\frac{\partial(\cdots)}{\partial y} = \text{etc.}$$

Lecture 10. Tensor analysis and index notation

- 1. Basic idea: ϕ , A^a , \mathbb{F}^{ab} , g_{ab} , $\Lambda^{a'}_b$
- 2. Summation convention: $A^{ab}X_b$ means $\sum_{b=0}^3 A^{ab}X_b$... 'dummy' index
- 3. Contravariant/covariant. $A^T g B = A'^T g' B' \Rightarrow g' = (\Lambda^{-1})^T g \Lambda^{-1}$ Contravariant: $X \to \Lambda X$ Covariant: $(gX) \to (\Lambda^{-1})^T (gX)$
- 4. Index lowering: $F_a \equiv g_{a\mu}F^{\mu}$ so $U \cdot F = U^{\lambda}F_{\lambda}$
- 5. Legal tensor operations: sum, outer product, contract.
- 6. Caution when comparing with matrix notation

$$\mathbb{A}^{a\lambda}\mathsf{B}_{\lambda} \ \leftrightarrow \ \mathbb{A}\cdot\mathsf{B}$$
 but
$$\mathbb{A}^{\lambda a}\mathsf{B}_{\lambda} = \mathsf{B}_{\lambda}\mathbb{A}^{\lambda a} \ \leftrightarrow \ \mathsf{B}\cdot\mathbb{A}$$

- 7. Invariants: contract down to a scalar. e.g. $\mathsf{A}^{\lambda}\mathsf{B}_{\lambda}, \quad T^{\lambda}_{\lambda}, \quad T^{\mu\nu}T_{\mu\nu}$
- 8. Differentiation. $\partial_a \equiv \frac{\partial}{\partial x^a} = (\frac{1}{c} \frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$. Thus $\partial_a = \Box_a = g_{a\lambda}\Box^{\lambda}$ and $\partial^a = \Box^a$.

 $\square \leftrightarrow \partial^a$. e.g. continuity equation $\partial^\lambda \mathsf{J}_\lambda = 0$

Product rule: $\partial^a (U^b V^c) = (\partial^a U^b) V^c + U^b (\partial^a V^c)$

Lecture 11. Electromagnetic field theory via field tensor \mathbb{F}

$$\begin{array}{ll} \text{Lorentz covariance,} \\ \text{simplicity} \end{array} \Rightarrow \begin{cases} \text{4-force} = \text{charge} \times \text{field} \times \text{4-velocity} \\ \mathbb{F} = q \mathbb{F} \cdot \mathbb{U} \end{cases} \\ \Rightarrow \mathbb{F} = -\mathbb{F}^T \end{array}$$

2. Pure force
$$(\mathbf{F} \cdot \mathbf{U} = 0)$$

$$\Leftrightarrow \quad \mathbf{F} = -\mathbf{F}^T$$

$$\Rightarrow \mathbb{F} = \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{pmatrix}.$$

$$\Box \cdot \mathbb{F} = -\mu_0 \rho_0 \mathsf{U}, \quad \text{i.e.} \quad \partial_\lambda \mathbb{F}^{\lambda b} = -\mu_0 \rho_0 \mathsf{U}^b$$

$$\mathbb{F} = \Box \wedge \mathsf{A}, \qquad \text{i.e.} \quad \mathbb{F}^{ab} = \partial^a \mathsf{A}^b - \partial^b \mathsf{A}^a$$

$$\Rightarrow \partial^c \mathbb{F}^{ab} + \partial^a \mathbb{F}^{bc} + \partial^b \mathbb{F}^{ca} = 0.$$

$$\Box \cdot \mathbb{F} = -\mu_0 \rho_0 \mathsf{U}, \quad \text{i.e.} \quad \partial_{\lambda} \mathbb{F}^{\lambda b} = -\mu_0 \rho_0 \mathsf{U}^b
\mathbb{F} = \Box \wedge \mathsf{A}, \quad \text{i.e.} \quad \mathbb{F}^{ab} = \partial^a \mathsf{A}^b - \partial^b \mathsf{A}^a
\Rightarrow \partial^c \mathbb{F}^{ab} + \partial^a \mathbb{F}^{bc} + \partial^b \mathbb{F}^{ca} = 0.$$

$$\Rightarrow$$
 The physical world?

Implications

5. Antisymmetric
$$\mathbb{F} \Rightarrow$$
 charge conservation: $\partial_{\mu}\partial_{\nu}\mathbb{F}^{\mu\nu} = 0 \Rightarrow \partial_{\lambda}\mathsf{J}^{\lambda} = 0$

6. Invariants
$$D \equiv \frac{1}{2} \mathbb{F}^{\mu\nu} \mathbb{F}_{\mu\nu} = B^2 - E^2/c, \qquad \alpha \equiv \frac{1}{4} \tilde{\mathbb{F}}^{\mu\nu} \mathbb{F}_{\mu\nu} = \mathbf{B} \cdot \mathbf{E}/c.$$

e.g. orthogonal in one frame
$$\Rightarrow$$
 orthogonal in all $(\alpha = 0)$ purely magnetic in one frame \Rightarrow not purely electric in another $(D > 0)$.

7. Finding the frame (if there is one) in which B or E vanishes.

Lecture 12. Introducing angular momentum, and some general tensor manipulations

- 1. Vector product, e.g. $\mathbb{L} = \mathsf{X}\mathsf{P}^T \mathsf{P}\mathsf{X}^T$ or $\mathbb{L}^{ab} = \mathsf{X}^a\mathsf{P}^b \mathsf{X}^b\mathsf{P}^a$.
- 2. Conservation of angular momentum and the motion of the centroid.

$$\mathbf{x}_{\rm c} \equiv \frac{\sum_{i} \mathbf{x}_{i} E_{i}}{E_{\rm tot}}$$

3. Transformation of an antisymmetric tensor:

$$\mathbb{F} = \begin{pmatrix} 0 & a_x & a_y & a_z \\ -a_x & 0 & b_z & -b_y \\ -a_y & -b_z & 0 & b_x \\ -a_z & b_y & -b_x & 0 \end{pmatrix}, \qquad \mathbb{F}' = \Lambda \mathbb{F} \Lambda^T \Rightarrow \qquad \begin{aligned} \mathbf{a}'_{\parallel} &= \mathbf{a}_{\parallel}, \\ \mathbf{a}'_{\perp} &= \gamma (\mathbf{a}_{\perp} + \mathbf{v} \wedge \mathbf{b}/c), \\ \mathbf{b}'_{\parallel} &= \mathbf{b}_{\parallel}, \\ \mathbf{b}'_{\perp} &= \gamma (\mathbf{b}_{\perp} - \mathbf{v} \wedge \mathbf{a}/c). \end{aligned}$$

- 4. Dual: $\tilde{\mathbb{F}}_{ab} = \frac{1}{2} \epsilon_{ab\mu\nu} \mathbb{F}^{\mu\nu}$; hence $\mathbf{a} \to -\mathbf{b}$; $\mathbf{b} \to \mathbf{a}$.
- 5. Differentiation examples

Tips

- 1. Name your indices sensibly; make repeated indices easy to spot.
- 2. Look for scalars. e.g. $\mathbb{F}_{\lambda\mu}\mathbb{A}^a_b\mathbb{F}^{\lambda\mu}$ is $s\mathbb{A}^a_b$ where $s=\mathbb{F}_{\lambda\mu}\mathbb{F}^{\lambda\mu}$.
- 3. You can always change the names of dummy (summed over) indices; if there are two or more, you can swap names.
- 4. The 'see-saw rule'

$$A_{\lambda}B^{\lambda} = A^{\lambda}B_{\lambda}$$
 (works for any rank)

5. In the absence of differential operators, everything commutes.

Lecture 13. Wave equation and general solution of Maxwell's equations

1. Poisson equation and its solution (reminder) ('Green's method'):

$$\nabla^2 \phi = \frac{-\rho}{\epsilon_0}, \qquad \qquad \phi(\mathbf{r}) = \int \frac{\rho(\mathbf{r}_s)}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_s|} dV_s.$$

- 2. How to calculate $\nabla^2(1/r)$
- 3. Wave equation and its ('retarded') solution

$$\frac{-1}{c^2} \frac{\partial^2 \phi}{\partial t^2} + \nabla^2 \phi = \frac{-\rho(\mathbf{r}, t)}{\epsilon_0}, \qquad \phi(\mathbf{r}, t) = \int \frac{\rho(\mathbf{r}_s, t - |\mathbf{r} - \mathbf{r}_s|/c)}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_s|} dV_s.$$

N.B. 'source event', 'field event'.

Hence

$$A = \frac{1}{4\pi\epsilon_0 c} \int \frac{J(\mathbf{r}_s, t - r_{sf}/c)}{r_{sf}} dV_s.$$

4. Potentials of an arbitrarily moving charged particle

$$A = \frac{q}{4\pi\epsilon_0} \frac{U/c}{(-R \cdot U)}.$$
 ('Liénard-Wiechart' potentials)

Lecture 14. Electromagnetic radiation

Fields of an accelerated charge:

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0 \kappa^3} \left(\frac{\mathbf{n} - \mathbf{v}/c}{\gamma^2 r^2} + \frac{\mathbf{n} \wedge [(\mathbf{n} - \mathbf{v}/c) \wedge \mathbf{a}]}{c^2 r} \right)$$

$$\mathbf{B} = \mathbf{n} \wedge \mathbf{E}/c$$
where
$$\mathbf{n} = \mathbf{r}/r, \quad \kappa = 1 - v_r/c = 1 - \mathbf{n} \cdot \mathbf{v}/c$$

In terms of the displacement $\mathbf{r}_0 = \mathbf{r} - \mathbf{v}r/c$ from the projected position,

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0 r_0^3 (\gamma^2 \cos^2 \theta + \sin^2 \theta)^{3/2}} \left(\gamma \mathbf{r}_0 + \frac{\gamma^3}{c^2} \mathbf{r} \wedge [\mathbf{r}_0 \wedge \mathbf{a}] \right)$$

- 1. General features: bound field, radiative field
- 2. Case of linear motion coming to rest
- 3. Radiation from slowly moving dipole oscillator

$$\mathbf{A} = \frac{q}{4\pi\epsilon_0 c^2} \frac{\mathbf{v}}{(r_{\rm sf} - \mathbf{r}_{\rm sf} \cdot \mathbf{v}/c)},$$

$$\Rightarrow \text{ far field:} \qquad \mathbf{B} = \frac{\omega^2 q x_0}{4\pi\epsilon_0 c^3} \frac{\sin \theta}{r} \sin(kr - \omega t) \,\hat{\boldsymbol{\phi}},$$

$$E = cB$$

4. The half-wave dipole antenna. Emitted power = $I_{\rm rms}^2 \times (73 \text{ ohm})$.

Lecture 15. Radiated power

1. Radiated power (Larmor)

$$d\mathcal{P} = Nr^2 d\Omega = \frac{q^2}{4\pi\epsilon_0} \frac{a^2 \sin^2 \theta}{4\pi c^3} d\Omega \qquad \Rightarrow \mathcal{P}_L = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0} \frac{a_0^2}{c^3}.$$

- 2. Linear particle accelerator: $a_0 = f_0/m = f/m$, $\longrightarrow loss \simeq 0$
- 3. Dipole oscillator

$$\mathcal{P}_L = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0 c^3} (\gamma^3 \omega^2 x_0 \cos \omega t)^2, \qquad \Rightarrow \quad \bar{\mathcal{P}}_L \simeq \frac{1}{3} \frac{q^2}{4\pi\epsilon_0 c^3} \omega^4 x_0^2$$

4. Headlight effect:

received energy per unit time at the detector, per unit solid angle

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\Omega} = \frac{q^2 a^2}{4\pi\epsilon_0 c^3} \frac{\sin^2 \theta}{(1 - (v/c)\cos \theta)^6} \qquad \text{for linear motion}$$

- 5. Circular motion: $a_0 = f_0/m = \gamma f/m = \gamma^2 a$, $\Delta E = \frac{q^2}{3\epsilon_0 r} \gamma^4 (v/c)^3$.
- (6. Synchrotron radiation: 'lighthouse' pulses with frequency spread $\Delta\omega \simeq \gamma^3\omega_0$.)
- (7. Self-force and radiation reaction)

Lecture 16. Spin; parity inversion symmetry

1.
$$L^{ab}(0) = L^{ab}(R) + (R^a P_{\text{tot}}^b - R^b P_{\text{tot}}^a)$$

Total angular momentum $J^{ab} = S^{ab} + L^{ab}$

2. Pauli-Lubanski vector
$$W_a \equiv \tilde{J}_{a\lambda} P^{\lambda} = \frac{1}{2} \epsilon_{a\lambda\mu\nu} J^{\mu\nu} P^{\lambda} \Rightarrow W^a = (\mathbf{s} \cdot \mathbf{p}, \ (E/c)\mathbf{s})$$

In the rest frame: $(0, mcs_0)$ so $W \cdot U = 0$ and

$$\mathbf{s}_{\parallel} = \mathbf{s}_{0\parallel}, \quad \mathbf{s}_{\perp} = rac{\mathbf{s}_{0\perp}}{\gamma}$$

Hence for a photon, W is null and points along P.

- 3. Mirror reflection; polar and axial vectors
- 4. Parity inversion: $x \to -x$, $y \to -y$, $z \to -z$

$$\mathbf{x} \to -\mathbf{x}, \ \mathbf{p} \to -\mathbf{p} \qquad \Rightarrow \mathbf{x} \wedge \mathbf{p} \to \mathbf{x} \wedge \mathbf{p}$$

- 5. Classical physics covariant under parity inversion
- 6. Parity non-conserving process

Lecture 17. Lagrangian mechanics (symmetry again!)

1. Reminder of Least Action and Euler-Lagrange equations

Lagrangian
$$\mathcal{L} = \mathcal{L}(\{q_i\}, \{\dot{q}_i\}, t) \equiv T - V$$

Action $S[q(t)] = \int_{q_1, t_1}^{q_2, t_2} \mathcal{L}(q, \dot{q}, t) dt$

stationary for path satisfying Euler-Lagrange equations: $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) = \frac{\partial \mathcal{L}}{\partial q_i}$.

$$\frac{\partial \mathcal{L}}{\partial q_i}$$
 = "generalized force", $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ = "canonical momentum"

Hamiltonian: $\mathcal{H}(q, \tilde{p}, t) \equiv \sum_{i}^{n} \tilde{p}_{i} \dot{q}_{i} - \mathcal{L}(q, \dot{q}, t)$

2. Special Relativity (version 1).

Freely moving particle: $\mathcal{L} = -mc^2/\gamma$, $\tilde{\mathbf{p}} = \gamma m\mathbf{v}$ Particle in an e-m field: $\mathcal{L} = -mc^2/\gamma + q(-\phi + \mathbf{v} \cdot \mathbf{A})$, $\tilde{\mathbf{p}} = \gamma m\mathbf{v} + q\mathbf{A}$ Taking a derivative along the worldline: $\frac{d\mathbf{A}}{dt} = \frac{\partial \mathbf{A}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{A}$

Hamiltonian
$$\mathcal{H} = \gamma mc^2 + q\phi = \left((\tilde{\mathbf{p}} - q\mathbf{A})^2 c^2 + m^2 c^4 \right)^{1/2} + q\phi.$$

3. Special Relativity (version 2), using τ instead of t in the action:

$$\begin{split} \mathcal{L}(\mathsf{X},\mathsf{U}) &= -mc(-\mathsf{U}\cdot\mathsf{U})^{1/2} + q\mathsf{U}\cdot\mathsf{A}, \qquad S[\mathsf{X}(\tau)] = \int_{(\mathsf{X}_1)}^{(\mathsf{X}_2)} \mathcal{L}(\mathsf{X},\mathsf{U},\tau) d\tau, \\ \frac{\mathrm{d}}{\mathrm{d}\tau} \frac{\partial \mathcal{L}}{\partial \mathsf{U}^a} &= \frac{\partial \mathcal{L}}{\partial \mathsf{X}^a}, \qquad \tilde{\mathsf{P}}_a = m\mathsf{U}_a + q\mathsf{A}_a, \qquad m \frac{\mathrm{d}\mathsf{U}}{\mathrm{d}\tau} = q(\Box \wedge \mathsf{A}) \cdot \mathsf{U} \end{split}$$

Use of a parameter to minimize the action.

Integrating with respect to proper time means the value of τ at the end event is different for each path.

Problem!: calculus of variations needs fixed start and end values.

Introduce a parameter λ :

$$\int \mathcal{L}(X, \dot{X}, \tau) d\tau = \int_{\lambda_1}^{\lambda_2} \mathcal{L} \frac{d\tau}{d\lambda} d\lambda.$$

Now the Lagrangian is

$$\tilde{\mathcal{L}} = \mathcal{L} \frac{\mathrm{d}\tau}{\mathrm{d}\lambda} = \mathcal{L} \frac{1}{c} \left(-g_{\mu\nu} \frac{\mathrm{d}\mathsf{X}^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}\mathsf{X}^{\nu}}{\mathrm{d}\lambda} \right)^{1/2}.$$

(using
$$d\tau^2 = dt^2 - (dx^2 + dy^2 + dz^2)/c^2$$
)

giving Euler-Lagrange equations

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \frac{\partial \tilde{\mathcal{L}}}{\partial \dot{\mathsf{X}}^a} = \frac{\partial \tilde{\mathcal{L}}}{\partial \mathsf{X}^a}$$

in which $\dot{X} = dX/d\lambda$.

Now pick $\lambda = \tau$ along the solution worldline.

For that worldline, and for that worldline only (but it is the only one we are interested in from now on), we must then find $d\tau/d\lambda = 1$ and $\tilde{\mathcal{L}} = \mathcal{L}$ and $\dot{X}^a = \mathsf{U}^a$.

Now

$$\frac{d\mathsf{A}_a}{d\tau} = U^\lambda \partial_\lambda \mathsf{A}_a$$

SO

$$m \frac{d \mathsf{U}_a}{d \tau} = q \left((\partial_a \mathsf{A}_\lambda) - (\partial_\lambda \mathsf{A}_a) \right) \mathsf{U}^\lambda$$

or
$$\frac{d \mathsf{P}}{d \tau} = q (\Box \wedge \mathsf{A}) \cdot \mathsf{U}$$

Lecture 18. Energy-momentum flow; stress-energy tensor

1. Conservation of energy:
$$-\frac{\partial u}{\partial t} = \nabla \cdot \mathbf{N} + \mathbf{E} \cdot \mathbf{j}$$
.

energy density
$$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}\epsilon_0 c^2 B^2$$
 Poynting vector $\mathbf{N} = \epsilon_0 c^2 \mathbf{E} \wedge \mathbf{B}$. follow from Maxwell's equations

2. Transfer of 4-momentum per unit volume from fields to matter:

Let
$$W = (\mathbf{E} \cdot \mathbf{j}/c, \ \rho \mathbf{E} + \mathbf{j} \wedge \mathbf{B})$$
 then

$$\mathsf{W}^b = -\,\partial_\lambda \mathbb{T}^{\lambda b} \qquad \qquad [\,\mathsf{W} = -\Box \cdot \mathbb{T}\,\,,$$

and one finds (by using Maxwell's equations):

$$\mathbb{T}^{ab} = \begin{pmatrix} u & \mathbf{N}/c \\ \hline \mathbf{N}/c & \sigma_{ij} \end{pmatrix} \text{ where } \sigma_{ij} = u\delta_{ij} - \epsilon_0(E_iE_j + c^2B_iB_j)$$

This can also be written

$$\mathbb{T}^{ab} = \epsilon_0 c^2 \left(-\mathbb{F}^{a\mu} \mathbb{F}_{\mu}^{\ b} - \frac{1}{2} g^{ab} D \right), \quad \text{where} \quad D = \frac{1}{2} \mathbb{F}_{\mu\nu} \mathbb{F}^{\mu\nu}.$$
[i.e. $\mathbb{T} = \epsilon_0 c^2 \left(-\mathbb{F} \cdot \mathbb{F} - \frac{1}{2} g D \right).$]

Conservation of 4-momentum of matter and field together

$$\left(\mathbf{E} \cdot \mathbf{j}/c, \ \rho \mathbf{E} + \mathbf{j} \wedge \mathbf{B}\right) = -\left(\frac{1}{c} \frac{\partial}{\partial t}, \ \nabla \cdot\right) \left(\frac{u \ | \mathbf{N}/c|}{\mathbf{N}/c \ | \ \boldsymbol{\sigma}}\right)$$

Poynting's argument (John Henry Poynting (1852-1914)):

We want to find expressions for u and \mathbf{N} , such that $-\frac{\partial u}{\partial t} = \mathbf{\nabla} \cdot \mathbf{N} + \mathbf{E} \cdot \mathbf{j}$. Using M4 to express \mathbf{j} in terms of the fields:

$$\mathbf{E} \cdot \mathbf{j} = \epsilon_0 c^2 \mathbf{E} \cdot (\nabla \wedge \mathbf{B}) - \epsilon_0 \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t}.$$

but for any pair of vectors E, B,

$$\nabla \cdot (\mathbf{E} \wedge \mathbf{B}) = \mathbf{B} \cdot (\nabla \wedge \mathbf{E}) - \mathbf{E} \cdot (\nabla \wedge \mathbf{B}).$$

SO

$$\mathbf{E} \cdot \mathbf{j} = -\epsilon_0 c^2 \mathbf{\nabla} \cdot (\mathbf{E} \wedge \mathbf{B}) + \epsilon_0 c^2 \mathbf{B} \cdot (\mathbf{\nabla} \wedge \mathbf{E}) - \frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon_0 \mathbf{E} \cdot \mathbf{E} \right).$$

Now use M3:

$$\mathbf{E} \cdot \mathbf{j} = -\epsilon_0 c^2 \mathbf{\nabla} \cdot (\mathbf{E} \wedge \mathbf{B}) - \frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon_0 c^2 \mathbf{B} \cdot \mathbf{B} + \frac{1}{2} \epsilon_0 \mathbf{E} \cdot \mathbf{E} \right)$$

Which shows that a possible assignment is

$$u = \frac{1}{2}\epsilon_0 c^2 B^2 + \frac{1}{2}\epsilon_0 E^2 ,$$

$$\mathbf{N} = \epsilon_0 c^2 \mathbf{E} \wedge \mathbf{B}.$$