Lecture 8. Relativity and electromagnetism
1. Force per unit charge — f = ¢(E + v A B)

Change frame: f — f’, hence:

Transformation of electromagnetic field

| = E
E/J_ = ’}/(EJ_—|—V/\B),
| = By

B, = v(B.-vAE/P?),

where S’ has velocity v in S.

e.g. capacitor, particle beam
2. Correct understanding of J = (pc, j) and charge conservation.

3. Fields due to a moving point charge:

YQr’
dre( (@) + ()2 + ()2
vAE

B = — .
2

E =




Lecture 9. 4-vector potential; Maxwell’s equations; introducing tensors

1. Lorentz covariance of Maxwell’s equations
2. Scalar and vector potential

B = VAA,

0A
B Ve gy

— automatically satisfy M2, M3.

A A
3. Gauge transformation: { — + VX,

4. 4-vector potential
pu— ¢/C 1 .
A= \ , Gauge transformation: A — A + Oy

5. Lorenz gauge, Maxwell’s equations in a manifestly covariant form:

Maxwell’s equations (!)

—1
[PA=——J,  with O-A=0.
C7€p

6. General idea of 3-dimensional tensors such as conductivity, susceptibility, . ...

7. Outer product F = AB” = T = AFAT. Also F-B=TF¢B



Maxwell equations and Lorentz force equation:

V-Ezeﬁ (M1)
V.B-0 (M2)
vrpo B o
CQV/\B:%O—F(E—?, (M4)

f=q(E+vAB)

Change frame:

pe ple B = E

i ||| B =B —vaB),

Jy Jy | B = Bj

Jz e B, = y(B| +vAE/?).
o) a(...)gthr@(...)@x/Jra(...)@y/+a(...)52/

Ox ot Ox oz’ Ox dy' Oz 0z Ox
o) = eftc.




Lecture 10. Tensor analysis and index notation

1. Basic idea: ¢, A%, F® g, A“'b
3

2. Summation convention: A”’X, means ZAabXb ... ‘dummy’ index
b=0

3. Contravariant/covariant. ATgB = A"¢'B" = ¢ = (A"1)TgA™!
Contravariant: X — AX
Covariant: (gX) = (A" HT(gX)

4. Index lowering: F, = g,,F" so U-F=UYF,
5. Legal tensor operations: sum, outer product, contract.

6. Caution when comparing with matrix notation

AB, < A-B
but AMB, =B,AM « B-A

7. Invariants: contract down to a scalar. e.g. ABy, T3, THT w

8. Differentiation. 9, = 5% = (1 55 550 550 ) Thus 9, = Uy = gn 0t and 9° = O

— 0z
0< 0%  e.g. continuity equation 9*Jy =0

Product rule:  94(UV¢) = (9°U)V¢ + U(9?V¢)



Lecture 11. Electromagnetic field theory via field tensor F

| Lorentz covariance, } N { 4-force = charge x field x 4-velocity
© simplicity F = ¢F-U Field tensor
2. Pure force (F-U =0) & F=-F
0 E,/Jc E,Jc E./c
| —E./c 0 B, —B,
=E=\_gj -B. 0o B,
-E./c B, —B, 0
3. propose field equation O-F = —pugpoU, ie.  OOFY = —puopoU?
4. need a further equation; try F=0OAA, ie. F® = 9eAb — 9PA°
= OTF® + 9UF* + O'F* = 0.
= The physical world ?
Implications

5. Antisymmetric F = charge conservation: 9,0, F*" =0 = =0
1 1~
6. Invariants = §IFWIFW = B? — E?/c, a= ZFW]FW =B -E/c

e.g. orthogonal in one frame = orthogonal in all (o = 0)
purely magnetic in one frame = not purely electric in another (D > 0).

7. Finding the frame (if there is one) in which B or E vanishes.



Lecture 12. Introducing angular momentum, and some general tensor
manipulations

1. Vector product, e.g. L = XPT — PXT or L% = X*P? — XPe,

2. Conservation of angular momentum and the motion of the centroid.

0 ap a, a; aﬂ = q,

po | % 0 b, —by P AFAT — a| = y(a.+vAb/e),
—a, b, 0 b, |’ = by

—a, b, =b, 0 b, = ~(by —vAa/c).

4. Dual: Fy = §eabWIFW; hence a —+ —b; b — a.

5. Differentiation examples



Tips

1. Name your indices sensibly; make repeated indices easy to spot.
2. Look for scalars. e.g. ]FAMAZFA“ is sA} where s = IFMIF)‘”.

3. You can always change the names of dummy (summed over) indices; if
there are two or more, you can swap names.

4. The ‘see-saw rule’

A\B* = A’B)  (works for any rank)

5. In the absence of differential operators, everything commutes.



Lecture 13. Wave equation and general solution of Maxwell’s equations

1. Poisson equation and its solution (reminder) (‘Green’s method’):

Vi =", o(r) = / ) gy,

€ 4reg|r — 1
2. How to calculate V2(1/r)

3. Wave equation and its (‘retarded’) solution

—10% v — —p(r, 1) o(r. 1) :/p(rs, t— \r—rs\/c)dvs-

2 o €0 Amep|r — 1y

N.B. ‘source event’, ‘field event’.

A 1 /J(rs’t_TSf/c)dVS.

4dmegc rsf

Hence

4. Potentials of an arbitrarily moving charged particle

a_ 4 Ve
4meg (—R-U)

(‘Liénard-Wiechart’ potentials)



Lecture 14. Electromagnetic radiation

Fields of an accelerated charge:

g _ 4 (n—v/c+nA[(n—V/c)Aa]>
Amegrd \ 212 c?r
B = nAE/c
where n = r/r, k=1—-v/c=1—n-v/c

In terms of the displacement ry = r — vr/c from the projected position,

3
a v
B= ro.+ —rAlrg/A\a

dmegry(y? cos? 0 + sin® 0)3/2 (7 0+ 5T Alro ])

1. General features: bound field, radiative field
2. Case of linear motion coming to rest

3. Radiation from slowly moving dipole oscillator

q v
A —
dregc? (rgg — Tof - V/C)’
P in 6 A
= far field: B = W g% S sin(kr — wt) ¢,
dmegcd 1
E = c¢B

4. The half-wave dipole antenna. Emitted power = I2 _ x (73 ohm).



Lecture 15. Radiated power
1. Radiated power (Larmor)

2 2.2

q° a°sin“f 2 ¢° ao

dP = Nr2dQ = d0 - P _
" dmey 4med L=3 Aeg 3

2. Linear particle accelerator: ag = fo/m = f/m, — loss ~ 0
3. Dipole oscillator

Pr = 2 v (v’w’my cos wt)? = P~ 1_(]2 whg
34meged ’  3dmeyc? 0

4. Headlight effect:
received energy per unit time at the detector, per unit solid angle

dp q*a’ sin’
dQ  dmec® (1 —(v/c)cos )b

for linear motion

e
5. Circular motion: ag = fo/m = ~vf/m =~%a, AE = 3—7 Yw/e)?.
€T

(6. Synchrotron radiation: ‘lighthouse’ pulses with frequency spread Aw ~ ~3wy.)

(7. Self-force and radiation reaction)



Lecture 16. Spin; parity inversion symmetry
L. L(0) = L(R) + (R" Py, — R"Py)
Total angular momentum J% = S® 4 L
2. Pauli-Lubanski vector W, = J,,P* = %Ea)\uijjp/\ = W= (s-p, (E/c)s)
In the rest frame: (0, mcsg) so W- U = 0 and
S| = So|, SL =~

Hence for a photon, W is null and points along P.

3. Mirror reflection; polar and axial vectors
4. Parity inversion: * — —x, y — —y, 2 — —2

X— —X, pP——P = XAp—=>XAP
5. Classical physics covariant under parity inversion

6. Parity non-conserving process



Lecture 17. Lagrangian mechanics (symmetry again!)

1. Reminder of Least Action and Euler-Lagrange equations

Lagrangian £ = L({¢},{¢},t) =T -V

q2,t2
Action S[q(t)] = / L(q,q,t)dt
q

latl

. e . oL oL
stationary for path satisfying Euler-Lagrange equations: — [ — | = —.
dt (9qz- 8%’
aﬁ 14 : 7 aﬁ (44 : 9
— = “generalized force”, —— = “canonical momentum
0q; dq;
Hamiltonian:  H(q, p, t) ZplqZ (q,4,1)
2. Special Relativity (version 1).
Freely moving particle: £ = —mc?/7, p =ymv
Particle in an e-m field: £ = —mc*/y+q(—p+v-A), p=ymv+qA
dA 0A
Taking a derivative along the worldline: ey + (v-V)A

1/2
Hamiltonian H = ymc?® + q¢ = ((f) — gAY + m2c4) + qo.

3. Special Relativity (version 2), using 7 instead of ¢ in the action:

(X2)
L(X,U) = —me(—=U-U)Y2 1 qU - A, SIX(1)] = L(X, U, 7)dr,

(X1)
d oL oL ~ du
E@UG_W’ Pa—mUa+qAa, mE—q(D/\A)U




Use of a parameter to minimize the action.

Integrating with respect to proper time means the value of 7 at the end
event is different for each path.

Problem!: calculus of variations needs fixed start and end values.

Introduce a parameter A:

: A2 dr
= —dA.
/E(X,X, T)dr A Ed)\ A

1
Now the Lagrangian is

. dr 1 X dx\ 2
L=Ln =5 (‘Wﬁﬁ) -
(using d7% = dt* — (da? + dy* + dz?)/c?)
giving Euler-Lagrange equations

d oL oL

dAoxe  OXa

in which X = dX/dA,
Now pick A = 7 along the solution worldline.

For that worldline, and for that worldline only (but it is the only one we are

interested in from now on), we must then find d7/dA =1 and £ = £ and
X* = U,



Now
dA,

Y
e = U"0\A,
SO
dU
a — aA . Aa A
md?, q ((OaAy) — (OrA,)) U
or b _ q(COAA)-U

dT



Lecture 18. Energy-momentum flow; stress-energy tensor

0
1. Conservation of energy: —6—? =V -N+E-j.
energy density u = legE? + legc? B2

- follow from M 1 ti
Poynting vector N = ¢, c?E A B. } ollow Irom Maxwell's equations

2. Transfer of 4-momentum per unit volume from fields to matter:
Let W= (E-j/c, pPE+jAB) then
W = — 9, TV (W=-0O-T,

and one finds (by using Maxwell’s equations):

ab u ‘ N/C 2
T = N/ ‘ where Oij = uéij - EO(EZ'EJ' +c BZBJ)
C Oij

This can also be written

1
T = eyc? (—IF““IFMb—y‘LbD), where D = 1F,, F".

1
[ie. T = ec? (—F-F—égD).]

Conservation of 4-momentum of matter and field together

(E-j/e pE+j/\B):_(%%’ V-) (NL/C‘NT/C>




Poynting’s argument (John Henry Poynting (1852-1914)):
0
We want to find expressions for v and N, such that —8—7;

Using M4 to express j in terms of the fields:

E
E-jze()CQE-(V/\B)—eOE-aa—t.

but for any pair of vectors E, B,
V- (EAB)=B:-(VAE)—-E.-(V AB).
SO

0
E-j=—V - (EAB)+¢cB- (VAE) - —

at (%E()E : E)

Now use M3:

0
E-j=—¢V-(EAB) - P (1e0c’B - B + LeE - E)

Which shows that a possible assignment is

u = Lleoc?B*+ legE?
N = ¢cE AB.

~V-N+E-j



