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A comment on notation. The Lorentz transformation is written either L
or Λ. 3-vectors are indicated by bold font: a,b, c, . . .A,B,C . . .; 4-vectors are
indicated by capitol letters in this font: A,B,C, . . .; 2nd rank tensors by this font
A,B,C, . . .. In the later sections where index notation is used, the font no longer
matters but is mostly adhered to anyway. Indices run over 0,1,2,3 (t, x, y, z),
with the exception of i, j which run over 1,2,3 (x, y, z). For convenience of
spotting them, indices being summed over are given Greek letters such as λ
or µ. The Minkowski metric is taken as g = diag(−1, 1, 1, 1) (in rectangular
coordinates). The scalar product is

A · B ≡ AT gB ≡ AλBλ

In the lectures we occasionally use the notation � for the 4-gradient operator,
by analogy with the familiar ∇, but mostly we use ∂a. In many books the
symbol � is used for the d’Alembertian operator, which in our notation is �2.
The summary is

thing notation here notation elsewhere(
−1

c

(
∂

∂t

)
, ∇

)
� or ∂a ∂a

− 1

c2
∂2

∂t2
+∇2 �2 �

In texts adopting the other possible metric (+1,−1,−1,−1), ∂a changes sign
but ∂a does not.

Relativity: problems

Andrew M. Steane

Some constants

c 299792458 m/s
electron 0.511 MeV
proton 938.3 MeV
π− 139.6 MeV
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1 Basic ideas, simple kinematics and dynamics

(Lectures 1-5)

Basic ideas

1. The Lorentz transformation Λ is defined such that ΛT gΛ = g where g is the
Minkowski metric, taken as g = diag(−1, 1, 1, 1). Show that for any pair of 4-
vectors A, B, the scalar product A · B ≡ AT gB is Lorentz-invariant.

2. Using a spacetime diagram, or otherwise, prove that
(i) the temporal order of two events is the same in all reference frames if and only
if they are separated by a time-like interval,
(ii) there exists a reference frame in which two events are simultaneous if and only
if they are separated by a space-like interval.

3. Using algebra, or otherwise, show that
(i) for any time-like vector there exists a frame in which its spatial part is zero,
(ii) any vector orthogonal to a time-like vector must be space-like,
(iii) with one exception, any vector orthogonal to a null vector is spacelike, and
describe the exception.

4. Show that (i) the instantaneous 4-velocity of a particle is parallel to the worldline
(i.e. demonstrate that you understand the meaning of this claim—if you do then
it is obvious),
(ii) if the 4-displacement between any two events is orthogonal to an observer’s
worldline, then the events are simultaneous in the rest frame of that observer.

5. Define proper time. A worldline (not necessarily straight) may be described as a
locus of time-like separated events specified by (ct, x, y, z) in some inertial reference
frame. Show that the increase of proper time τ along a given worldline is related
to reference frame time t by dt/dτ = γ.

6. Two particles have velocities u, v in some reference frame. The Lorentz factor for
their relative velocity w is given by

γ(w) = γ(u)γ(v)(1− u · v/c2).

Prove this twice, by using each of the following two methods.

(i) In the given frame, the worldline of the first particle is X = (ct, ut). Transform
to the rest frame of the other particle to obtain

t′ = γvt(1− u · v/c2)

Obtain dt′/dt and apply the result of the previous question.
(ii) Use the invariant U · V, first showing that it is equal to −c2γ(w).
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7. In a given inertial frame S, two particles are shot out from a point in orthogonal
directions with equal speeds v. At what rate does the distance between the particles
increase in S? What is the speed of each particle relative to the other?

Doppler effect and aberration

8. Derive a formula for the frequency ω of light waves from a moving source, in terms
of the proper frequency ω0 in the source frame and the angle in the observer’s
frame, θ, between the direction of observation and the velocity of the source.

A galaxy with a negligible speed of recession from Earth has an active nucleus. It
has emitted two jets of hot material with the same speed v in opposite directions,
at an angle θ to the direction to Earth. A spectral line in singly-ionised Mg (proper
wavelength λ0 = 448.1 nm) is emitted from both jets. Show that the wavelengths
λ± observed on Earth from the two jets are given by

λ± = λ0γ(1± (v/c) cos θ)

(you may assume the angle subtended at Earth by the jets is negligible). If λ+ =
420.2 nm and λ− = 700.1 nm, find v and θ.

In some cases the receding source is difficult to observe. Suggest a reason for this.

9. The emission spectrum from a source in the sky is observed to have a periodic
fluctuation, as shown in the data displayed in figure 1.

HD807150.061 days
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Figure 1: Spectra of light received from a astronomical object at specific times during
an observation period of a few days.
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It is proposed that the source is a binary star system. Explain how this could give
rise to the data. Extract an estimate for the component of orbital velocity in the
line of sight.

[Optional: assuming the stars have equal mass, estimate also the distance between
them and their mass.]

10. Consider a wavetrain whose width and length are sufficiently large that it can be
treated as monochromatic and with negligible diffraction. Define the width of a
wavefront to be the distance between two points on a given wavefront at a given
instant in time in some reference frame. Show that this width is the same in all
frames. Hence deduce how the intensity of a plane wave transforms. [Hint: either
set up equations for the movement of the ends of the wavefront, and use a Lorentz
transformation, or, for a clever method, give a carefully argued treatment using
4-vectors and invariants.]

11. Moving mirror. A plane mirror moves uniformly with velocity v in the direction
of its normal in a frame S. An incident light ray has angular frequency ωi and is
reflected with angular frequency ωr.
(i)Show that

ωi sin θi = ωr sin θr

where θi, θr are the angles of incidence and reflection.

(ii) [Optional—harder]. Also show that establish

tan(θi/2)

tan(θr/2)
=

1 + v/c

1− v/c
.

[Hint: first establish by trigonometric manipulation that cos θ = (1 − t2)/(1 + t2)
where t = tan(θ/2), then employ this in the Doppler formula relating cos θ to cos θ0
in order to obtain a relation between t and t0. Then apply this relation to the two
rays.]

Motion under a given force

12. Does Special Relativity place any bounds on the possible sizes of forces or acceler-
ations?

13. Twin paradox. (i) Evaluate the acceleration due to gravity at the Earth’s surface
(9.8 m/s2) in units of years and lightyears.
(ii) In the twin paradox, the travelling twin leaves Earth on board a spaceship
undergoing motion at constant proper acceleration of 9.8 m/s2. After 5 years of
proper time for the spaceship, the direction of the rockets are reversed so that
the spaceship accelerates towards Earth for 10 proper years. The rockets are then
reversed again to allow the spaceship to slow and come to rest on Earth after a
further 5 years of spaceship proper time. How much does the travelling twin age?
How much does the stay-at-home twin age?
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14. Constant force. Consider motion under a constant force, for a non-zero initial
velocity in an arbitrary direction, as follows.
(i) Write down the solution for p as a function of time, taking as initial condition
p(0) = p0.
(ii) Show that the Lorentz factor as a function of time is given by γ2 = 1 + α2

where α = (p0 + f t)/mc.
(iii) You can now write down the solution for v as a function of time. Do so.
(iv) Now restrict attention to the case where p0 is perpendicular to f . Taking the
x-direction along f and the y-direction along p0, show that the trajectory is given by

x =
c

f

(
m2c2 + p20 + f2t2

)1/2
+ const

y =
cp0
f

log

(
ft+

√
m2c2 + p20 + f2t2

)
+ const

where you may quote that
∫
(a2 + t2)−1/2dt = log

(
t+

√
a2 + t2

)
(v) Explain (without carrying out the calculation) how the general case can then
be treated by a suitable Lorentz transformation.
N.B. the calculation as a function of proper time is best done another way, see later
problems.

15. For motion under a pure (rest mass preserving) inverse square law force f = −αr/r3,
where α is a constant, derive the energy equation γmc2 − α/r = constant.

Optional extra questions

16. Derive the equations describing the transformation of velocity:

u′
∥ =

u∥ − v

1− u · v/c2
, u′

⊥ =
u⊥

γv (1− u · v/c2)
.

17. Excited ions in a fast beam have a uniform velocity and emit light on a given
internal transition. The wavelength observed in the direction parallel to the beam
is 359.5 nm, the wavelength observed in the direction perpendicular to the beam
in the laboratory is 474.4 nm. Find the wavelength in the rest frame of the ions,
and the speed of the ions in the laboratory.

18. Show that the motion of a particle in a uniform magnetic field is in general helical,
with the period for a cycle independent of the initial direction of the velocity. [Hint:
what can you learn from f · v?]

19. In a frame S a guillotine blade in the (x, y) plane falls in the negative y direction
towards a block level with the x axis and centred at the origin. The angle of the
edge of the blade is such that the point of intersection of blade and block moves
at a speed in excess of c in the positive x direction. In some frame S′ in standard
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configuration with S, this point moves in the opposite direction along the block.
Now suppose that when the centre of the blade arrives at the block, the whole
blade instantaneously evaporates in frame S (for example, it could be vapourized
by a very powerful laser beam incident from the z direction). A piece of paper
placed on the block is therefore cut on the negative x-axis only. Explain this in S′.

20. Two photons travel along the x-axis of S, with a constant distance L between them.
Find the distance between them as observed in S′. How is this result connected to
the Doppler effect?

21. In an atomic beam spectroscopy experiment, the atoms are excited by a well-
collimated laser beam propagating at right angles to the axis of the atomic beam.
The laser frequency is scanned, and fluorescence is detected when the atoms absorb
and re-emit the light on a narrow atomic transition. Suppose the spread of atomic
speeds along the beam is 1000 m/s, with a mean speed of v = 1000 m/s, and the
atomic transition wavelength is 300 nm in the rest frame of the atom. Calculate
the maximum and minimum transverse Doppler effects for atoms propagating along
the atomic beam axis, expressing your answers as frequency shifts in kHz.

Give a formula for the longitudinal Doppler effect along the laser beam direction
for an atom propagating at the average speed at a small angle θ to the atomic beam
axis, accurate to first order in θ.

Hence calculate the degree of collimation of the beam required in order that the
transverse effect dominates the observed broadening of the transition frequency,
and the relative precision of the laser frequency scan required if the transverse ef-
fect is to be observable.

22. Consider a particle moving in a straight line with velocity v, rapidity ρ and proper
acceleration a0. Prove that dρ/dτ = a0/c. [Hint: use the fact that colinear rapidi-
ties are additive.]

23. A particle moves hyperbolically with proper acceleration a0, starting from rest at
t = 0. At t = 0 a photon is emitted towards the particle from a distance c2/a0
behind it. Prove that in the instantaneous rest frames of the particle, the distance
to the photon is always c2/a0.

24. Prove that the necessary and sufficient condition for there to exist a reference frame
in which three particles have parallel 3-velocities is that their 4-velocities U,V,W
be linearly dependent.

25. For any two future-pointing time-like vectors V1, V2, prove that V1·V2 = −V1V2 cosh ρ
where ρ is the relative rapidity of frames in which V1 and V2 are purely temporal.
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2 Energy-momentum conservation; collisions; 4-gradient

(Lectures 6-9)

Basic ideas

1. The upper atmosphere of the Earth receives electromagnetic energy from the sun
at the rate 1400 Wm−2. Find the rate of loss of mass of the sun due to all its
emitted radiation. [The Earth-sun distance is 499 light seconds.]

2. Calculate the mass increase of a block of copper heated from 0◦C to 1000◦C, as-
suming the specific heat capacity is constant at 420 J kg−1K−1 and the initial mass
is 10 kg.

3. Show that if a 4-vector has a component which is zero in all frames, then the entire
vector is zero. What insight does this offer into energy and momentum?

4. The following spacetime diagram shows the wordlines of two accelerating particles
L, R and two inertial observers S, S′. The dashed lines are lines of simultaneity in
frame S′ at two times t′1, t

′
2.
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The two particles have the same mass.

First consider the observations in frame S. At any given time in S, the particles
have equal and opposite momenta, therefore their total three-momentum ptot =
pL + pR = 0. In other words, ptot is constant (and zero). Now consider the
observations in frame S′. Initially the two particles have almost the same velocity
relative to S′. Then, between times t′1 and t′2, R comes to rest relative to S′, while
L changes its velocity relative to S′ by only a small amount. Therefore the total
particle momentum in frame S′ roughly halves between times t′1 and t′2. The total
momentum of the two particles is certainly not constant in S′.
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What does this situation tell us about total momentum? Is total momentum a
meaningful physical concept? If so, then is it always conserved? Under what
conditions does it transform as part of a four-vector?

5. Obtain the transformation equations for 3-force, by starting from the Lorentz trans-
formation of energy-momentum, and then differentiating with respect to t′. [Hint:
argue that the relative velocity v of the reference frames is constant, and use or
derive an expression for dt/dt′ .]

In the following collision questions we will use c = 1 throughout—and I
would encourage students to do the same. Then one has E2 − p2 = m2 in
general, and E = p if m = 0.

6. A particle of rest mass m and kinetic energy 3m strikes a stationary particle of rest
mass 2m and sticks to it. Find the rest mass and speed of the composite particle.

7. A system consists of two photons, each of energy E, propagating at right angles in
the laboratory frame. Find the rest mass of the system and the velocity of its CM
frame relative to the laboratory frame.

Particle formation

8. Prove that the threshold energy in the laboratory frame for a particle m hitting a
free stationary target M , such that collision products of total rest mass

∑
i mi can

be produced, is given by

Eth =
(
∑

i mi)
2 −m2 −M2

2M
c2.

9. (i) Pion formation can be achieved by the process p + p → p + p + π0. A proton
beam strikes a target containing stationary protons. Calculate the minimum kinetic
energy which must be supplied to an incident proton to allow pions to be formed,
and compare this to the rest energy of a pion.
(ii) A photon is incident on a stationary proton. Find, in terms of the rest masses,
the threshold energy of the photon if a neutron and a pion are to emerge.
(iii) A particle formation experiment creates reactions of the form b+ t → b+ t+n
where b is an incident particle of mass m, t is a target of mass M at rest in the
laboratory frame, and n is a new particle. Define the ‘efficiency’ of the experiment
as the ratio of the rest energy of the new particle to the supplied kinetic energy of
the incident particle. Show that, at threshold, the efficiency thus defined is equal
to

M

m+M +mn/2
.
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10. [part of B1 2004 q3, with some modifications.]
For an isolated system of particles, let

s2 =
(∑

Ei

)2

−
(∑

pi

)2

where the sums are taken over the particles in the system at some given time. What
is s for a single particle of mass m?

In the laboratory frame a particle of mass m and momentum pm is incident on a
particle of mass M , at rest. Find an expression for the total available energy in
the centre-of-mass frame. Show that the momentum of the particle of mass m in
the centre-of-mass frame is given by p′m = Mpm/s.

11. Two photons may collide to produce an electron-positron pair. If one photon has
energy E0 and the other has energy E, find the threshold value of E for this
reaction, in terms of E0 and the electron rest mass m. High energy photons of
galactic origin pass through the cosmic microwave background radiation which can
be regarded as a gas of photons of energy 2.3 × 10−4 eV. Calculate the threshold
energy of the galactic photons for the production of electron-positron pairs.

Decay

12. Particle tracks are recorded in a bubble chamber subject to a uniform magnetic
field of 2 tesla. A vertex consisting of no incoming and two outgoing tracks is
observed. The tracks lie in the plane perpendicular to the magnetic field, with
radii of curvature 1.67 m and 0.417 m, and separation angle 21◦. It is believed
that they belong to a proton and a pion respectively. Assuming this, and that the
process at the vertex is decay of a neutral particle into two products, find the rest
mass of the neutral particle.

13. A particle with known rest mass M and energy E decays into two products with
known rest masses m1 and m2. Find the the energies E1, E2 (in the lab frame) of
the products, by the following steps:
(i) Find the energies E′

1, E
′
2 of the products in the CM frame.

(ii) Show that the momentum of either decay product in the CM frame is

p = (c/2M)
[
(m2

1 +m2
2 −M2)2 − 4m2

1m
2
2

]1/2
(iii) Find the Lorentz factor and the speed v of the CM frame relative to the lab.
(iv) Write down, in terms of v, γ, p, E′

1 and E′
2, expressions for E1, E2 when the

products are emitted (1) along the line of flight (2) at right angles to the line of
flight in the CM frame.

14. [B1 2006 q8, reworded to remove an ambiguity]
It is proposed to generate a pure beam of either electron neutrinos or electron
antineutrinos by accelerating ions of unstable nuclei to relativistic speeds and then
allowing them to decay in a long straight section of the accelerator.
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An unstable ion of rest mass M decays after it has been accelerated to total energy
E and Lorentz factor γ = E/Mc2 and emits a neutrino of energy Eν at an angle
of θ to the beam direction. (i) Derive an expression for the neutrino’s energy E∗

ν

in the rest frame of the ion in terms of Eν , θ and the velocity of the ion βc. (ii)
Show that in the rest frame of the ion, the neutrino’s path is inclined to the beam
direction by the angle θ∗ that satisfies

cos θ∗ =
cos θ − β

1− β cos θ
.

Ions are accelerated to γ = 100 and decay in the straight section of the accelerator.
A cylindrical detector that is coaxial with the beam and has radius r = 30m, is
placed D = 300 km downstream. Show that the angle between the beam direction
and that of a neutrino which will hit the outer edge of the detector, measured in
the rest frame of the ion, is approximately given by

cos θ∗ =
1− γ2θ2

1 + γ2θ2 − θ2/2

where θ ≃ r/D. Given that the emission of neutrinos is isotropic in the ion rest
frame, find the fraction of the neutrinos that pass through the detector.

Show that in the ion rest frame the detector subtends an angle 2θ∗r at the ion at
the emission event, where θ∗r = tan−1(γr/D). Why does θ∗r differ from θ∗?

15. This diagram illustrates a process in which an electron emits a photon:

�
�
�
��
J

J
JJ]

e

e

�
�
��γ

Prove that the process is impossible. Prove also that a photon cannot transform
into an electron-positron pair in free space, and that a photon in free space cannot
decay into a pair of photons with differing directions of propagation.

A comment: you will see diagrams like this in particle physics. The lesson is
that since the process is impossible classically, then if it is nevertheless included
in a calculation, it must be part of a larger process involving a sum over quantum
amplitudes. Terms in the sum that do not conserve energy-momentum are said to
involve a virtual particle which does not propagate in the normal manner but has
a wavefunction that decays like an evanescent wave.

16. Compton scattering. Obtain the formula for the Compton effect using 4-vectors,
starting from the usual energy-momentum conservation P+Pe = P′+P′

e. [Hint: we
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would like to eliminate the final electron 4-momentum P′
e, so make this the subject

of the equation and square.] A collimated beam of X rays of energy 17.52 keV
is incident on an amorphous carbon target. Sketch the wavelength spectrum you
would expect to be observed at a scattering angle of 90◦, including a quantitative
indication of the scale.

Introducing four-gradient

17. Describe the way density and flux transform under the Lorentz transformation.
Write down the continuity equation in 4-vector notation.

18. An oscillator undergoes periodic motion. State, with reasons, which of the following
are Lorentz-invariant:
(i) the amplitude of the oscillation,
(ii) the phase of the oscillation,
(iii) the maximum velocity.

19. A wave motion has a phase ϕ given by ϕ(x, y, z, t) = k ·r−ωt where k is a constant
vector and ω is a constant frequency. Evaluate �ϕ and comment.

Optional extra questions

20. A ‘photon rocket’ propels itself by emitting photons in the rearwards direction.
The rocket is initially at rest with mass m. Show that when the rest mass has
fallen to αm the speed (as observed in the original rest frame) is given by

v

c
=

1− α2

1 + α2

[Hint: don’t bother with equations of motion, use conservation of momentum].
It is desired to reach a speed giving a Lorentz factor of 10. What value of α is
required? Supposing the rocket cannot pick up fuel en route, what proportion of
its initial mass must be devoted to fuel if it is to make a journey in which it first
accelerates to γ = 10, then decelerates to rest at the destination (the destination
being a star with negligible relative speed to the sun)?

21. A rocket propels itself by giving portions of its massm a constant velocity u relative
to its instantaneous rest frame. Let S′ be the frame in which the rocket is at rest
at time t. Show that, if v′ is the speed of the rocket in S′, then to first order in dv′,

(−dm)u = mdv′.

Hence prove that, when the rocket attains a speed v relative to its initial rest frame,
the ratio of final to initial rest mass of the rocket is

mf

mi
=

(
1− v/c

1 + v/c

)c/2u
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Note that the least expenditure of mass occurs when u = c, i.e. the ‘photon rocket’.

Prove that if the rocket moves with constant proper acceleration a0 for a proper
time τ , then mf/mi = exp(−a0τ/u).

22. A decay mode of the neutral Kaon is K0 → π+ + π−. The Kaon has momentum
300 MeV/c in the laboratory, and one of the pions is emitted, in the laboratory, in
a direction perpendicular to the velocity of the Kaon. Find the momenta of both
pions.

23. Three-body decay A particle Y decays into three other particles, with labels
indicated by Y → 1 + 2 + 3. Working throughout in the CM frame:
(i) Show that the 3-momenta of the decay products are coplanar.
(ii) Show that the energy of particle 3 is given by

E3 =
(m2

Y +m2
3 −m2

1 −m2
2)c

4 − 2E1E2 + 2p1 · p2c
2

2mY c2

(iii) Show that the maximum value of E3 is

E3,max =
m2

Y +m2
3 − (m1 +m2)

2

2mY
c2

and explain under what circumstances this maximum is attained.
(iv) Show that, when particle 3 has its maximum possible energy, particle 1 has
the energy

E1 =
m1(mY c

2 − E3,max)

m1 +m2

[Hint: first argue that 1 and 2 have the same speed in this situation]
(v) Let X be the system composed of particles 1 and 2. Show that its rest mass is
given by

m2
X = m2

Y +m2
3 − 2mY E3/c

2

(vi) Write down an expression for the energy E∗ of particle 2 in the rest frame of
X, in terms of m1, m2 and mX .
(vii) Show that, when particle 3 has an energy of intermediate size, m3c

2 < E3 <
E3,max, the energy of particle 2 in the original frame (the rest frame of Y ) is in the
range

γ(E∗ − βp∗c) ≤ E2 ≤ γ(E∗ + βp∗c)

where p∗ is the momentum of particle 2 in the X frame, and γ, β refer to the speed
of that frame relative to the rest frame of Y .

24. Consider a head-on elastic collision between a moving ‘bullet’ of rest mass m and a
stationary target of rest mass M . Show that the post-collision Lorentz factor γ of
the bullet cannot exceed (m2 +M2)/(2mM). (This means that for large energies
almost all the energy of the bullet is transferred to the target, very different from
the classical result). [Hint: consider Pt − Qb where Pt is the initial 4-momentum
of the target and Qb is the final 4-momentum of the bullet.]
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25. Particles of mass m and kinetic energy T are incident on similar particles at rest
in the laboratory. Show that, if elastic scattering takes place, then the minimum
angle between the final momenta in the laboratory is given by

cos θmin =
T

T + 4mc2

26. Show (by considering one component at a time, or otherwise) that
(i) �(ϕV ) = V�ϕ+ ϕ�V
(ii) � · (ϕF) = F ·�ϕ+ ϕ� · F
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3 A little more kinematics, and electromagnetism via
4-vectors

(Lectures 10-14)

Angle changes associated with Lorentz boosts

1. The axis of a cylinder lies along the x′ axis. The cylinder has no translational
motion in S′, but it rotates about its axis with angular speed ω′. When observed
in S the cylinder travels and rotates.
(i) Prove that in S at any instant the cylinder is twisted, with a twist per unit
length γω′v/c2. [Hint: consider the rotation of the flat surfaces at the two ends of
the cylinder; a line painted on either surface rotates like the hand of a clock].
(ii) Is the cylinder in mechanical equilibrium?. Comment on whether or not you
expect there to be internal sheer forces in the cylinder in frame S.

2. In S′ a rod parallel to the x′ axis moves in the y′ direction with velocity u. Show
that in S the rod is inclined to the x-axis at an angle − tan−1(γuv/c2).

3. The Thomas precession (off-syllabus) is a rotation of a rigid body that results from
an acceleration without torque. The rotation frequency (the Thomas precession
frequency) is given by

ωT =
a ∧ v

c2
γ2

1 + γ

for a body moving with velocity v and acceleration a.
(i) Obtain an expression for the Thomas precession frequency for an electron moving
in an electric field E.
(ii) The spin-orbit interaction causes the intrinsic spin angular momentum of an
electron to precess in the electron rest frame at the Larmor frequency

ωL =
−gsµB

~
v ∧E

c2
.

At what frequency does the spin precess in an inertial reference frame? (You may
assume v ≪ c).

4. The Pauli-Lubanski spin vector W is a 4-vector related to angular momentum. For
a particle of energy E and momentum p its components are given by

W = (s · p, (E/c)s)

where s is the 3-spin, i.e. the intrinsic angular momentum.
(i) Show that this 4-vector is orthogonal to the 4-momentum (W · P = 0) and that
in the limit v → c, W is proportional to P [hint: start in the rest frame and apply
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a boost].
(ii) (From Part B, 2015). For a massive particle, we may define a spin 4-vector sa =
Wa/mc. In the absence of an applied torque, the spin 4-vector of an accelerating
particle evolves as

dsa

dτ
=

sλu̇
λ

c2
ua

where ua is the 4-velocity and the dot signifies d/dτ . Show that the 3-spin evolves
as

ds

dτ
=

γ2

c2
[(s · v̇)v − (v · v̇)s]

and find s(τ) for a particle accelerated along a straight line with speed v(τ) =

c [1− exp(−2Γτ)]
1/2

, where Γ is constant.

Electromagnetism

5. How does a 2nd rank tensor change under a Lorentz transformation? By trans-
forming the field tensor, and interpreting the result, prove that the electromagnetic
field transforms as:

E′
∥ = E∥ E′

⊥ = γ (E⊥ + v ∧B) ,

B′
∥ = B∥ B′

⊥ = γ
(
B⊥ − v ∧E/c2

)
. (1)

[Hint: you may find the algebra easier if you treat E and B separately. Do you
need to work out all the matrix elements, or can you argue that you already know
the symmetry?]

6. Find the magnetic field due to a long straight current by Lorentz transformation
from the electric field due to a line charge.

7. Obtain the electric field of a uniformly moving charge, as follows. Place the charge
at the origin of the primed frame S′ and write down the field in that frame, then
transform to S using the equations for the transformation of the fields (not the
force transformation method) and the coordinates. Be sure to write your result in
terms of coordinates in the appropriate frame. Sketch the field lines. Prove (from
the transformation equations, or otherwise) that the magnetic field of a uniformly
moving charge is related to its electric field by B = v ∧E/c2.

8. An isolated parallel plate capacitor has charge ±Q on the plates. It is initially
at rest in the laboratory frame. Assuming the capacitor’s proper dimensions are
fixed, what uniform motion should be given to the capacitor in order to increase the
electric field between the plates? Does this result in an increased force of attraction
between the plates?
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9. A current-carrying wire is electrically neutral in its rest frame S. The wire has
cross-sectional area A and a current I flows uniformly through this cross-section.
Write down the 4-vector current density in the rest frame of the wire. Obtain the
4-vector current density in the rest frame S′ of the current carriers (you may assume
they all have the same charge and drift velocity). Hence show that in this frame
there is a non-zero charge density in the wire. Does this imply that charge is not
Lorentz invariant? Explain. Find the electric field in S′ produced by the charge
density of the wire, in the region outside the wire, and show that it is the same as
the field obtained by transformation of the magnetic field in frame S.

10. (i) Show that two of Maxwell’s equations are guaranteed to be satisfied if the fields
are expressed in terms of potentials A, ϕ such that

B = ∇ ∧A, E = −
(
∂A

∂t

)
−∇ϕ.

(ii) Express the other two of Maxwell’s equations in terms of A and ϕ.
(iii) Introduce a gauge condition to simplify the equations, and hence express
Maxwell’s equations in terms of 4-vectors, 4-vector operators and Lorentz scalars
(a manifestly covariant form).

11. A sphere of radius a in its rest frame is uniformly charged with charge density
ρ = 3q/4πa3 where q is the total charge. Find the fields due a moving charged
sphere by two methods, as follows.
N.B. it will be useful to let the rest frame of the sphere be S′ (not S) and to let the
frame in which we want the fields be S. This will help to avoid a proliferation of
primes in the equations you will be writing down. Let S and S′ be in the standard
configuration.
(i) Field method. Write down the electric field as a function of position in the rest
frame of the sphere, for the two regions r′ < a and r′ ≥ a where r′ = (x′2 + y′2 +
z′2)1/2. Use the field transformation equations to find the electric and magnetic
fields in frame S (re-using results from previous questions where possible), making
clear in what regions of space your formulae apply.
(ii) Potential method. In the rest frame of the sphere the 3-vector potential is zero,
and the scalar potential is

ϕ′ =
q

8πϵ0a

(
3− r′2/a2

)
for r′ < a (2)

ϕ′ =
q

4πϵ0r′
for r′ ≥ a. (3)

Form the 4-vector potential, transform it, and thus show that both ϕ and A are
time-dependent in frame S. Hence derive the fields for a moving sphere. [Beware
when taking gradients that you do not muddle ∂/∂x and ∂/∂x′, etc.]

Retarded potentials and radiative emission
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12. (i) Write down the solution to Poisson’s equation for the case of a point charge q.
(ii) In electrostatics, how is the electric potential at a point in space obtained if the
charge distribution is known?
(iii) Now consider the wave equation

�2ϕ = − ρ

ϵ0

Show that the spherical wave form ϕ = κg(t − r/c)/r (where κ ≡ 1/4πϵ0) is a
solution of the wave equation for r ̸= 0 if ρ is zero everywhere except at the origin.
(iv) We would like to show that this is a solution also as r → 0, if the charge
density ρ is concentrated at a point at the origin. Using your knowledge of Poisson’s
equation, or otherwise, show that this is true as long as g(t) =

∫
ρ(t)dV .

(v) Hence write down the solution to the wave equation for a given arbitrary time-
dependent distribution of charge.
(vi) Why is this called a retarded solution?

13. In a frame S a point charge first moves uniformly along the negative x-axis in the
positive x direction, reaching the point (−d, 0, 0) at t = −∆t, and then it is brought
to rest at the origin at t = 0. Sketch the lines of electric field in S at t = 0, in the
region (x+ d)2 + y2 + z2 > (c∆t)2.

14. The electromagnetic field of a charge in an arbitrary state of motion is given by

E =
q

4πϵ0κ3

(
n− v/c

γ2r2
+

n ∧ [(n− v/c) ∧ a]

c2r

)
where n = r/r, κ = 1− vr/c = 1− n · v/c

B = n ∧E/c

where r is the vector from the source point to the field point, and v, a are the veloc-
ity and acceleration of the charge at the source event. Without detailed derivation,
outline briefly how this result may be obtained. How is the source event identified?

A charged particle moves along the x axis with constant proper acceleration (‘hy-
perbolic motion’), its worldline being given by

x2 − t2 = α2

in units where c = 1. Find the electric field at t = 0 at points in the plane x = α,
as follows.
(i) Consider the field event (t, x, y, z) = (0, α, y, 0). Show that the source event is
at

xs = α+
y2

2α

(ii) Show that the velocity and acceleration at the source event are

vs = −
√

x2
s − α2

xs
, as =

α2

x3
s

.
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(iii) Consider the case α = 1, and the field point y = 2. Write down the values of
xs, vs, as. Draw on a diagram the field point, the source point, and the location
of the charge at t = 0. Mark at the field point on the diagram the directions of the
vectors n, v, a, n ∧ (n ∧ a). Hence, by applying the formula above, establish the
direction of the electric field at (t, x, y, z) = (0, 1, 2, 0).
(iv) If two such particles travel abreast, undergoing the same motion, but fixed to
a rod perpendicular to the x axis so that their separation is constant, comment on
the forces they exert on one another.

15. The far field due to an elementary wire segment dz carrying oscillating current I
is given by

dE =
I sin θ

2ϵ0cr

dz

λ
cos(kr − ωt)

Compare and contrast the case of a short antenna and the half-wave dipole antenna.
Roughly estimate E in the the far field for each case by proposing a suitable model
for the distribution of current I(z) in the antenna. What happens (qualitatively)
for still longer antennas?

Optional extra questions

16. Two frames are said to be ‘aligned’ if an observer at rest in one of the frames finds
that the two sets of axes are parallel.
Frame S′ is aligned with frame S and moves along the x-direction of S at speed v.
Frame S′′ is aligned with frame S′ and moves along the y′-direction of S′ at speed
u. Let w be the relative velocity of S′′ and S. Find the angle θ between w and the
x-axis of frame S, and the angle θ′′ between w and the x′′-axis of frame S′′. Hence
show that S and S′′ are not aligned with one another.

17. Show that the result of ‘adding’ a velocity u′ to a velocity v is not in general the
same as ‘adding’ a velocity v to a velocity u′. Also show that the magnitudes of
the two results are the same.

18. Verify that the complex 3-vector k = E + icB transforms under a Lorentz boost
as does a 3-vector under a rotation through an imaginary angle. Deduce that
E2 − c2B2 and E ·B are Lorentz invariant.

19. Give a 4-vector argument to show that the 4-vector potential of a point charge q
in an arbitrary state of motion is given by

A =
q

4πϵ0

U/c

(−R · U)

where U and R are suitably chosen 4-vectors which you should define in your answer.
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20. A pair of parallel particle beams separated by a distance d have the same uniform
charge per unit length λ. In the laboratory frame, a magnetic field is applied with a
direction and strength just sufficient to overcome the repulsion between the beams,
so that they both propagate in a straight line at constant speed v. Find the size B
of this magnetic field, by both of the following methods:
(i) Do the whole calculation in the laboratory frame.
(ii) Start with a calculation of the force exerted by either beam on a particle in the
other, in the rest frame of the beams. Transform this force to the laboratory frame
and hence deduce the required B field in that frame.
What form does the externally applied field take in the rest frame of the beams?
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4 Further methods; energy-momentum flow; spinors

(Lectures 15-20)

In the following when index notation is adopted, we show, where useful, the same equa-
tion in matrix notation. In the latter notation it is understood that all quantities are
contravariant and the dot signifies the presence of the metric in the matrix multiplica-
tion. For example, AaλBλ would be written A · B which is defined A · B ≡ AgB.

Reflection symmetry and angular momentum

1. Define polar and axial vectors. Which of the following vectors are polar, which axial:
position, velocity, electric field, magnetic field, electric current density, angular
momentum, electric dipole moment, magnetic dipole moment?

2. Define the operation of parity inversion in three spatial dimensions. Prove that
all predictions of classical electromagnetism show mirror symmetry (i.e. no pref-
erence for behaviour of one handedness over the other). Illustrate your answer by
describing (by means of a diagram) the effect of a parity transformation on the
following situation, which shows a positively charged particle moving parallel to a
current-carrying wire in the direction of the current (out of the plane of the paper):

r
&%
'$gq v�

f

�B

3. The 4-angular momentum of a single particle about the origin is defined

Lab ≡ XaPb − XbPa

(i) Prove that, in the absence of forces, dLab/dτ = 0.
(ii) Exhibit the relationship between the space-space part and the 3-angular mo-
mentum vector L = x ∧ p.
(iii) The total angular momentum of a collection of particles about the pivot R is
defined

Lab
tot(R) =

∑
i

(Xa
i − Ra)Pb

i − (Xb
i − Rb)Pa

i

where the sum runs over the particles (that is, X and P are 4-vectors not 2nd rank
tensors, i here labels the particles). Show that the 3-angular momentum in the CM
frame is independent of the pivot.
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4. This question develops some familiarity with the differential operator � or ∂a. I
find I prefer ∂a when carrying out the calculation, but writing the starting point
and the final result using � can be a clean way to see what you have got. It is a
matter of taste.

The 4-vector field F is given by F = 2X + K(X · X) where K is a constant 4-vector
and X = (ct, x, y, z) is the 4-vector displacement in spacetime.
Evaluate the following:
(i) � · X (or ∂λx

λ)
(ii) �(X · X) (or ∂a(xλx

λ))
(iii) �2(X · X)
(iv) � · F (or ∂λF

λ)
(v) �(� · F) (or ∂a(∂λF

λ)
(vi) �2 sin(K · X) (or �2 sin(kλx

λ))
(vii) �X (or ∂axb)

Lagrangian mechanics

5. (i) How is a canonical momentum related to a Lagrangian?
(ii) Show that the Lagrangian

L(x,v, t) = −mc2

γ
+ q(−ϕ+ v ·A)

leads to the canonical momentum (γmv + qA) and to the equation of motion

d

dt
(γmv) = q(E+ v ∧B).

(iii) In this formalism, write down the Hamiltonian function H for a particle of
charge q moving in a magnetic field B = ∇∧A. Make sure you express H in terms
of the appropriate variables.

Electromagnetism

6. The electromagnetic field tensor F (sometimes called Faraday tensor) is defined
such that the four-force on a charged particle is given by

Fa = qFaλUλ [ F = qF · U

By comparing this to the Lorentz force equation f = q(E + v ∧ B) which defines
electric and magnetic fields (keeping in mind the distinction between dp/dt and
dP/dτ), show that the components of the field tensor are

Fab =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .
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7. Assuming the relation of fields E,B to potentials ϕ,A, show that the field tensor
can be written

Fab = ∂aAb − ∂bAa.

(Note, the right hand side here is the 4-vector equivalent of a curl operation). [Hint:
use cyclic permutation to avoid unnecessary repetition]. Now write down ∂cFab in
terms of ∂ operators and A. By keeping track of the sequence of indices, show that

∂cFab + ∂aFbc + ∂bFca = 0.

(In an axiomatic approach, one could argue in the opposite direction, asserting the
above as an axiom and then deriving the relation of fields to potentials).

8. Show that the field equation

∂λFλν = −µ0ρ0U
ν [ � · F = −µ0ρ0U

is equivalent to

�2A−�(� · A) = −µ0J,

where J ≡ ρ0U (here ρ0 is the proper charge density, J is the 4-current density).
Comment.

Field energy and momentum

9. (i) The electric field in a linear accelerator is 106 V/m. Find the power emitted by
an electron traveling down the accelerator. Express your result in eV per metre as-
suming the electrons travel at close to the speed of light. You may quote Larmor’s
formula for emitted power.
(ii) A magnetic field of 1 tesla is used to maintain electrons in their orbits around a
synchrotron of radius 10 m. Show that the electron energy is approximately 3 GeV.
Find the radiative energy loss per revolution.
(iii) What is the main reason why the loss rate is so much higher in part (ii) than
in part (i)?

10. This question involves merely algebraic manipulations; the main requirement is good
organisation. It shows one way to attack momentum flow in electromagnetic fields;
students pressed for time could omit it.

(i) Show (from Maxwell’s equations, or otherwise) that

ρE+ j ∧B = −∂g

∂t
+ ϵ0

[
(∇ ·E)E+ (∇ ∧E) ∧E+ c2(∇ ∧B) ∧B

]
. (4)
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where g = N/c2 and N is the Poynting vector. We wish to show that this can be
written

ρE+ j ∧B = −∂g

∂t
− s (5)

such that

si =
∂σix

∂x
+

∂σiy

∂y
+

∂σiz

∂z

with

σij =
1
2
ϵ0(E

2 + c2B2)δij − ϵ0(EiEj + c2BiBj).

To this end, take the following steps (or use another method if you prefer):
(ii) Show that the x component of (∇∧E)∧E is (∂zEx−∂xEz)Ez−(∂xEy−∂yEx)Ey.
(iii) Consider the x component of s. It is sx = ∇ · σ(x) where (taking c = 1)

σ(x) =
ϵ0
2
(E2 +B2)

 1
0
0

− ϵ0(ExE+BxB)

Writing E2 = E2
x +E2

y +E2
z and using the identity ∇ · (fA) = A · (∇f) + f∇ ·A,

evaluate just the electric field part of ∇ · σ(x).
(iv) Confirm that you have matched the x component of the electric field part of
the square bracket in (4). Explain why the magnetic part also follows.
(v) Is it necessary to calculate explicitly the other components?
(vi) Multiplying eq. (5) by a small volume δV , we have

δV ρE+ δV j ∧B = −δV ∂g

∂t
− δV s. (6)

Explain the physical significance of the terms in this equation (and thus justify all
this hard work!).

11. Show that σij in the previous question is the space-space part of

Tab = ϵ0c
2

(
−FaλF b

λ − 1

2
gabD

)
,

[ i.e. T = ϵ0c
2

(
−F · F− 1

2
gD

)
. ]

where D =
1

2
FλµFλµ.

Use the stress-energy tensor Tab to find the forces exerted by the magnetic field
inside a long cylindrical solenoid of radius 3 cm and field 1 tesla. Mu-metal is an
alloy of high magnetic permeability that can be used to provide shielding against
magnetic fields. If a piece of mu-metal is placed against the end of a solenoid,
it ‘confines’ the magnetic field to the interior of the solenoid. By interpreting
the stress-energy tensor for the field on each side of the mu-metal sheet, discover
whether the latter is attracted or repelled by the solenoid, and find the net force.
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12. Write down the stress-energy tensor and the 4-wave vector for an electromagnetic
plane wave propagating in the x direction.

Such a wave is observed in two frames in standard configuration. Show that the val-
ues of radiation pressure P , momentum density g, energy density u and frequency
ν in the two frames satisfy

P ′

P
=

g′

g
=

u′

u
=

ν′2

ν2

(Optional: can you prove this for any relative motion of the frames? [Hint: write
Tab in terms of Ka]).

A confused student proposes that these quantities should transform like ν′/ν not
ν′2/ν2, on the grounds that energy-momentum N = (uc,N) is a 4-vector and so
should transform in the same way as the wave-vector. What is wrong with this
argument?

Spinors

Concerning spinors, the intention is that students acquire a basic familiarity with the
main ideas. These are: broadly what spinors are, how to rotate and Lorentz transform
them, how to extract 4-vectors from spinors. Parity violation in the weak interaction
is not treated here though it will be mentioned in lectures, and treated more fully in the
particle physics course. The Dirac spinor and Dirac equation will be briefly introduced
in the lectures, but the beautiful connection to antimatter will only be briefly indicated,
and is off syllabus for this part of the course.

13. Describe the spinors (1, 0) and (1, i), by giving for each one the direction of the
flagpole and flag.

14. (i) Find the determinant of the matrix X = tI + xσx + yσy + zσz and comment.
If X is transformed by X → MXM†, what set of transformations M preserve the
determinant?
(ii) Consider the outer product U = uu† where u is a spinor written as a column
vector. Show that U is Hermitian and that the associated 4-vector, given by the
recipe presented in part (i), is

Uα =
1

2
u†σαu

(iii) Show that this 4-vector is null.
(iv) Show that if u is transformed by

u′ = (cosh(ρ/2)I − sinh(ρ/2)σz)u

(where σz =

(
1 0
0 −1

)
) then the associated 4-vector U is transformed by a Lorentz

boost along the z direction with rapidity ρ.
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15. ϕ(t, x, y, z) is a spinor field satisfying

∂ϕ

∂t
+ (σ ·∇)ϕ = 0 (7)

where the σ is the vector of Pauli matrices. ϕ can be expressed as a two-component
column vector of fields u, v. Show that each of the components satisfies the wave
equation with c = 1. [Hint: there are clever ways to do this, but if you don’t know
them, then just write out the 2 × 2 matrix of differential operators and thus get
2 coupled first-order differential equations for u and v. Then figure out how to
eliminate v from the pair of equations.]

Optional extra questions

16. Show that the following two scalar quantities are Lorentz invariant:

D = B2 − E2/c2

α = B ·E/c.

[Hint: for the second, introduce the dual field tensor F̃ab =
1
2ϵabλµF

λµ].

Show that if α = 0 but D ̸= 0 then either there is a frame in which the field is
purely electric, or there is a frame in which the field is purely magnetic. Give the
condition required for each case, and find an example such frame (by specifying its
velocity relative to one in which the fields are E, B). Suggest a type of field for
which both α = 0 and D = 0.

17. Consider the general problem of motion of a particle of charge q in a uniform
constant electromagnetic field. The equation of motion is

q(Fg)U = m
dU

dτ

(make sure you understand the reason why the metric g is included in this equation).
For a uniform constant field, F is independent of space and time, and therefore this
matrix equation is precisely the same as the one obtained in a classical normal
modes problem, and can be solved by the same methods.
(i) Propose a solution U = U0 exp(Γτ) and thus convert the equation into an
eigenvalue equation1 with eigenvalues λ = mΓ/q.
(ii) Without loss of generality, we can take the z-axis along B and E in the xz
plane. Show that the eigenvalues are

λ2 = −D

2
±

√
D2/4 + α2

1Fg is not symmetric so the right-eigenvectors are not the same as the left-eigenvectors. We only
need the right-eigenvectors here.
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where D and α are the invariants defined in problem 16.
(iii) Consider the case α = 0. What does this tells us about the fields? Interpret
the solution corresponding to a zero eigenvalue [Hint: Lorentz force].
(iv) Find U(τ) for a particle initially at rest in a uniform purely electric field.
(v) Show that the right eigenvectors of the matrix(

0 1
−1 0

)
may be written

(
1
i

)
,

(
i
1

)
.

Hence find U(τ) for a particle moving in a plane perpendicular to a uniform purely
magnetic field.

18. In a frame S there is a uniform electric field E along the y direction and a uniform
magnetic field B = 5E/3c along the z direction. A particle of mass m, charge q is
released from rest on the x axis. What time elapses before it returns to the x-axis?

19. (i) Prove that the time rate of change of the angular momentum L = r ∧ p of a
particle about an origin O is equal to the couple r∧ f of the applied force about 0.
(ii) If Lab is the particle’s 4-angular momentum, and we define the 4-couple Gab ≡
XaFb − XbFa, prove that (d/dτ)Lab = Gab, and that the space-space part of this
equation corresponds to the previous 3-vector result.

20. If (E,B) and E′,B′) are two different electromagnetic fields, show that E · E′ −
c2B ·B′ and E ·B′ +B ·E′ are invariants.

21. In a certain frame S0 having 4-velocity U, a 2nd rank tensor T has but one non-zero
component, T 00 = c2. Find the components of T in the general frame S, in which
U = γu(c, u).

The Dirac matrices in the chiral basis are

γ0 =

(
0 I
I 0

)
, γi =

(
0 −σi

σi 0

)
, γ5 =

(
I 0
0 −I

)
.

22. A Dirac spinor

Ψ =

(
ϕR

χL

)
transforms under a change of reference frame as

Ψ →
(

Λ(v) 0
0 Λ(−v)

)
Ψ

where Λ(v) = exp (iσ · θ/2− σ · ρ/2)
and Λ(−v) = (Λ(v)†)−1 = exp (iσ · θ/2 + σ · ρ/2).
(i) Show that the combination(

ϕ†
R, χ

†
L

)(
0 I
I 0

)(
ϕR

χL

)
= ϕ†

RχL + χ†
LϕR
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is Lorentz-invariant.

(ii) How may two non-null orthogonal 4-vectors be extracted from the Dirac spinor?
Briefly exhibit both the relationship to a pair of null 4-vectors, and the use of Dirac
matrices to express the result in a compact notation.

23. A Dirac spinor is used to represent the energy-momentum and spin 4-vectors of
a single particle. By using a boost along the z direction and then extracting the
spinor properties, or otherwise, show that in the limit v → c, the spin is aligned
with the momentum.

24. Prove that the electromagnetic stress-energy tensor satisfies the following two iden-
tities:

Tλ
λ = 0, T a

λT
λ
b = (Iϵ0/2)

2δab

where I2 = (E2 − c2B2)2 +4(E ·B)2c2. [Hint: start by establishing the identity in
a particular frame, such as one in which E is parallel to B].

25. The Klein-Gordan equation is

1

c2
∂2ϕ

∂t2
−∇2ϕ = −µ2c2ϕ

(i) Prove that the equation is Lorentz-covariant as long as ϕ is a Lorentz scalar
field.
(ii) In the two dimensional case (i.e. one spatial dimension plus time), show that
the left hand side factorizes into terms involving only first-order derivatives.
(iii) If m is a vector, each of whose components is a constant 2× 2 matrix, and ∇
is the 3-gradient operator, show that (m ·∇)2 = ∇2 if the component matrices mi

anticommute among themselves and square to 1 (i.e. m2
i = I). Identify a set of

matrices with these properties.
(iv) Factorize the left hand side of the Klein-Gordan in the four-dimensional case,
and hence obtain the Dirac equation. [To reduce clutter, you may find it helpful

to introduce the notation ω̂ ≡ i
(

∂
∂t

)
, k̂ ≡ −i∇.]

(v) Briefly discuss the plane wave solutions of the Dirac equation.

26. In synchrotron radiation, in which direction is most of the energy emitted in the
rest frame of the accelerating charge? Describe qualitatively the pattern of the
radiation field in the rest frame of the centre of the synchrotron apparatus.

27. Why is it not feasible for mobile phones to use radio waves?

28. The Pauli-Lubanski spin vector is defined by

Wa =
1

2
ϵaνλµS

λµPν

where Sλµ is the angular momentum about the centroid (or ‘centre of mass’). By
evaluating components one by one, or otherwise, show that the components of W
are given by

W = (s · p, (E/c)s)
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where s is the 3-spin.


